
1

15-744: Computer Networking

L-18 Naming

Today’s Lecture

•  Naming and CDNs
•  Required readings

•  Middleboxes No Longer Considered Harmful
•  Internet Indirection Infrastructure

•  Optional readings
•  Democratizing content publication with Coral

2

3

Overview

•  Akamai
•  i3
•  Layered naming

•  DOA
•  SFR

4

How Akamai Works

End-user

cnn.com (content provider) DNS root server Akamai server

1 2 3

4

Akamai high-level DNS server

Akamai low-level DNS server

Akamai server

10

6
7

8

9

12

Get
index.
html

Get /cnn.com/foo.jpg

11

Get foo.jpg

5

2

5

Akamai – Subsequent Requests

End-user

cnn.com (content provider) DNS root server Akamai server

1 2 Akamai high-level DNS server

Akamai low-level DNS server

Akamai server

7

8

9

12

Get
index.
html

Get /cnn.com/foo.jpg

Coral: An Open CDN

•  Implement an open CDN
•  Allow anybody to contribute
•  Works with unmodified clients
•  CDN only fetches once from origin server

Origin
Server

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Browser

Browser

Browser

Browser

Pool resources to dissipate flash crowds

6

Using CoralCDN
•  Rewrite URLs into “Coralized” URLs

•  www.x.com → www.x.com.nyud.net:8090

•  Directs clients to Coral, which absorbs load

•  Who might “Coralize” URLs?
•  Web server operators Coralize URLs
•  Coralized URLs posted to portals, mailing lists
•  Users explicitly Coralize URLs

7

httpprx
dnssrv

Browser
Resolver

DNS Redirection
Return proxy,
preferably one
near client

Cooperative
Web Caching

CoralCDN components

httpprx

www.x.com.nyud.net
216.165.108.10

Fetch data
from nearby

?

?

Origin
Server



8

3

Functionality needed
  DNS: Given network location of resolver, return a

proxy near the client

 put (network info, self)
 get (resolver info) → {proxies}

  HTTP: Given URL, find proxy caching object,
preferably one nearby

 put (URL, self)
 get (URL) → {proxies}

9

Use a DHT?

•  Supports put/get interface using key-based routing

•  Problems with using DHTs as given

•  Lookup latency

•  Transfer latency

•  Hotspots

NYU Columbia

Germany

Japan NYC
NYC

10

Coral distributed index
•  Insight: Don’t need hash table semantics

•  Just need one well-located proxy

•  put (key, value, ttl)
•  Avoid hotspots

•  get (key)
•  Retrieves some subset of values put under key
•  Prefer values put by nodes near requestor

•  Hierarchical clustering groups nearby nodes
•  Expose hierarchy to applications

•  Rate-limiting mechanism distributes puts

Key-based XOR routing

000… 111… Distance to key

None

< 60 ms

< 20 ms

Thresholds

•  Minimizes lookup latency
•  Prefer values stored by nodes within faster clusters

4

Prevent insertion hotspots

NYU

•  Halt put routing at full and loaded node
•  Full → M vals/key with TTL > ½ insertion TTL
•  Loaded → β puts traverse node in past minute

•  Store at furthest, non-full node seen

  Store value once in each level cluster
  Always storing at closest node causes hotspot

…

(log n) β reqs / min

Coral Contributions

•  Self-organizing clusters of nodes
•  NYU and Columbia prefer one another to Germany

•  Rate-limiting mechanism
•  Everybody caching and fetching same URL does not

overload any node in system

•  Decentralized DNS Redirection
•  Works with unmodified clients

No centralized management or a priori knowledge of
proxies’ locations or network configurations

