

Adding New Functionality to the Internet

- · Overlay networks
- · Active networks
- · Assigned reading
 - Active network vision and reality: lessons from a capsule-based system
- · Optional reading
 - Future Internet Architecture: Clean-Slate Versus Evolutionary Research
 - · Resilient Overlay Networks

_ 2

Clean-Slate vs. Evolutionary

- Successes of the 80s followed by failures of the 90's
 - IP Multicast
 - QoS
 - · RED (and other AQMs)
 - ECN
 - •
- Concern that Internet research was dead
 - · Difficult to deploy new ideas
 - What did catch on was limited by the backward compatibility required

Outline

- Active Networks
- · Overlay Routing (Detour)
- Overlay Routing (RON)
- Multi-Homing

Why Active Networks?

- Traditional networks route packets looking only at destination
 - Also, maybe source fields (e.g. multicast)
- Problem
 - Rate of deployment of new protocols and applications is too slow
- Solution
 - Allow computation in routers to support new protocol deployment

on result of the computation · Users and apps can control behavior of the

• End result: network services richer than those by

Why not IP?

- · Applications that do more than IP forwarding
 - Firewalls
 - Web proxies and caches
 - · Transcoding services
 - · Nomadic routers (mobile IP)
 - Transport gateways (snoop)
 - · Reliable multicast (lightweight multicast, PGM)
 - Online auctions
 - · Sensor data mixing and fusion
- Active networks makes such applications easy to develop and deploy

Active Networks

- Nodes (routers) receive packets:
 - Perform computation based on their internal state and control information carried in packet
 - · Forward zero or more packets to end points depending
- routers
- the simple IP service model

Variations on Active Networks

- · Programmable routers
 - · More flexible than current configuration mechanism
 - · For use by administrators or privileged users
- Active control
 - · Forwarding code remains the same
 - · Useful for management/signaling/measurement of traffic
- "Active networks"
 - Computation occurring at the network (IP) layer of the protocol stack → capsule based approach
 - Programming can be done by any user
 - · Source of most active debate

Case Study: MIT ANTS System

- Conventional Networks:
 - · All routers perform same computation
- Active Networks:
 - · Routers have same runtime system
- Tradeoffs between functionality, performance and security

System Components

- Capsules
- Active Nodes:
 - Execute capsules of protocol and maintain protocol state
 - Provide capsule execution API and safety using OS/ language techniques
- · Code Distribution Mechanism
 - Ensure capsule processing routines automatically/ dynamically transfer to node as needed

1

Capsules

- Each user/flow programs router to handle its own packets
 - · Code sent along with packets
 - · Code sent by reference
- Protocol:
 - · Capsules that share the same processing code
- · May share state in the network
- Capsule ID (i.e. name) is MD5 of code

Capsules

• Capsules are forwarded past normal IP routers

- When node receives capsule uses "type" to determine code to run
- What if no such code at node?
 - Requests code from "previous address" node
 - · Likely to have code since it was recently used

Capsules

- Code is transferred from previous node
 - Size limited to 16KB
 - Code is signed by trusted authority (e.g. IETF) to guarantee reasonable global resource use

14

Research Questions

- · Execution environments
 - What can capsule code access/do?
- · Safety, security & resource sharing
 - How isolate capsules from other flows, resources?
- Performance
 - · Will active code slow the network?
- Applications
 - What type of applications/protocols does this enable?

Functions Provided to Capsule

- Environment Access
 - Querying node address, time, routing tables
- · Capsule Manipulation
 - · Access header and payload
- Control Operations
 - Create, forward and suppress capsules
 - How to control creation of new capsules?
- Storage
 - · Soft-state cache of app-defined objects

Safety, Resource Mgt, Support

- Safety:
 - Provided by mobile code technology (e.g. Java)
- Resource Management:
 - Node OS monitors capsule resource consumption
- Support:
 - If node doesn't have capsule code, retrieve from somewhere on path

Applications/Protocols

- Limitations
 - Expressible → limited by execution environment
 - Compact → less than 16KB
 - Fast → aborted if slower than forwarding rate
 - Incremental → not all nodes will be active
- · Proof by example
 - Host mobility, multicast, path MTU, Web cache routing, etc.

