I 15-744: Computer Networking I

L-18 Naming
AW
IEPR
Overview oy
| I I I L
« Akamai
* i3
 Layered naming
+ DOA
+ SFR

Today’s Lecture yodes
| I I I L]
* Naming and CDNs
* Required readings

» Middleboxes No Longer Considered Harmful

* Internet Indirection Infrastructure
* Optional readings

» Democratizing content publication with Coral
How Akamai Works Vit
| I I I I

Akamai server

cnn.com (content provider) DNS root server

| |
" "

l Akamai high-level DNS server
1L

l Akamai low-level DNS server
L

Akamai server

=

End-ugeri 12 [

Akamai — Subsequent Requests

n\?/ﬂ
Ay

e

L »
TR

cnn.com (content provider) DNS root server

(LU (L)

7
5 L.
Akamai server
—— 9 F

End-user 12

Get /cnn.com/foo.jpg > i“!

Akamai server

l Akamai high-level DNS server
L

l Akamai low-level DNS server
m

Coral: An Open CDN JR

N Y

N — o]

<+«— | Browser

.\‘\
Browser

Pool resources to dissipate flash crowds

* Implement an open CDN

* Allow anybody to contribute

* Works with unmodified clients

» CDN only fetches once from origin server]

Using CoralCDN

* Rewrite URLs into “Coralized” URLs

* www.x.com — www.x.com.nyud.net:8090
« Directs clients to Coral, which absorbs load

* Who might “Coralize” URLs?
» Web server operators Coralize URLs
» Coralized URLs posted to portals, mailing lists
» Users explicitly Coralize URLs

Ve
CoralCDN components Ve
— - - - =
:Origin
iServer :
""""" e
Fetch data
httpprx from nearby
dnssrv
DNS Redirection _
Ret 1 l Cooperative
eturn proxy, '
preferably one Web Caching
Resolver

near client
Browser

www.x.com.nyud.net

Functionality needed

q
n’}

m DNS: Given network location of resolver, return a

proxy near the client

put (network info, self)
get (resolver info) — {proxies}

m HTTP: Given URL, find proxy caching object,

preferably one nearby

put (URL, self)
get (URL) — {proxies}

u\?/ﬂ
)lfn\
d

»
b

Use a DHT? yodes
S I I L

» Supports put/get interface using key-based routing
* Problems with using DHTs as given
NYC Japan

0.‘
® - Lookup latency
Germany

- Transfer latency

- Hotspots

Coral distributed index

[. - . - . -
+ Insight: Don’t need hash table semantics
» Just need one well-located proxy

+ put (key, value, ttl)
* Avoid hotspots

get (key)
* Retrieves some subset of values put under key
» Prefer values put by nodes near requestor

+ Hierarchical clustering groups nearby nodes
» Expose hierarchy to applications
Rate-limiting mechanism distributes puts

uu\f“ \::;
Key based XOR routing PR
- . - . - —
000... Distance to key 111...
o0 o0 oo 000 o None
. <60 ms

* Minimizes lookup latency
» Prefer values stored by nodes within faster clusters

Coral Contributions ¥

| I I
» Self-organizing clusters of nodes
* NYU and Columbia prefer one another to Germany

» Rate-limiting mechanism

» Everybody caching and fetching same URL does not

overload any node in system
* Decentralized DNS Redirection

« Works with unmodified clients

No centralized management or a priori knowledge of
proxies’ locations or network configurations

. ey
Prevent insertion hotspots jose;
| I S I L
m Store value once in each level cluster
Always storing at closest node causes hotspot
: : o
NYU I—¢ ay .'
[P’ l‘
— :’.‘ ,‘ ° o
2 . o
B reqs / min
* Halt put routing at full and loaded node
* Full — M vals/key with TTL > 2 insertion TTL
+ Loaded — B puts traverse node in past minute
« Store at furthest, non-full node seen
[N 2 A
H g /5 R g
Overview S
| I I I L
* i3
» Layered naming
« DOA
*+ SFR