14

15

Overview

•  i3
•  Layered naming

•  DOA
•  SFR

Multicast

S1

C1 C2

S2

R RP RR

RR

RP: Rendezvous
Point

16

5

Mobility

HA FA

Home Network

Network 5

5.0.0.1 12.0.0.4

Sender

Mobile
Node

5.0.0.3

17 18

i3: Motivation
•  Today’s Internet based on point-to-point

abstraction

•  Applications need more:
•  Multicast
•  Mobility
•  Anycast

•  Existing solutions:
•  Change IP layer
•  Overlays

So, what’s the problem?
A different solution for each service

The i3 solution
•  Solution:

•  Add an indirection layer on top of IP
•  Implement using overlay networks

•  Solution Components:
•  Naming using “identifiers”
•  Subscriptions using “triggers”
•  DHT as the gluing substrate

19

Indirection
Every problem

in CS … 

Only primitive
needed

i3: Rendezvous Communication

•  Packets addressed to identifiers (“names”)
•  Trigger=(Identifier, IP address): inserted by

receiver

20

Sender Receiver (R)

ID R

trigger

send(ID, data)
send(R, data)

Senders decoupled from receivers

6

21

i3: Service Model

•  API
• sendPacket(id, p);
• insertTrigger(id, addr);
• removeTrigger(id, addr); //
optional

•  Best-effort service model (like IP)
•  Triggers periodically refreshed by end-hosts
•  Reliability, congestion control, and flow-

control implemented at end-hosts

i3: Implementation

•  Use a Distributed Hash Table
•  Scalable, self-organizing, robust
•  Suitable as a substrate for the Internet

22

Sender Receiver (R)

ID R

trigger

send(ID, data)
send(R, data)

DHT.put(id)

IP.route(R)

DHT.put(id)

23

Mobility and Multicast

•  Mobility supported naturally
•  End-host inserts trigger with new IP

address  transparent to sender
•  Robust and supports location privacy

•  Multicast
•  All receivers insert triggers under same ID
•  Sender uses that ID for sending
•  Can optimize tree construction to balance load

Mobility

•  The change of the receiver’s address
•  from R to R’ is transparent to the sender

24

7

Multicast
•  Every packet (id, data) is forwarded to each

receiver Ri that inserts the trigger (id, Ri)

25 26

Anycast

•  Generalized matching
•  First k-bits have to match, longest prefix match

among rest

Sender

(R1)

(R2)

(R3)

a b

a b1

a b2

a b3

Triggers

•  Related triggers must be on same server
•  Server selection (randomize last bits)

Generalization: Identifier Stack
•  Stack of identifiers

•  i3 routes packet through these identifiers

•  Receivers
•  trigger maps id to <stack of ids>

•  Sender can also specify id-stack in packet

•  Mechanism:
•  first id used to match trigger
•  rest added to the RHS of trigger
•  recursively continued

27

Service Composition
•  Receiver mediated: R sets up chain and

passes id_gif/jpg to sender: sender oblivious

•  Sender-mediated: S can include (id_gif/jpg, ID)
in his packet: receiver oblivious

28

Sender
(GIF)

Receiver R
(JPG)

ID_GIF/JPG S_GIF/JPG
ID R

send((ID_GIF/JPG,ID), data)

S_GIF/JPG

send(ID, data) send(R, data)

8

Public, Private Triggers

•  Servers publish their public ids: e.g., via
DNS

•  Clients contact server using public ids, and
negotiate private ids used thereafter

•  Useful:
•  Efficiency -- private ids chosen on “close-by” i3-

servers
•  Security -- private ids are shared-secrets

29

Scalable Multicast

•  Replication possible at any i3-server in the
infrastructure.