18

Discussion

- Active nodes present lots of applications with a desirable architecture
- Key questions
 - Is all this necessary at the forwarding level of the network?
 - Is ease of deploying new apps/services and protocols a reality?

Outline

- Active Networks
- Overlay Routing (Detour)
- Overlay Routing (RON)
- Multi-Homing

The Internet Ideal

- · Dynamic routing routes around failures
- · End-user is none the wiser

..

Lesson from Routing Overlays

End-hosts are often better informed about performance, reachability problems than routers.

- End-hosts can measure path performance metrics on the (small number of) paths that matter
- Internet routing *scales well*, but at the cost of performance

22

Overlay Routing

- · Basic idea:
 - Treat multiple hops through IP network as one hop in "virtual" overlay network
 - Run routing protocol on overlay nodes
- Why?
 - For performance can run more clever protocol on overlay
 - For functionality can provide new features such as multicast, active processing, IPv6

Overlay for Features

- · How do we add new features to the network?
 - Does every router need to support new feature?
 - · Choices
 - Reprogram all routers → active networks
 - · Support new feature within an overlay
 - · Basic technique: tunnel packets
- Tunnels
 - IP-in-IP encapsulation
 - · Poor interaction with firewalls, multi-path routers, etc.

Examples

- IP V6 & IP Multicast
 - Tunnels between routers supporting feature
- Mobile IP
 - Home agent tunnels packets to mobile host's location
- QOS
 - Needs some support from intermediate routers → maybe not?

25

Overlay for Performance [S+99]

- Why would IP routing not give good performance?
 - Policy routing limits selection/advertisement of routes
 - Early exit/hot-potato routing local not global incentives
 - Lack of performance based metrics AS hop count is the wide area metric
- How bad is it really?
 - Look at performance gain an overlay provides

26

Quantifying Performance Loss

- Measure round trip time (RTT) and loss rate between pairs of hosts
 - ICMP rate limiting
- · Alternate path characteristics
 - 30-55% of hosts had lower latency
 - 10% of alternate routes have 50% lower latency
 - 75-85% have lower loss rates

Bandwidth Estimation

- RTT & loss for multi-hop path
 - · RTT by addition
 - Loss either worst or combine of hops why?
 - Large number of flows→ combination of probabilities
 - Small number of flows → worst hop
- Bandwidth calculation
 - TCP bandwidth is based primarily on loss and RTT
- 70-80% paths have better bandwidth
- 10-20% of paths have 3x improvement

Possible Sources of Alternate Paths

- · A few really good or bad AS's
 - No, benefit of top ten hosts not great
- Better congestion or better propagation delay?
 - · How to measure?
 - Propagation = 10th percentile of delays
 - Both contribute to improvement of performance
- What about policies/economics?

29

Overlay Challenges

- "Routers" no longer have complete knowledge about link they are responsible for
- How do you build efficient overlay
 - Probably don't want all N² links which links to create?
 - Without direct knowledge of underlying topology how to know what's nearby and what is efficient?

30

Outline

- Active Networks
- Overlay Routing (Detour)
- Overlay Routing (RON)
- Multi-Homing

How Robust is Internet Routing?

- · Slow outage detection and recovery
- · Inability to detect badly performing paths
- · Inability to efficiently leverage redundant paths
- · Inability to perform application-specific routing
- · Inability to express sophisticated routing policy

Paxson 95-97	• 3.3% of all routes had serious problems
Labovitz 97-00	10% of routes available < 95% of the time 65% of routes available < 99.9% of the time 3-min minimum detection+recovery time; often 15 mins 40% of outages took 30+ mins to repair
Chandra 01	• 5% of faults last more than 2.75 hours

• Route withdrawn, but stub cycles through backup path...

