I 15-744: Computer Networking I

L-16 P2P

Ll
a

o bR

N d Y

%

Overview

* P2P Lookup Overview

s

» Centralized/Flooded Lookups
* Routed Lookups — Chord

» Comparison of DHTs

Ll

e

Peer-to-Peer Networks o

| I I I L

» Typically each member stores/provides access to
content

» Basically a replication system for files

» Always a tradeoff between possible location of files and
searching difficulty

» Peer-to-peer allow files to be anywhere = searching is
the challenge

* Dynamic member list makes it more difficult

» What other systems have similar goals?
* Routing, DNS

oy A
%

=
b

Y

§e

The Lookup Problem

Ny N

Key="title”
Value=MP3 data... i
. Client
Publisher Lookup(“title”)

Centralized Lookup (Napster) 40

SetLoc(“title”, N4) N, N,
N, _

Jent
Publish_er@N4 DB Lookup(“title™)
Key="title”
Value=MP3 data...

N, 8

9
7
N6

Flooded Queries (Gnutella) yodes

N, NZ\N Lookup(“title”)
K [N Client
Publisher@N 4

Key="title"”
Value=MP3 data...

Ne N, ~Ng
No

Robust, but worst case O(N) messages per lookup

Routed Queries (Chord, etc.) %

|29 %t
- - - - =
N, N,
— 2
N; \Client

Publisher——— Ny

Key="title" \
Value=MP3 data...

N N, Ng

Lookup(“title”)

. e
Overview o
. I I I I

* P2P Lookup Overview
» Centralized/Flooded Lookups
* Routed Lookups — Chord

» Comparison of DHTs

Centralized: Napster Y303

» Simple centralized scheme -
motivated by ability to sell/control
* How to find a file:
» On startup, client contacts central server
and reports list of files

* Query the index system - return a
machine that stores the required file

* |Ideally this is the closest/least-loaded
machine

* Fetch the file directly from peer

Centralized: Napster

« Advantages:
» Simple

» Easy to implement sophisticated search

engines on top of the index system

» Disadvantages:
* Robustness, scalability
» Easy to sue!

FIoodlng Old Gnutella |5

. On startup, client contacts any servent
(server + client) in network
» Servent interconnection used to forward control
(queries, hits, etc)
* |dea: broadcast the request

» How to find a file:
» Send request to all neighbors
* Neighbors recursively forward the request

» Eventually a machine that has the file receives
the request, and it sends back the answer

 Transfers are done with HTTP between peers

"

FIoodlng Old Gnutella

I I I
. Advantages.

+ Totally decentralized, highly robust

» Disadvantages:

» Not scalable; the entire network can be
swamped with request (to alleviate this
problem, each request has a TTL)

» Especially hard on slow clients

» At some point broadcast traffic on Gnutella
exceeded 56kbps — what happened?

* Modem users were effectively cut off!

Ll
oy e

Flooding: Old Gnutella Details v

. Basm message header
* Unique ID, TTL, Hops
. Message types
» Ping — probes network for other servents

» Pong — response to ping, contains IP addr, # of files, #
of Kbytes shared

* Query — search criteria + speed requirement of servent

* QueryHit — successful response to Query, contains
addr + port to transfer from, speed of servent, number
of hits, hit results, servent ID

» Push — request to servent ID to initiate connection,
used to traverse firewalls

* Ping, Queries are flooded

* QueryHit, Pong, Push reverse path of previous
message

»
b

Floodlng OId Gnutella Example

Assume: m1’s neighbors are m2 and m3;

m3’s neighbors are m4 and m5;...

m5

mé

Flooding: Gnutella, Kazaa Ve
| N . I N . L

* Modifies the Gnutella protocol into two-level hierarchy
» Hybrid of Gnutella and Napster
» Supernodes
* Nodes that have better connection to Internet
* Act as temporary indexing servers for other nodes
* Help improve the stability of the network
Standard nodes
» Connect to supernodes and report list of files
» Allows slower nodes to participate
» Search
» Broadcast (Gnutella-style) search across supernodes
» Disadvantages
» Kept a centralized registration - allowed for law suits ®