•  Tree construction can be done internally

30

R2

R1

R4
R3

g
 R2

g
 R1

g
x

x
 R4

x
 R3

(g, data)

31

Overview

•  i3
•  Layered naming

•  DOA
•  SFR

32

Architectural Brittleness

•  Hosts are tied to IP addresses
•  Mobility and multi-homing pose problems

•  Services are tied to hosts
•  A service is more than just one host: replication,

migration, composition

•  Packets might require processing at
intermediaries before reaching destination
•  “Middleboxes” (NATs, firewalls, …)

9

Reactions to the Problem

•  Purist: can’t live with middleboxes
•  Pragmatist: can’t live without middleboxes
•  Pluralist (us): purist, pragmatist both right

•  DOA goal: Architectural extension in which:
•  Middleboxes first-class Internet citizens
•  Harmful effects reduced, good effects kept
•  New functions arise

33

DOA: Delegation-Oriented Architecture

•  Architectural extension to Internet. Core
properties:
1. Restore globally unique identifiers for hosts
2. Let receivers, senders invoke (and revoke) off-path

boxes: delegation primitive

34

NAT Host A

Firewall

Host D

10.1.1.4
0xf12312

0xf12312

B

C

35

Naming Can Help

•  Thesis: proper naming can cure some ills
•  Layered naming provides layers of indirection and

shielding

•  Many proposals advocate large-scale,
overarching architectural change
•  Routers, end-hosts, services

•  Proposal:
•  Changes “only” hosts and name resolution
•  Synthesis of much previous work

Internet Naming is Host-Centric
•  Two global namespaces: DNS and IP

addresses

•  These namespaces are host-centric
•  IP addresses: network location of host
•  DNS names: domain of host
•  Both closely tied to an underlying structure
•  Motivated by host-centric application

•  Such names constrain movement/replication

36

10

37

The Trouble with Host-Centric Names

•  Host-centric names are fragile
•  If a name is based on mutable properties of its

referent, it is fragile
•  Example: If Joe’s Web page www.berkeley.edu/

~hippie moves to www.wallstreetstiffs.com/
~yuppie, Web links to his page break

•  Fragile names constrain movement
•  IP addresses are not stable host names
•  DNS URLs are not stable data names

Object Movement Breaks Links

•  URLs hard-code a domain and a path

isp.com

“dog.jpg”

isp-2.com

“spot.jpg”

“HTTP 404”

HTTP GET:
/dog.jpg

Browser

http:// <A HREF=
http://isp.com/dog.jpg
>Spot

38

Object Movement Breaks Links, Cont’d

•  Today’s solutions not stable:
•  HTTP redirects

•  need cooperation of original host

isp.com

“dog.jpg”

isp-2.com

“spot.jpg”

“HTTP 404”

HTTP GET:
/dog.jpg

Browser

http:// <A HREF=
http://isp.com/dog.jpg
>Spot

39

Supporting Object Replication
•  Host replication relatively easy today
•  But per-object replication requires:

•  separate DNS name for each object
•  virtual hosting so replica servers recognize names
•  configuring DNS to refer to replica servers

isp.com
“/docs/foo.ps”

mit.edu
“~joe/foo.ps”

http://object26.org
HTTP “GET /”

host: object26.org

HTTP “GET /” host: object26.org

40

11

Key Architectural Questions

•  Which entities should be named?

•  What should names look like?

•  What should names resolve to?

41 42

Delegation
•  Names usually resolve to “location” of entity

•  Packets might require processing at
intermediaries before reaching destination

•  Such processing today violates layering
•  Only element identified by packet’s IP destination

should inspect higher layers

Delegation principle: A network entity should be able
to direct resolutions of its name not only to its own

location, but also to chosen delegates

43

Name Services and Hosts Separately

•  Service identifiers (SIDs) are host-
independent data names

•  End-point identifiers (EIDs) are location-
independent host names

•  Protocols bind to names, and resolve them
•  Apps should use SIDs as data handles
•  Transport connections should bind to EIDs

Binding principle: Names should bind protocols only
to relevant aspects of underlying structure

44

The Naming Layers

User-level descriptors
(e.g., search)

App session

App-specific search/lookup
returns SID

Transport

Resolves SID to EID
Opens transport conns

IP

Resolves EID to IP

Bind to EID

Use SID as handle

IP hdr EID TCP SID …
IP

Transport

App session

Application

12

45

SIDs and EIDs should be Flat
0xf436f0ab527bac9e8b100afeff394300

•  Flat names impose no structure on entities
• Structured names stable only if name structure

matches natural structure of entities
• Can be resolved scalably using, e.g., DHTs

•  Flat names can be used to name anything
• Once you have a large flat namespace, you

never need other global “handles”

Stable-name principle: A stable name should not
impose restrictions on the entity it names

46

Resolution
Service

Flat Names Enable Flexible Migration

<A HREF=
http://f012012/pub.pdf
>here is a paper

HTTP GET: /

docs/pu
b.pdf

10.1.2.3

/docs/!