, s

Multicast s

| I I I]
S, S,

[i H
‘/\ R ‘ \) /\ /\ VRV,/“
RP: Rendezvous
Point

=

R/k R
|

7 ?
- AR, . . . LN,
Mobility N i3: Motivation R
» Today’s Internet based on point-to-point
] s abstraction
i ender
h N
 Applications need more:
* Multicast
HA m FA : Xr?bégtgt So, what’s the problem?
A 4 == y A different solution for each service
5.0.0.1 12.0.0.4 Mobile o :
Node Existing solutions:
Home Network 5.0.0.3 » Change IP layer
* Overlays
Network 5
17 18
By 2 A By 2 A
. . N, H. . . AR,
The i3 solution o i3: Rendezvous Communication o
[- — - . -] [- . - . - —
* Solution: » Packets addressed to identifiers (“names”)
» Add an indirection layer on top of IP . .]
« Implement using overlay networks » Trigger=(ldentifier, IP address): inserted by
receiver
+ Solution Components:
. Nammg using “|d_ent|f|grs” send(ID, data) send(R, data)
» Subscriptions using “triggers”
* DHT as the gluing substrate Sender y Receiver (R)
Only primitive D IR
needed
Ev_eryproblem
Indirection 10T o & Senders decoupled from receivers
19

i3: Service Model VN
[I . I I .]
 API

* sendPacket (id, p):;

* insertTrigger (id, addr) ;

» removeTrigger (id, addr); //
optional

 Best-effort service model (like IP)
« Triggers periodically refreshed by end-hosts

+ Reliability, congestion control, and flow-
control implemented at end-hosts

i3: Implementation jOSe;

| S I I L
* Use a Distributed Hash Table

» Scalable, self-organizing, robust

+ Suitable as a substrate for the Internet

IP.route (R)

send(R, data)
send(ID, data)

Sender ‘///:fggfpz/,/”’ReceWer(R)

DHT.put (id) DHT.put (id)

Mobility and Multicast RS
| N . I N . L

* Mobility supported naturally

» End-host inserts trigger with new IP
address - transparent to sender

* Robust and supports location privacy

» Multicast
» All receivers insert triggers under same 1D
» Sender uses that ID for sending
» Can optimize tree construction to balance load

Mobility
| I I I]
» The change of the receiver’s address

» from R to R’ is transparent to the sender

AT, | (1

/T A \
sender (5)

sender (5)

z
AT

(2) Moblity

recaiver (R')

Multicast

| I I I
» Every packet (id, data) is forwarded to each
receiver R, that inserts the trigger (id, R))

(b) Multicast receiver (R3)

] 7“ {:D
Anycast R
| S I I L

* Generalized matching
* First k-bits have to match, longest prefix match

among rest
Triggers (R1)
ab,] —
R2
ab 2l ®2)
Sender a|b,

(R3)

* Related triggers must be on same server
» Server selection (randomize last bits)

Generalization: Identifier Stack

 Stack of identifiers
* i3 routes packet through these identifiers

* Receivers
* trigger maps id to <stack of ids>
» Sender can also specify id-stack in packet

* Mechanism:
» first id used to match trigger
» rest added to the RHS of trigger
* recursively continued

Service Composition Yot
[— - - - - - -

* Receiver mediated: R sets up chain and
passes id_gif/jpg to sender: sender oblivious

+ Sender-mediated: S can include (id_gif/jpg, ID)
in his packet: receiver oblivious

S_GIFIJPG
send((IDGIF/JPG,ID), data) Ej send(ID, data) send(R;data)
" Receiver R

Sender -~ \(JPG)

. D |R[
(GIF) ID_GIFIJPG S_GIFIJPG

Public, Private Triggers Y33

 Servers publish their public ids: e.g., via
DNS

« Clients contact server using public ids, and
negotiate private ids used thereafter

e Useful:

+ Efficiency -- private ids chosen on “close-by” i3-
servers

» Security -- private ids are shared-secrets

Scalable Multicast

| I I
* Replication possible at any i3-server in the
infrastructure.