Resilient Overlay Networks: Goal

- Increase reliability of communication for a small (i.e., < 50 nodes) set of connected hosts
- Main idea: End hosts discover network-level path failure and cooperate to re-route.

3

The RON Architecture

- Outage detection
 - Active UDP-based probing
 - Uniform random in [0,14]
 - O(n²)
 - 3-way probe
 - Both sides get RTT information
 - Store latency and loss-rate information in DB
- · Routing protocol: Link-state between overlay nodes
- Policy: restrict some paths from hosts
 - E.g., don't use Internet2 hosts to improve non-Internet2 paths

n order-of-n	nagnitude fewe	er failures	
	30-minute average	loss rates	
Loss Rate	RON Better	No Change	RON Worse
10%	479	57	47
20%	127	4	15
30%	32	0	0
50%	20	0	0
80%	14	0	0
100%	10	0	0
12 "path h	th hours" represented nours" of essentially on the second ours of TCP outage ON routed around all	complete out	age

Main results

- RON can route around failures in ~ 10 seconds
- · Often improves latency, loss, and throughput
- · Single-hop indirection works well enough
 - Motivation for another paper (SOSR)
 - · Also begs the question about the benefits of overlays

41

Open Questions

- Scaling
 - Probing can introduce high overheads
 - Can use a subset of $O(n^2)$ paths \rightarrow but which ones?
- Interaction of multiple overlays
 - · End-hosts observe qualities of end-to-end paths
 - · Might multiple overlays see a common "good path"
 - Could these multiple overlays interact to create increase congestion, oscillations, etc.?
 - · Selfish routing

42

Efficiency

Problem: traffic must traverse bottleneck link both inbound and outbound

- Solution: in-network support for overlays
 - End-hosts establish reflection points in routers
 - · Reduces strain on bottleneck links
 - Reduces packet duplication in application-layer multicast (next lecture)

Scaling

- Problem: O(n²) probing required to detect path failures. Does not scale to large numbers of hosts.
- Solution: ?
 - Probe some subset of paths (which ones)
 - Is this any different than a routing protocol, one layer higher?

Scalability

BGP

???

Routing overlays (e.g., RON)

Performance (convergence speed, etc.)

Interaction of Overlays and IP Network

- Supposed outcry from ISPs: "Overlays will interfere with our traffic engineering goals."
 - Likely would only become a problem if overlays became a significant fraction of all traffic
 - Control theory: feedback loop between ISPs and overlays
 - Philosophy/religion: Who should have the final say in how traffic flows through the network?

End-hosts observe conditions, react Traffic matrix ISP measures traffic matrix, changes routing config.

Changes in endto-end paths

Benefits of Overlays

- Access to multiple paths
 - · Provided by BGP multihoming
- · Fast outage detection
 - But...requires aggressive probing; doesn't scale

Question: What benefits does overlay routing provide over traditional multihoming + intelligent routing selection

46

Outline

- Active Networks
- · Overlay Routing (Detour)
- Overlay Routing (RON)
- Multi-Homing

Multi-homing

- With multi-homing, a single network has more than one connection to the Internet.
- · Improves reliability and performance:
 - · Can accommodate link failure
 - · Bandwidth is sum of links to Internet
- Challenges
 - Getting policy right (MED, etc..)
 - Addressing

Address Space from one ISP

- · Customer uses address space from ISP1
- ISP1 advertises /16 aggregate
- Customer advertises /24 route to ISP2
- ISP2 relays route to ISP1 and ISP3
- ISP2-3 use /24 route
- ISP1 routes directly
- · Problems with traffic load?

Pitfalls

- ISP1 aggregates to a /19 at border router to reduce internal tables.
- ISP1 still announces /16.
- ISP1 hears /24 from ISP2.
- · ISP1 routes packets for customer to ISP2!
- Workaround: ISP1 must inject /24 into I-BGP.

- · ISP1 and ISP2 continue to announce aggregates
- Load sharing depends on traffic to two prefixes
- · Lack of reliability: if ISP1 link goes down, part of customer becomes inaccessible.
- · Customer may announce prefixes to both ISPs, but still problems with longest match as in case 1.