B ©
m4
E?
) e
T G 3
m1
m2

14

H q 7“ \:‘u;
Overview £33

| N .. I .. I .. L

* P2P Lookup Overview

» Centralized/Flooded Lookups

* Routed Lookups — Chord

» Comparison of DHTs

Routlng Structured Approaches Yoty

» Goal: make sure that an item (file) identified is always
found in a reasonable # of steps
» Abstraction: a distributed hash-table (DHT) data structure
« insert(id, item);
* item = query(id);
« Note: item can be anything: a data object, document, file, pointer
to afile...
* Proposals
- CAN (ICIR/Berkeley)
« Chord (MIT/Berkeley)
« Pastry (Rice)
* Tapestry (Berkeley)

Routmg Chord PR

I I I L]
. Assomate to each node and item a unique
id in an uni-dimensional space

* Properties

« Routing table size O(log(N)) , where N is the
total number of nodes

* Guarantees that a file is found in O(log(N))
steps

Aside: Hashing vty
I I I L

. Advantages
* Let nodes be numbered 1..m
 Client uses a good hash function to map a URL to 1..m
« Say hash (url) = x, so, client fetches content from node
X
» No duplication — not being fault tolerant.
* One hop access
* Any problems?
« What happens if a node goes down?
« What happens if a node comes back up?
« What if different nodes have different views?

Robust hashing R

I N . N . /\-
. Let 90 documents, node 1..9, node 10 which was
dead is alive again

* % of documents in the wrong node?
+ 10, 19-20, 28-30, 37-40, 46-50, 55-60, 64-70, 73-80,
82-90
« Disruption coefficient = 2

» Unacceptable, use consistent hashing — idea behind
Akamai!

=
b

Consistent Hash ey
[I . I I .]

“view” = subset of all hash buckets that are
visible
Desired features

» Balanced — in any one view, load is equal
across buckets

* Smoothness - little impact on hash bucket
contents when buckets are added/removed

» Spread — small set of hash buckets that may
hold an object regardless of views

» Load — across all views # of objects assigned to
hash bucket is small

Consistent Hash — Example

» Construction

* Assign each of C hash buckets to . —
random points on mod 2" circle, ~ e
where, hash key size = n. 12! Bucket 14

» Map object to random position on | J
circle o o

+ Hash of object = closest S

clockwise bucket
« Smoothness - addition of bucket does not cause much
movement between existing buckets
» Spread & Load - small set of buckets that lie near object

« Balance - no bucket is responsible for large number of
objects

Routlng Chord Basic Lookup ‘;i}:;’

Routmg Finger table - Faster Lookup§

In/

7 ?
. AR, - o /o N
Routing: Chord Summary Ve Routing: Chord Example PR
| I I I L | I I I L]
» Assume identifier space is 0...2™
« Each node maintains - P
. « Assume an 0 . T lonms
* Finger table identifier space , SRR
« Entry i in the finger table of n is the first node that .. N EEE
succeeds or equals n + 2! * Node n1:(1) | \
* Predecessor node joins>all entries & 2
) i o o in its finger table /
+ An item identified by id is stored on the are initialized to ,,
successor node of id ltself s, Y
—_— e e e S 25 —_— e e e — 26
By 2 A By 2 A
H q)‘(," X 2 H . g Lp X a
Routing: Chord Example Y03 Routing: Chord Example oS
| I I I . | I I I .
Succ. Table
i lid+2'|suce
« Node n2:(3) joins 12 2
T Succ. Table ' r\cl)londes n3(0)’ n4(6) "/ 72 410 - Succ. Table
e 0 N i lid+2'|succ J 0 N // i lid+2'suce
Vas’ 1 0272 A 1 0 2 2
\ 131 ST 136
/ \ 2011 Succ. Table | 5|6
[| ilia2]suce| \ | \
6 20, g ‘
‘u A RS SN
NN 2 2 2 N
Succ. Table Succ. Table
. i lic+2! suce ilig+2 suce
N ; 4 3/ ‘13 \/5 4 3/ (1) oz
L 3 o !
—_— e e e . 27 —_— e e e . 28