20.2.4.6

HTTP GET: /~user/

pubs/pub.pdf
(10.1.2.3,80,
/docs/) (20.2.4.6,80,

/~user/pubs/)
/~user/pubs/!

•  SID abstracts all object reachability information
•  Objects: any granularity (files, directories)
•  Benefit: Links (referrers) don’t break

Domain H

Domain Y

47

Flat Names are a Two-Edged Sword

•  Global resolution infrastructure needed
•  Perhaps as “managed DHT” infrastructure

•  Lack of local name control

•  Lack of locality

•  Not user-friendly
•  User-level descriptors are human-friendly

Globally Unique Identifiers for Hosts

•  Location-independent, flat, big namespace
•  Hash of a public key
•  These are called EIDs (e.g., 0xf12abc…)
•  Carried in packets

DOA hdr

IP
hdr

transport hdr body source EID
destination EID

48

13

Delegation Primitive

•  Let hosts invoke, revoke off-path boxes
•  Receiver-invoked: sender resolves

receiver’s EID to
•  An IP address or
•  An EID or sequence of EIDs

•  DOA header has destination stack of EIDs
•  Sender-invoked: push EID onto this stack

IP
hdr

transport hdr body source EID
destination EID stack

49

DOA in a Nutshell

•  End-host replies to source by resolving es

•  Authenticity, performance: discussed in the
paper

Delegate
IP: j

<eh, j>

End-host
EID: eh
IP: ih

j

DHT

LOOKUP(
eh)

Process
Source
EID: es
IP: is

DOA Packet

IP
is j

transport body DOA
es eh

DOA

transport DOA
es eh

50

Off-path Firewall

eh  (ih, Rules)

Network
Stack

is j es [eFW eh]

ih j es eh

eh

<eh, eFW>
<eFW, j>

eFW

eFW

j

DHT

Source
EID: es
IP: is

Firewall

End-host

ih

j EID: eFW

EID: eh

Sign (MAC)

Verify

51

Off-path Firewall: Benefits

•  Simplification for end-users who want it
•  Instead of a set of rules, one rule:
•  “Was this packet vetted by my FW provider?”

•  Firewall can be anywhere, leading to:
•  Third-party service providers
•  Possible market for such services
•  Providers keeping abreast of new applications

•  DOA enables this; doesn’t mandate it.

52

14

Next Lecture

•  Data-oriented networking and DTNs
•  Required reading:

•  Networking Named Content
•  A Delay-Tolerant Network Architecture for

Challenged Internets

•  Optional reading:
•  An Architecture for Internet Data Transfer
•  A Data-Oriented (and Beyond) Network

Architecture

53

A Bit More About DOA

•  Incrementally deployable. Requires:
•  Changes to hosts and middleboxes
•  No changes to IP routers (design requirement)
•  Global resolution infrastructure for flat IDs

•  Recall core properties:
•  Topology-independent, globally unique identifiers
•  Let end-hosts invoke and revoke middleboxes

•  Recall goals: reduce harmful effects, permit
new functions

54

Reincarnated NAT

•  End-to-end communication
•  Port fields not overloaded

•  Especially useful when NATs are cascaded

is 5.1.9.9 es ed

ed

5.1.9.9

NATed network DHT

Source
EID: es
IP: is

Destination
EID: ed

is 10.1.1.3 es ed

5.1.9.9 10.1.1.1 10.1.1.3

NAT

ed 
10.1.1.3

55 56

Key Architectural Questions
1.  Which entities should be named?