» Tree construction can be done internally

Overview v
| I I I L
i3
» Layered naming

+ DOA

- SFR

(g, data)
xRR, Re
X X R,
Ry R,
Ry R,
Architectural Brittleness PR
| N .. I .. I .. L

* Hosts are tied to IP addresses
» Mobility and multi-homing pose problems

» Services are tied to hosts

» A service is more than just one host: replication,
migration, composition

+ Packets might require processing at
intermediaries before reaching destination
+ “Middleboxes” (NATSs, firewalls, ...)

Reactions to the Problem JOS

* Purist: can’t live with middleboxes
* Pragmatist: can’t live without middleboxes
* Pluralist (us): purist, pragmatist both right

» DOA goal: Architectural extension in which:
» Middleboxes first-class Internet citizens
» Harmful effects reduced, good effects kept
* New functions arise

F
,u

DOA Delegation-Oriented Archltecture

S { %
- - -
Firewall
B
Host A NAT
a Host D
—
10.1.1.4 0xf12312
0xf12312 C

* Architectural extension to Internet. Core
properties:
1. Restore globally unique identifiers for hosts

2. Let receivers, senders invoke (and revoke) off-path
boxes: delegation primitive

Naming Can Help oy
| I I I L

» Thesis: proper naming can cure some ills

» Layered naming provides layers of indirection and
shielding

* Many proposals advocate large-scale,
overarching architectural change
* Routers, end-hosts, services

* Proposal:
* Changes “only” hosts and name resolution
» Synthesis of much previous work

Internet Naming is Host-Centric Ny
| I I I]

» Two global namespaces: DNS and IP
addresses

* These namespaces are host-centric
* |P addresses: network location of host
* DNS names: domain of host
» Both closely tied to an underlying structure
* Motivated by host-centric application

» Such names constrain movement/replication

The Trouble with Host-Centric Names /"¢
| I S I L
» Host-centric names are fragile
 If a name is based on mutable properties of its
referent, it is fragile
* Example: If Joe’s Web page www.berkeley.edu/
~hippie moves to www.wallstreetstiffs.com/
~yuppie, Web links to his page break

* Fragile names constrain movement
¢ |P addresses are not stable host names
*« DNS URLs are not stable data names

Object Movement Breaks Links, Cont g
I .. N .. |

 grem——————
E peer [

>Spot :
S Browser

» Today’s solutions not stable:

* HTTP redirects
* need cooperation of original host

Object Movement Breaks Links

. URLs hard-code a domain and a path
HTTP GET: isp.com

<AHREF=

/dog.3pg :
] P
{F “uTTP 404" | dogipg”

>Spot

Browser

N—

isp-2.com
[...

“spot.jpg”

Supportlng Object Repllcatlon

. Host repllcatlon relatlvely easy today

» But per-object replication requires:
» separate DNS name for each object
« virtual hosting so replica servers recognize names

« configuring DNS to refer to replica servers

isp.com

. T I,’
P CE b or
%E;Y‘ omecﬂ() “/docs/foo.ps”

http://object26.org
I{{TTP “GET 1 mit.edu
OSE: obj org “~joe/foo.ps”

10

: W
Delegation o
| I I I .

» Names usually resolve to “location” of entity

* Packets might require processing at
intermediaries before reaching destination

» Such processing today violates layering

* Only element identified by packet’s IP destination
should inspect higher layers

Delegation principle: A network entity should be able
to direct resolutions of its name not only to its own

location, but also to chosen delegates

Key Architectural Questions Vel
— — — — — — — —
» Which entities should be named?

* What should names look like?

« What should names resolve to?

