

Multicast Routing

- · Unicast: one source to one destination
- Multicast: one source to many destinations
- Two main functions:
 - · Efficient data distribution
 - · Logical naming of a group

- 2

Example Applications

- Broadcast audio/video
- · Push-based systems
- Software distribution
- · Web-cache updates
- Teleconferencing (audio, video, shared whiteboard, text editor)
- · Multi-player games
- Server/service location
- · Other distributed applications

Overview

- IP Multicast Service Basics
- · Multicast Routing Basics
- · Overlay Multicast
- Reliability
- Congestion Control

Multicast Router Responsibilities

- Learn of the existence of multicast groups (through advertisement)
- Identify links with group members
- Establish state to route packets
 - · Replicate packets on appropriate interfaces
 - Routing entry:

Src, incoming interface List of outgoing interfaces

IP Multicast Service Model (rfc1112)

- Each group identified by a single IP address
- · Groups may be of any size
- Members of groups may be located anywhere in the Internet
- · Members of groups can join and leave at will
- · Senders need not be members
- Group membership not known explicitly
- · Analogy:
 - Each multicast address is like a radio frequency, on which anyone can transmit, and to which anyone can tune-in.

IP Multicast Addresses

- · Class D IP addresses
 - 224.0.0.0 **–** 239.255.255.255

1 1 1 0

Group ID

- How to allocated these addresses?
 - Well-known multicast addresses, assigned by IANA
 - Transient multicast addresses, assigned and reclaimed dynamically, e.g., by "sdr" program

Multicast Groups

- · Members are the intended receivers
- Senders may or may not be members
- Hosts may belong to many groups
- · Hosts may send to many groups
- Support dynamic creation of groups, dynamic membership, dynamic sources

9

Multicast Scope Control – Small TTLs

 TTL expanding-ring search to reach or find a nearby subset of a group

Multicast Scope Control – Large TTLs

 Administrative TTL Boundaries to keep multicast traffic within an administrative domain, e.g., for privacy or resource reasons

Overview

- IP Multicast Service Basics
- Multicast Routing Basics
- Overlay Multicast
- Reliability
- Congestion Control

13

Service model Hosts Host-to-router protocol (IGMP) Multicast routing protocols (various)

Multicast Routing

- Basic objective build distribution tree for multicast packets
- · Multicast service model makes it hard
 - Anonymity
 - Dynamic join/leave

Shared vs. Source-based Trees

- Source-based trees
 - Separate shortest path tree for each sender
 - DVMRP, MOSPF, PIM-DM, PIM-SM
- Shared trees
 - Single tree shared by all members
 - Data flows on same tree regardless of sender
 - CBT, PIM-SM

Shared vs. Source-Based Trees

- Source-based trees
 - Shortest path trees low delay, better load distribution
 - More state at routers (per-source state)
 - Efficient for in dense-area multicast
- Shared trees
 - Higher delay (bounded by factor of 2), traffic concentration
 - · Choice of core affects efficiency
 - · Per-group state at routers
 - Efficient for sparse-area multicast
- Which is better? → extra state in routers is bad!

Routing Techniques

- Flood and prune
 - Begin by flooding traffic to entire network
 - · Prune branches with no receivers
 - Examples: DVMRP, PIM-DM
 - Unwanted state where there are no receivers
- Link-state multicast protocols
 - Routers advertise groups for which they have receivers to entire network
 - · Compute trees on demand
 - · Example: MOSPF
 - Unwanted state where there are no senders

Routing Techniques

- · Core based protocols
 - · Specify "meeting place" aka core
 - · Sources send initial packets to core
 - · Receivers join group at core
 - Requires mapping between multicast group address and "meeting place"
 - Examples: CBT, PIM-SM

Distance-Vector Multicast Routing

- DVMRP consists of two major components:
 - A conventional distance-vector routing protocol (like RIP)
 - A protocol for determining how to forward multicast packets, based on the routing table
- DVMRP router forwards a packet if
 - The packet arrived from the link used to reach the source of the packet (reverse path forwarding check – RPF)
 - If downstream links have not pruned the tree

_ 22

Overview

- IP Multicast Service Basics
- Multicast Routing Basics
- Overlay Multicast
- Reliability
- Congestion Control

Retransmission

- Re-transmitter
 - Options: sender, other receivers
- How to retransmit
 - Unicast, multicast, scoped multicast, retransmission group, ...
- Problem: Exposure

Scalable Reliable Multicast (SRM)

- Originally designed for wb
- Receiver-reliable
 - NACK-based
- Every member may multicast NACK or retransmission

Overview

- IP Multicast Service Basics
- Multicast Routing Basics
- Overlay Multicast
- Reliability
- Congestion Control

What if receivers have very different bandwidths?
Send at max?
Send at min?
Send at avg?

Video Adaptation: RLM

- · Receiver-driven Layered Multicast
- · Layered video encoding
- Each layer uses its own mcast group
- On spare capacity, receivers add a layer
- On congestion, receivers drop a layer
- · Join experiments used for shared learning

Drop Policies for Layered Multicast

- Priority
 - Packets for low bandwidth layers are kept, drop queued packets for higher layers
 - Requires router support
- Uniform (e.g., drop tail, RED)
 - Packets arriving at congested router are dropped regardless of their layer
- · Which is better?

49

RLM Intuition

- Uniform
 - · Better incentives to well-behaved users
 - · If oversend, performance rapidly degrades
 - · Clearer congestion signal
 - · Allows shared learning
- Priority
 - · Can waste upstream resources
 - · Hard to deploy
- RLM approaches optimal operating point
 - · Uniform is already deployed
 - Assume no special router support

RLM Join Experiment

- Receivers periodically try subscribing to higher layer
- If enough capacity, no congestion, no drops → Keep layer (& try next layer)
- If not enough capacity, congestion, drops
 → Drop layer (& increase time to next retry)
- · What about impact on other receivers?

RLM Scalability?

- What happens with more receivers?
- Increased frequency of experiments?
 - More likely to conflict (false signals)
 - Network spends more time congested
- Reduce # of experiments per host?
 - Takes longer to converge
- Receivers coordinate to improve behavior

Next Lecture

- DDoS and Traceback
- · Required reading:
 - A DoS-limiting Network Architecture
- Optional reading:
 - Hash-Based IP Traceback