? ?
. . /5y . . Y
Routing: Chord Examples Vel Routing: Query Vel
| I S I L | S I I L
* Upon receiving a
Succ. Table |tems query for' |tem ld7 a Succ. Table |toms
i lid+2'| succ node i lic+2 suce
I * Check whether stores 122
* Nodes: n1:(1), n2(3), /112040 the item locally /2 4]0
n3(0), n4(6) , : e a— * If not, forwards the : [a—
. . 1. . o= e ltems query to the largest o Succ-Teble jems
ItemS. f1 .(7), f2.(2) VA 1 Bldzz Suzcc node |n |tS SUCCessor Vi 1 ~ :)Id;z suécc
136 table that does not queny(7) 136
/ 256 exceed id | \ | [2[5]68
Succ. Table |- —;‘6 Succ. Table Lrj;’.‘e ‘
i lid+2! succ| / \ . i lid+2'|succ | O\
(1) g g 4Succ4TabIe ? g g Succ. Table
2 2 2 i lig+2' 2l 2 2 i lig+2'
- \{? . 3\ / 6’ 3 SUGCC \ /5 . 3\ / ;)I 3 SUBCC
146 14 6
- 2 6|6 — 2 6|6
29 30
N ? o By 2 La
Ly . 5 R
What can DHTs do for us? vl Overview Vo
- - - - - - - - - -

« Distributed object lookup
» Based on object ID

» De-centralized file systems
* CFS, PAST, Ivy

» Application Layer Multicast « Routed Lookups — Chord
+ Scribe, Bayeux, Splitstream

* Databases * Comparison of DHTs
* PIER

* P2P Lookup Overview

» Centralized/Flooded Lookups

Comparlson R
I S I L
. Many proposals for DHTs
+ Tapestry (UCB) -- Symphony (Stanford) -- Thop (MIT)

* Pastry (MSR, Rice)
+ Chord (MIT, UCB)
+ CAN (UCB, ICSI)

* Viceroy (Technion)
+ Kademlia (NYU)

+ Kelips (Cornell)

+ Koorde (MIT)

-- Tangle (UCB)
-- SkipNet (MSR,UW)
-- Bamboo (UCB)
-- Hieras (U.Cinn)
-- Sprout (Stanford)
-- Calot (Rochester)
-- JXTA’s (Sun)

-- conChord (MIT)

-- Apocrypha (Stanford)
-- LAND (Hebrew Univ.)
-- ODRI (TexasA&M)

* What are the right design choices? Effect on
performance?

DHT Routing Geometries vty
I I I L

+ Geometries:
» Tree (Plaxton, Tapestry)
* Ring (Chord)
» Hypercube (CAN)
* XOR (Kademlia)
» Hybrid (Pastry)

* What is the impact of geometry on routing?

: WA
Deconstructing DHTs o
- - - - -
Two observations:
1. Common approach
N nodes; each labeled with a virtual identifier (128 bits)
define “distance” function on the identifiers
» routing works to reduce the distance to the destination
2. DHTs differ primarily in their definition of “distance”
» typically derived from (loose) notion of a routing geometry
34
N 2 A
5 R g
Tree (Plaxton, Tapestry) R
[I I - I - -

000 Q01 010 011 100 101 110 111

Geometry
* nodes are leaves in a binary tree
« distance = height of the smallest common subtree
* logN neighbors in subtrees at distance 1,2,...,logN

Ring (Chord) ik

000

110

Geometry 100

* nodes are points on a ring
+ distance = numeric distance between two node IDs
* logN neighbors exponentially spaced over 0...N

i,
Hypercube (CAN) jose;
| I I I L
110 111
100 j 101
010‘ N 011
000e-—
001
Geometry
» nodes are the corners of a hypercube
« distance = #matching bits in the IDs of two nodes
* logN neighbors per node; each at distance=1 away
37
N 2 A
H LS /o R 5
Hybrid (Pastry) (3
[. - - . - —

Geometry:
« combination of a tree and ring
+ two distance metrics

« default routing uses tree; fallback to ring under failures
* neighbors picked as on the tree

XOR (Kademlia) Y

00 «—01 «—10 «— 11

01 «—00 «—11 «—— 10

Geometry:
+ distance(A,B) = AXORB
* logN neighbors per node spaced exponentially

* not a ring because there is no single consistent
ordering of all the nodes

10

Geometry’s Impact on Routing
[- -
* Routing
» Neighbor selection: how a node picks its routing entries
» Route selection: how a node picks the next hop