2.  What should names look like?

3.  What should names resolve to?

15

57

•  Delegate can be anywhere in the network, not
necessarily on the IP path to d (ipd)

•  SID/EID can resolve to sequence of delegates

ipf EID d TCP hdr
Packet structure (dests only)

EID d
IP ipd EID s

Firewall

EID f
IP ipf

ipf f
f d

Mapping Dest EID
Resolution svc

Delegation Enables Architecturally-Sound
Intermediaries

58

Overview

•  SFR

Introduction

•  The Web depends on linking; links contain
references
click here

•  Properties of DNS-based references
•  encode administrative domain
•  human-friendly

•  These properties are problems!

59

Web Links Should Use Flat Identifiers

<A HREF=
http://isp.com/dog.jpg
>my friend’s dog

<A HREF=
http://f0120123112/
>my friend’s dog

Current Proposed

60

16

Status Quo

DNS

IP addr

a.com Browser

HTTP GET: /
dog.jpg

http:// <A HREF=
http://a.com/
dog.jpg>Spot

Web Page

Why not DNS?

“Reference
 Resolution
 Service”

61

Goal #1: Stable References

•  In other words, links shouldn’t break
•  DNS-based URLs are not stable . . .

Stable=“reference is invariant when
object moves”

62

Object Movement Breaks Links

•  URLs hard-code a domain and a path

isp.com

“dog.jpg”

isp-2.com

“spot.jpg”

“HTTP 404”

HTTP GET:
/dog.jpg

Browser

http:// <A HREF=
http://isp.com/dog.jpg
>Spot

63

Object Movement Breaks Links, Cont’d

•  Today’s solutions not stable:
•  HTTP redirects

•  need cooperation of original host

isp.com

“dog.jpg”

isp-2.com

“spot.jpg”

“HTTP 404”

HTTP GET:
/dog.jpg

Browser

http:// <A HREF=
http://isp.com/dog.jpg
>Spot

64

17

Goal #2: Supporting Object Replication
•  Host replication relatively easy today
•  But per-object replication requires:

•  separate DNS name for each object
•  virtual hosting so replica servers recognize names
•  configuring DNS to refer to replica servers

isp.com
“/docs/foo.ps”

mit.edu
“~joe/foo.ps”

http://object26.org
HTTP “GET /”

host: object26.org

HTTP “GET /” host: object26.org

65

What Should References Encode?

•  Observe: if the object is allowed to change
administrative domains, then the reference
can’t encode an administrative domain

•  What can the reference encode?
•  Nothing about the object that might change!
•  Especially not the object’s whereabouts!

•  What kind of namespace should we use?

66

Goal #3: Automate Namespace
Management
•  Automated management implies no fighting

over references

•  DNS-based URLs do not satisfy this . . .

67

DNS is a Locus of Contention

•  Used as a branding mechanism
•  tremendous legal combat
•  “name squatting”, “typo squatting”, “reverse

hijacking”, . . .
•  ICANN and WIPO politics

•  technical coordinator inventing naming rights
•  set-asides for misspelled trademarks

•  Humans will always fight over names . . .

68

18

<A HREF=
http://f012c1d/
>Spot

Managed DHT-
based
Infrastructure

GET(0xf012
c1d)

(10.1.2.3,
80, /pics/
dog.gif)

o-record

HTTP GET: /pics/dog.gif 10.1.2.3

Web Server
/pics/dog.gif

orec

SFR in a Nutshell

•  API
•  orec = get(tag);
•  put(tag, orec);

•  Anyone can put() or get()
69 70

Overview

•  Service location

71

Service Location
•  What if you want to lookup services with more

expressive descriptions than DNS names
•  E.g. please find me printers in cs.cmu.edu instead of

laserjet1.cs.cmu.edu
•  What do descriptions look like?
•  How is the searching done?
•  How will it be used?

•  Search for particular service?
•  Browse available services?
•  Composing multiple services into new service?