Name Services and Hosts Separatelyfif;

» Service identifiers (SIDs) are host-
independent data names

» End-point identifiers (EIDs) are location-
independent host names

* Protocols bind to names, and resolve them
» Apps should use SIDs as data handles
» Transport connections should bind to EIDs

Binding principle: Names should bind protocols only

to relevant aspects of underlying structure

The Naming Layers VN
| I I I {%E

User-level descriptors
(e.g., search)

App-specific search/lookup
yreturns SID

| App session lr
Resolves SID to EID
1 Opens transport conns

| T 1 Bind to EID

ansport |

| Application |

Use SID as handle | A

pp session

l Transport

3

Resolves EID to IP

I:”°_I| IP hdr |EID|TCP|SID|.. [,T]

44

11

SIDs and EIDs should be Flat e
0xf436f0abs527bac9e8b100afeff394300 ,<'v
L I I I

Stable-name principle: A stable name should not

impose restrictions on the entity it names

* Flat names impose no structure on entities

» Structured names stable only if name structure
matches natural structure of entities

» Can be resolved scalably using, e.g., DHTs

* Flat names can be used to name anything

* Once you have a large flat namespace, you
never need other global “handles”

2

Flat Names Enable Flexible Migration et

N dh
| I I I .

+ SID abstracts all object reachability information
» Objects: any granularity (files, directories)

» Benefit: Links (referrers) don’t break ,
Domain H

gT:/
<A HREF= HTTP G 10.1.2.3

b,pdf N — :
http:/012012ipub.paf | s /P=—" |1 docs/

: 3]

>here is a paper :

S/pu -\.us - :

b.pd:t'/ Domain Y _:
(10.1.2.3,80, | 20248 0
/docs/) (20.2.4.6,80, /~user/pubs/ :
Resolution Juser/pubs/y | L
Service "

Flat Names are a Two-Edged Sword 3%~
[- - — - I — —

* Global resolution infrastructure needed
» Perhaps as “managed DHT” infrastructure

» Lack of local name control
* Lack of locality

* Not user-friendly
+ User-level descriptors are human-friendly

I I
» Location-independent, flat, big namespace

» Hash of a public key
* These are called EIDs (e.g., 0xf12abc...)
» Carried in packets

Globally Unique Identifiers for Hosts

P source EID transport hdr
hdr destination EID body
DOA hdr

12

Delegation Primitive oy

| I S I |
 Let hosts invoke, revoke off-path boxes

* Receiver-invoked: sender resolves
receiver’s EID to
* An IP address or
* An EID or sequence of EIDs

* DOA header has destination stack of EIDs

» Sender-invoked: push EID onto this stack

LN

2
La

P source EID transport hdr bod
hdr destination EID stack Y
oy 2 A
P
Off-path Firewall RS
= - - = - =
Source Firewall
EID: e,
IP: i,
ey End-host
B .
A e | J |EID: ey
V\% ip J e lepwel
< >
e epp>DHT J b G & i, | EID: ¢,

o /5 R p
DOA in a Nutshell R
-S- I I L
ource
EID: e, DHT %§1§gate
IP: i, -
J
P DOA End-host
EID:
i jle e transport = body IP: Ch
DOA Packet
* End-host replies to source by resolving eg
» Authenticity, performance: discussed in the
paper
N 2 A
Off-path Firewall: Benefits Vs
I N . N . L

. Slmpllflcatlon for end-users who want it
* Instead of a set of rules, one rule:
» “Was this packet vetted by my FW provider?”
» Firewall can be anywhere, leading to:
 Third-party service providers
» Possible market for such services
* Providers keeping abreast of new applications

* DOA enables this; doesn’t mandate it.

13

Next Lecture

| I I I
» Data-oriented networking and DTNs
* Required reading:

* Networking Named Content

* A Delay-Tolerant Network Architecture for
Challenged Internets

* Optional reading:
« An Architecture for Internet Data Transfer

» A Data-Oriented (and Beyond) Network
Architecture

A Bit More About DOA :i

* Incrementally deployable. Requires:
» Changes to hosts and middleboxes
* No changes to IP routers (design requirement)
* Global resolution infrastructure for flat IDs

* Recall core properties:
* Topology-independent, globally unique identifiers
* Let end-hosts invoke and revoke middleboxes

* Recall goals: reduce harmful effects, permit
new functions

. q /s \:]J
Reincarnated NAT)
| N . I N . L
5.1.9.9 10.1.1.3
Source \’.‘/9 5.1.9.9 10.1.1.1 10.1.1.3
EID: e, 9 Destination