* Proposed metric: flexibility

» amount of freedom to choose neighbors and next-hop paths
» FNS: flexibility in neighbor selection
* FRS: flexibility in route selection

* intuition: captures ability to “tune” DHT performance

* single predictor metric dependent only on routing issues

FRS for Ring Geometry s

110

100

+ Chord algorithm picks neighbor closest to
destination

+ A different algorithm picks the best of alternate
paths

FNS for Ring Geometry ‘;f*:;’
- I . I I . -
000
111 001
110 010
101 011
100

- Chord algorithm picks it" neighbor at 2! distance

< A Qifferent algorithm picks ith neighbor from [21 ,
2I+)

— %<
Flexibility: at a Glance Yol
[I I - I - -
Flexibility Ordering of Geometries
Neighbors Hypercube << Tree, XOR, Ring, Hybrid
(FNS) (1M @)
Routes Tree << XOR, Hybrid < Hypercube < Ring
(FRS) 1) (logN/2) (logN/2) (logN)

11

Geometry - Flexibility - Performance? ‘;:%{;
| I I I L]

Validate over three performance metrics:
1. resilience
2. path latency
3. path convergence

Metrics address two typical concerns:
» ability to handle node failure

» ability to incorporate proximity into overlay
routing

LN
H HH . fox
Flexibility: at a Glance el
| I I I L
Flexibility Tree Ring Hypercube XOR Hybrid
FNS:
#distinct routing NIogN/Z N logN/2 1 NIogN/Z NIogN/Z
tables
FRS: 1 2c(log N)! 2c(logN)! 1 1
#distinct paths
(log N hops)
FRS: 0 >> (log N)! 0 c(log N)! c(log N)!
#distinct paths
(> log N hops)
45
®
IR
Analysis of Static Resilience pRC
| I .. I . I . .

Two aspects of robust routing

* Dynamic Recovery : how quickly routing state is
recovered after failures

- Static Resilience : how well the network routes before
recovery finishes
+ captures how quickly recovery algorithms need to work
+ depends on FRS

Evaluation:
+ Fail a fraction of nodes, without recovering any state
- Metric: % Paths Failed

Does flexibility affect static resilience? /.-

| I I I .
100

" /
T|§e XOR\ / /<
= Hypercube —

60 :
Hybrid |

40
/Ring

20

% Failed Paths

0 T T T T T T T T
0 10 20 30 40 50 60 70 80 90

% Failed Nodes
Tree << XOR = Hybrid < Hypercube < Ring

Flexibility in Route Selection matters for Static Resilience

12

WhICh is more effective, FNS or FRS?

100

80

60

CDF

40

20

0

Plain << FRS << FNS = FNS+FRS

FNS + FRSRing = __

/

—
/‘;Ns;n,g ,/F‘ES Ring /

Plain Ring

|/

e

0

400

800 1200
Latency (msec)

u\/u

Neighbor Selection is much better than Route

Selection

Does Geometry affect performance of FNS S

Or FRS? e *{
I - - -
100 FNSM —
80
Y
/;EXOR/:ES Ring

CDF

"/

FRS Hypercube

20 +

0

T T T T
(1] 400 800 1200 1600 2000
Latency (msec)

No, performance of FNS/FRS is independent of Geometry
A Geometry’s support for neighbor selection is crucial

Understanding DHT Routing: Conclusion

* What makes for a “good” DHT?

» one answer: a flexible routing geometry

» Result: Ring is most flexible

* Why not the Ring?

Lo
l//n\“lj
-
N4 Y
L

Next Lecture joy

| I I I]
* DNS, Web and P2P
* Required readings

» Peer-to-Peer Systems

* Do incentives build robustness in BitTorrent?

* Optional readings

* DNSCaching, Coral CDN, Semantic-Free
Referencing

13

Ll

Aside: Consistent Hashing [Karger 97]‘;2’%:‘;
[I . I . I . L]
Key 5—,
Node 105\ < KS

Circular 7-bit

ID space N32

N90

N
K80
A key is stored at its successor: node with next higher ID

14