Address Space Obtained Independently

- · Offers the most control, but at the cost of aggregation.
- Still need to control paths
- · Some ISP's ignore advertisements with long prefixes

Discussion

- Path towards new functionality seems to be overlays
 - PlanetLab, GENI, etc.
- Unclear if overlays are needed for performance reasons
 - However, several commercial services that provide overlay routing
 - · Easier to use than multihoming

57

Next Lecture

- · Distributed hash tables
- Required readings:
 - · Looking Up Data in P2P Systems
 - Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications
- Optional readings:
 - The Impact of DHT Routing Geometry on Resilience and Proximity

58

The "Price of Anarchy"

cost of worst Nash equilibrium
"socially optimum" cost

- A directed graph G = (V, E)
- source–sink pairs si,ti for i=1,..,k
- rate ri ≥ 0 of traffic between si and ti for each i=1,...,k
- For each edge e, a latency function le(•)

Flows and Their Cost

- · Traffic and Flows:
- A flow vector f specifies a traffic pattern
 - f_P = amount routed on s_i-t_i path P

 $I_{P}(f) = .5 + 0 + 1$

The Cost of a Flow:

- $\ell_{P}(f)$ = sum of latencies of edges along P (w.r.t. flow f)
- $C(f) = cost \text{ or total latency of a flow } f: \Sigma_p f_p \cdot \ell_p(f)$

Example

Cost of flow = $.5 \cdot .5 + .5 \cdot 1 = .75$

Flow = .5

Traffic on lower edge is "envious".

An envy free flow:

Cost of flow = $1 \cdot 1 + 0 \cdot 1 = 1$

Flows and Game Theory

- Flow: routes of many noncooperative agents
 - each agent controlling infinitesimally small amount
 - cars in a highway system
 - · packets in a network
- The toal latency of a flow represents social welfare
- Agents are selfish, and want to minimize their own latency

62

Flows at Nash Equilibrium

- A flow is at Nash equilibrium (or is a Nash flow) if no agent can improve its latency by changing its path
 - **Assumption:** edge latency functions are continuous, and non-decreasing
- Lemma: a flow f is at Nash equilibrium if and only if all flow travels along minimum-latency paths between its source and destination (w.r.t. f)
- **Theorem:** The Nash equilibrium exists and is unique

Braess's Paradox

Traffic rate: r = 1

Cost of Nash flow = 1.5

Cost of Nash flow = 2

All the flows have increased delay

Existing Results and Open Questions

- Theoretical results on bounds of the price of anarchy: 4/3
- Open question: study of the dynamics of this routing game
 - Will the protocol/overlays actually converge to an equilibrium, or will the oscillate?
- Current directions: exploring the use of taxation to reduce the cost of selfish routing.

65

Intuition for Delayed BGP Convergence

- There exists a message ordering for which BGP will explore all possible AS paths
 - Convergence is O(N!), where N number of default-free BGP speakers in a complete graph
 - In practice, exploration can take 15-30 minutes
 - Question: What typically prevents this exploration from happening in practice?
- Question: Why can't BGP simply eliminate all paths containing a subpath when the subpath is withdrawn?

66

When (and why) does RON work?

- Location: Where do failures appear?
 - A few paths experience many failures, but many paths experience at least a few failures (80% of failures on 20% of links).
- · Duration: How long do failures last?
 - · 70% of failures last less than 5 minutes
- Correlation: Do failures correlate with BGP instability?
 - · BGP updates often coincide with failures
 - · Failures near end hosts less likely to coincide with BGP
 - Sometimes, BGP updates precede failures (why?)

Feamster et al., Measuring the Effects of Internet Path Faults on Reactive Routing, SIGMETRICS 200

Location of Failures

- Why it matters: failures closer to the edge are more difficult to route around, particularly last-hop failures
 - RON testbed study (2003): About 60% of failures within two hops of the edge
 - SOSR study (2004): About half of failures potentially recoverable with one-hop source routing
 - Harder to route around broadband failures (why?)