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Today’s Lecture
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 Structural generators

* Power laws
« HOT graphs
* Graph generators

» Assigned reading

* On Power-Law Relationships of the Internet
Topology

* A First Principles Approach to Understanding
the Internet’s Router-level Topology

Outline
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» Motivation/Background

* Power Laws

» Optimization Models

» Graph Generation

Why study topology? v
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» Correctness of network protocols typically
independent of topology

» Performance of networks critically
dependent on topology
* e.g., convergence of route information
* Internet impossible to replicate

» Modeling of topology needed to generate
test topologies
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Internet topologies oSy
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Autonomous System (AS) level
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More on topologies.. PR
- - - -
. Router level topologies reflect physical connectivity
between nodes
+ Inferred from tools like traceroute or well known public
measurement projects like Mercator and Skitter
» AS graph reflects a peering relationship between two
providers/clients
* Inferred from inter-domain routers that run BGP and publlic
projects like Oregon Route Views

+ Inferring both is difficult, and often inaccurate

Router level
Hub-and-Spoke Topology ;f*:;’
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+ Single hub node
» Common in enterprise networks
» Main location and satellite sites
+ Simple design and trivial routing
* Problems
+ Single point of failure
» Bandwidth limitations
* High delay between sites
* Costs to backhaul to hub
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Slmple Alternatives to Hub-and- Spokef”
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. DuaI hub-and-spoke
 Higher reliability
* Higher cost
» Good building block

* Levels of hierarchy
» Reduce backhaul cost
» Aggregate the
bandwidth
« Shorter site-to-site
delay
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Points-of-Presence (Po

* Inter-PoP links
* Long distances
* High bandwidth

* Intra-PoP links

* Short cables between
racks or floors

» Aggregated bandwidth
« Links to other
networks

» Wide range of media
and bandwidth

Ps) vl

Intra-PoP

&

Other networks

Deciding Where to Locate Nodes and Link§,’11:;
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» Placing Points-of-Presence (PoPs)

 Large population of potential customers

 Other providers or exchange points

» Cost and availability of real-estate

» Mostly in major metropolitan areas
* Placing links between PoPs

* Already fiber in the ground

* Needed to limit propagation delay

* Needed to handle the traffic load




Trends in Topology Modellng

I
Observatlon Modeling Approach

* Long-range links are expensive

* Real networks are not random,
but have obvious hierarchy

» Structural models (GT-ITM
Calvert/Zegura, 1996)

Internet topologies exhibit
power law degree distributions
(Faloutsos et al., 1999)

» Physical networks have hard * Optimization-driven models
technological (and economic)

constraints.
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» Random graph (Waxman88)

» Degree-based models replicate
power-law degree sequences

topologies consistent with design
tradeoffs of network engineers

»
b

Waxman model (Waxman 1988)
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. Router level model

* Nodes placed at random

in 2-d space with

dimension L u
* Probability of edge (u,v):

» aeM-d/(bL)}, where d is

Euclidean distance (u,v), a
and b are constants

* Models locality

d(u,v)
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Real world topologies
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* Real networks exhibit

* Hierarchical structure
» Specialized nodes (transit, stub..)
» Connectivity requirements
* Redundancy

» Characteristics incorporated into the
Georgia Tech Internetwork Topology
Models (GT-ITM) simulator (E. Zegura,
K.Calvert and M.J. Donahoo, 1995)

Transit-stub model (Zegura 1 997)
[ o
* Router level model
+ Transit domains
» placed in 2-d space
» populated with routers
» connected to each other
+ Stub domains
» placed in 2-d space
» populated with routers
» connected to transit o
domains o u

* Models hierarchy
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* Motivation/Background

* Power Laws

* Optimization Models

* Graph Generation

So...are we done? VN
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* No!
 In 1999, Faloutsos, Faloutsos and
Faloutsos published a paper, demonstrating
power law relationships in Internet graphs
 Specifically, the node degree distribution
exhibited power laws
Power laws in AS level topology oy
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A few nodes have lots of connections

* Router-level graph & Autonomous System (AS) graph
* Led to active research in degree-based network models




GT ITM abandoned.. f}f

. GT-ITM did not give power law degree
graphs

* New topology generators and explanation
for power law degrees were sought

» Focus of generators to match degree
distribution of observed graph

Inet (Jin 2000)

 Generate degree sequence

+ Build spanning tree over nodes
with degree larger than 1,
using preferential connectivity

* randomly select node u not in
tree

* join u to existing node v with
probability d(v)/=d(w)
+ Connect degree 1 nodes using
preferential connectivity

* Add remaining edges using

preferential connectivity

Power law random graph (PLRG) {i:
] ]
. Operatlons
+ assign degrees to nodes drawn from power law distribution
« create kv copies of node v; kv degree of v.
* randomly match nodes in pool
* aggregate edges

Sl A

may be disconnected, contain multiple edges, self-loops

+ contains unique giant component for right choice of
parameters
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Barabasi model: fixed exponent
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* incremental growth

* initially, m0O nodes

* step: add new node i with m edges

* linear preferential attachment

+ connect to node i with probability ki / ) Kj

0.25

- - I

0.25

@ cxisting node ® new node

may contain multi-edges, self-loops




Features of Degree-Based Models

Preferential Attachment

Expected Degree Sequence

* Degree sequencé follows a power law (by

construction)

. High-dq?.ree nodes correspond to highly connected

central “

specific attack

ubs”, which are crucial to the system
+ Achilles’ heel: robust to random failure, fragile to

2

Problem With Power Law

* ... but they're descriptive models!