P:i, EID: e,
NAT N ATed network

* End-to-end communication

« Port fields not overloaded
* Especially useful when NATs are cascaded

Key Architectural Questions Vet
[- - - —

1. Which entities should be named?

2. What should names look like?

3. What should names resolve to?

Delegation Enables Architecturally-Sound K,
Intermediaries Jars
L I I I I

Resolution svc Packet structure (dests only)

 DestEID | Mapping | jpf EID d TCP hdr

d f
f inf .
! E
- g‘ =
_ " Thho
EDs a— 1P ipd
EID f
IP ipf

» Delegate can be anywhere in the network, not
necessarily on the IP path to d (ipd)

» SID/EID can resolve to sequence of delegates

Overview Uy
| I I I L]
« SFR

Ll

Introduction vty
| I I I L

» The Web depends on linking; links contain

references
click here

» Properties of DNS-based references
» encode administrative domain
* human-friendly

* These properties are problems!

By

Web Links Should Use Flat Identlflers;;’f

- . - . - —
Current Proposed
<AHREF= <AHREF=
http://isp.com/dog.jpg http://f0120123112/
>my friend’s dog >my friend’s dog
~~ ~—

15

Resolution
Service”

Why not DNS?

A

Status Quo o
[I . I . I . L]
Web Page Browser a.com

AHREF P m— R

""""" ddr

4 com’ M
dog.jpg>Spot “Reference

ObJect Movement Breaks Links Ve
I I I .

. URLs hard-code a domain and a path

HTTP GET:

/dog.ipg |iSPeom

<AHREF= —»@F — f
http://isp.com/dog.jpg «HTTP 404 : :
>Spot
i‘ Browser
isp-2.com i

........................... V

spotipg”

Goal #1: Stable References

Stable="reference is invariant when
object moves”

* |In other words, links shouldn’t break
 DNS-based URLs are not stable . . .

Object Movement Breaks Lmks Cont’ q

<AHREF=
http://isp.com/dog.jpg
>Spot

I —

P
http:/ — 1 &
{F “HITTP 4047 | |

Browser

* Today’s solutions not stable:

« HTTP redirects

* need cooperation of original host

16

Goal #2: Supporting Object Replicatiory™";
| I I I L
» Host replication relatively easy today
» But per-object replication requires:
» separate DNS name for each object
« virtual hosting so replica servers recognize names
+ configuring DNS to refer to replica servers

2
oy e

What Should References Encode? %

N o
| I N N L

» Observe: if the object is allowed to change
administrative domains, then the reference
can’t encode an administrative domain

* What can the reference encode?
* Nothing about the object that might change!
» Especially not the object’s whereabouts!

* What kind of namespace should we use?

»
%

«GET [© isp.com
X’\T:fobsecﬂé"o “/docs/foo.ps”
http://object26.0org
HTTPp « it.ed
hOSt,' gb (gET/” fn' e/? ”
) Ct26‘0rg ~]oe/100.ps
Goal #3: Automate Namespace e
Management Javel
| N . I N . L

» Automated management implies no fighting
over references

» DNS-based URLs do not satisfy this . . .

DNS is a Locus of Contention NS

| I I I]
* Used as a branding mechanism
* tremendous legal combat

* “name squatting”, “typo squatting”, “reverse
hijacking”, . . .
* ICANN and WIPO politics
« technical coordinator inventing naming rights
* set-asides for misspelled trademarks

* Humans will always fight over names . . .

17

SFR in a Nutshell ey

2N
— - - - -
d N
<AHREF= oxfo0l2cl N .
=T 0 T W
>Spot o-record 2
(10.1.2.3,
80! /plCS/
dog.gif)
HT
* API bi TPGEI./
Cs o
* orec = get(tag); 9.9if 10.1.2.3
* put(tag, orec); /pics/dog.gif
Web Server
» Anyone can put() or get()
69
LN £ A
[i g /5 R g
Service Location e
— - - - -

+ What if you want to lookup services with more
expressive descriptions than DNS names

« E.g. please find me printers in cs.cmu.edu instead of
laserjet1.cs.cmu.edu

* What do descriptions look like?
* How is the searching done?
* How will it be used?
» Search for particular service?
* Browse available services?
* Composing multiple services into new service?