72

Service Descriptions

•  Typically done as hierarchical value-
attribute pairs
•  Type = printer  memory = 32MB, lang = PCL
•  Location = CMU  building = WeH

•  Hierarchy based on attributes or attributes-
values?
•  E.g. Country  state or country=USA 

state=PA and country=Canada 
province=BC?

•  Can be done in something like XML

19

73

Service Discovery (Multicast)
•  Services listen on well known discovery group

address
•  Client multicasts query to discovery group
•  Services unicast replies to client
•  Tradeoffs

•  Not very scalable  effectively broadcast search
•  Requires no dedicated infrastructure or bootstrap
•  Easily adapts to availability/changes
•  Can scope request by multicast scoping and by

information in request

74

Service Discovery (Directory Based)
•  Services register with central directory agent

•  Soft state  registrations must be refreshed or the
expire

•  Clients send query to central directory  replies
with list of matches

•  Tradeoffs
•  How do you find the central directory service?

•  Typically using multicast based discovery!
•  SLP also allows directory to do periodic advertisements

•  Need dedicated infrastructure
•  How do directory agents interact with each other?
•  Well suited for browsing and composition  knows full

list of services

75

Service Discovery (Routing Based)
•  Client issues query to overlay network

•  Query can include both service description and actual request for
service

•  Overlay network routes query to desired service[s]
•  If query only description, subsequent interactions can be

outside overlay (early-binding)
•  If query includes request, client can send subsequent

queries via overlay (late-binding)
•  Subsequent requests may go to different services agents
•  Enables easy fail-over/mobility of service

•  Tradeoffs
•  Routing on complex parameters can be difficult/expensive
•  Can work especially well in ad-hoc networks
•  Can late-binding really be used in many applications?

76

Wide Area Scaling
•  How do we scale discovery to wide area?

•  Hierarchy?
•  Hierarchy must be based on attribute of services

•  All services must have this attribute
•  All queries must include (implicitly or explicitly) this

attribute
•  Tradeoffs

•  What attribute? Administrative (like DNS)?
Geographic? Network Topologic?

•  Should we have multiple hierarchies?
•  Do we really need hierarchy? Search engines seem to

work fine!

20

77

Other Issues

•  Dynamic attributes
•  Many queries may be based on attributes such

as load, queue length
•  E.g., print to the printer with shortest queue

•  Security
•  Don’t want others to serve/change queries
•  Also, don’t want others to know about existence

of services
•  Srini’s home SLP server is advertising the $50,000

MP3 stereo system (come steal me!)

78

The Problem
•  Middlebox: interposed entity doing more than IP

forwarding (NAT, firewall, cache, …)
•  Not in harmony with the Internet architecture

•  No unique identifiers and on-path blocking:
  Barrier to innovation
 Workarounds add complexity

10.1.1.4

NAT B Host A

New traffic class

Firewall Host D

C

79

Reactions to the Problem

Our goal: Architectural extension in which:
•  Middleboxes first-class Internet citizens
•  Harmful effects reduced, good effects kept
•  New functions arise

•  Purist: can’t live with middleboxes
•  Pragmatist: can’t live without middleboxes
•  Pluralist (us): purist, pragmatist both right

80

21

DOA: Delegation-Oriented Architecture

Architectural extension to Internet. Core properties:
1. Restore globally unique identifiers for hosts
2. Let receivers, senders invoke (and revoke) off-

path boxes: delegation primitive

NAT Host A

Firewall

Host D

10.1.1.4
0xf12312

0xf12312

B

C

81

Outline
I.  DOA (Delegation-Oriented Architecture)

II.  Uses of DOA

III.  Related Work / Conclusion

82

Separate References and User-level
Handles

•  “So aren’t you just moving the problem?”
•  Yes.
•  But.

 Let people fight over handles, not references

Object Location
Human-
unfriendly
References

User Handles
(AOL Keywords,
New Services, etc.)

tussle space
[Clark et al., 2002]

83 84