Overview ey
fr— - - - L]
» Service location

Service Descriptions ey
- - - - L]

» Typically done as hierarchical value-
attribute pairs
» Type = printer > memory = 32MB, lang = PCL
* Location = CMU - building = WeH

» Hierarchy based on attributes or attributes-
values?

» E.g. Country - state or country=USA >
state=PA and country=Canada ->
province=BC?

» Can be done in something like XML

18

Service Discovery (Multicast) joy o)

» Services listen on well known discovery group
address

+ Client multicasts query to discovery group

» Services unicast replies to client

» Tradeoffs
* Not very scalable > effectively broadcast search
* Requires no dedicated infrastructure or bootstrap
« Easily adapts to availability/changes

» Can scope request by multicast scoping and by
information in request

Service Discovery (Directory Based) -

| I I
» Services register with central directory agent
» Soft state - registrations must be refreshed or the
expire
 Clients send query to central directory - replies
with list of matches

* Tradeoffs

» How do you find the central directory service?
« Typically using multicast based discovery!
« SLP also allows directory to do periodic advertisements

* Need dedicated infrastructure
* How do directory agents interact with each other?

* Well suited for browsing and composition = knows full
list of services

Service Discovery (Routing Based) 7%
[- - — - - - -

+ Client issues query to overlay network
* Query can include both service description and actual request for
service
» Overlay network routes query to desired service[s]

 If query only description, subsequent interactions can be
outside overlay (early-binding)
+ If query includes request, client can send subsequent
queries via overlay (late-binding)
» Subsequent requests may go to different services agents
» Enables easy fail-over/mobility of service
+ Tradeoffs
» Routing on complex parameters can be difficult/expensive
» Can work especially well in ad-hoc networks
» Can late-binding really be used in many applications?

Nl
/
LN

Wide Area Scaling
-] -
* How do we scale discovery to wide area?
* Hierarchy?
» Hierarchy must be based on attribute of services
 All services must have this attribute
 All queries must include (implicitly or explicitly) this
attribute
+ Tradeoffs
» What attribute? Administrative (like DNS)?
Geographic? Network Topologic?
» Should we have multiple hierarchies?

» Do we really need hierarchy? Search engines seem to
work fine!

o

Y

L]

19

Other Issues ;ﬁ’%

[I I I L
* Dynamic attributes

* Many queries may be based on attributes such
as load, queue length

» E.g., print to the printer with shortest queue

» Security
» Don’t want others to serve/change queries
» Also, don’'t want others to know about existence
of services

« Srini’s home SLP server is advertising the $50,000
MP3 stereo system (come steal me!)

%o

78

gt
The Problem AN
S T T L O ST PR Ts FT e

forwarding (NAT, firewall, cache, ...)
Not in harmony with the Internet architecture

Host A AT @ Firewall Host D

10114‘ g—\ vwb

No unique |dent|f|ers and on-path blocking:
Barrier to innovation
Workarounds add complexity

Reactions to the Problem ;@{
“SPurist: cantive with middiepoxes
Pragmatist: can't live without middleboxes
Pluralist (us): purist, pragmatist both right

Our goal: Architectural extension in which:
Middleboxes first-class Internet citizens
Harmful effects reduced, good effects kept
New functions arise

20

DOA: Delegation-Oriented Architectur@%’

B
Host A NAT
oé — —EV—V—\ Host D
10.1.1.4 OxfI23]
0xf12312 12 EC

Architectural extension to Internet. Core properties:
1. Restore globally unique identifiers for hosts

2. Let receivers, senders invoke (and revoke) off-
path boxes: delegation primitive

Outline
l.

[I. Uses of DOA
[1l. Related Work / Conclusion

82

Separate References and User-level

Handles %f?%

I — —
User Handles
(AOL Keywords,
New Services, etc.)

)

[Clark et al., 2002]

Human-
unfriendly
References

Object Location

» “So aren’t you just moving the problem?”
* Yes.
* But.

21