» No correct physical explanation, need an

understanding of:

+ the driving force behind deployment

* the driving force behind growth

Does Internet graph have these properties? }{;
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* No...(There is no Memphis!)

* Emphasis on degree distribution - structure
ignored

* Real Internet very structured

+ Evolution of graph is highly constrained

Outline R
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» Motivation/Background

* Power Laws

» Optimization Models

* Graph Generation
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Li et al. v
| I I I L

» Consider the explicit design of the Internet

» Annotated network graphs (capacity,
bandwidth)

» Technological and economic limitations
* Network performance
» Seek a theory for Internet topology that is
explanatory and not merely descriptive.
» Explain high variability in network connectivity

+ Ability to match large scale statistics (e.g.
power laws) is only secondary evidence
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Heuristically Optimal Topology

ngh degree nodes
are at the edges.

al®
Likelinood-Related Metric AN

Define the metric  L(g) = E dd; (d,=degree of
node i)

cnnneaed

» Easily computed for any graph

+ Depends on the structure of the graph, not the generation
mechanism

* Measures how “hub-like” the network core is

. (F;or g)raphs resulting from probabilistic construction (e.g. PLRG/
RG),

LogLikelihood (LLH) « L(g)

« Interpretation: How likely is a particular graph (having given
node degree distribution) to be constructed?

Comparison Metric: Network Performance “@{
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Given realistic technology constraints on routers, how well
is the network able to carry traffic?
Step 1: Constrain to
be feasible

1000000 3

Step 2: Compute traffic demand
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Step 3: Compute max flow
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Structure Determines Performance ¢ pA
VN Summary Network Topology e
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PA PLRG/GRG « Faloutsos? [siccomme9] on Internet topology
» Observed many “power laws” in the Internet structure

* Router level connections, AS-level connections, neighborhood sizes
» Power law observation refuted later, Lakhina [INFOCOMO00]

* Inspired many degree-based topology generators
» Compared properties of generated graphs with those of measured
graphs to validate generator
. What is wrong with these topologies? Li et al [SIGCOMMO04]
« Many graphs with similar distribution have different properties

P(g) = 1.13 x 10" P(g)=1.19x 10"  P(g)=1.64 x 10
(g) = 3 0 (g) ? 0 (g) 6 0 « Random graph generation models don’t have network-intrinsic
i i ) B : - ‘ meaning
i IR I B T R + Should look at fundamental trade-offs to understand topology
] i HE 11 H i i LI
: “ F. C - ! ' ' C-\ « Technology constraints and economic trade-offs
- ) - ’ - » Graphs arising out of such generation better explain topology and its

properties, but are unlikely to be generated by random processes!

Outline vty Graph Generation v
| I I I L | I I I ]
» Motivation/Background * Many important topology metrics

+ Spectrum

¢ Distance distribution

» Power Laws
* Degree distribution

o + Clustering...
» Optimization Models _
* No way to reproduce most of the important
. metrics
* Graph Generation * No guarantee there will not be any other/

new metric found important




dK-series approach

 Look at inter-dependencies among topology

characteristics

» See if by reproducing most basic, simple,

but not necessarily practically relevant
characteristics, we can also reproduce
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(capture) all other characteristics, including

practically important
» Try to find the one(s) defining all others
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Degree distribution P(k)

Joint degree distribution P(k,,k,)
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Average degree <k>
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“Joint edge degree” distribution P(k,,k,,k3)
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k2 k3 kg k3 k2 k3
Ky ks K¢ ks ky Ky
P(k1,k2,ks,k4) Po(k1,k2,ks,ka) Pa(k1,k2,k3,ka)
kg k3 kz k3 k2 ka
k1 k4 k1 k4 k1 k4
Py(k1,k2,k3,ks) Ps(k1,kz,ks,ka) Ps(k1,ko,k3,ka)

3K, more exactly jege;

[ — — — - — - -
k4 ks ky k3
kz kZ
Wedges: Triangles:
Pa(ki1,kz,k3) Pak,k2,k3)

Definition of dK-distributions o

[ - - - - - - —

dK-distributions are degree correlations
within simple connected graphs of size d
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. Constructablllty. we can construct graphs
having properties P, (dK-graphs)

* Inclusion: if a graph has property P,, then
it also has all properties P, with i < d (dK-
graphs are also iK-graphs)

« Convergence: the set of graphs having

property P, consists only of one element, G
itself (dK-graphs converge to G)

Graph Reproductlon SRy
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(a) OK-graph (b) 1K-graph

Rewiring S
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The elephant in the room... oy
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* How good is the underlying data on which
these studies are based?
* Impact

» Sampling bias - traceroute of shortest paths
on random graph can produce power-law
distribution [Lakhina03]

» Similar issues with AS-level views
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Next Lecture Y
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* Overlay networks

» Challenges in deploying new protocols
* Required readings:
* Active network vision and reality: lessons from
a capsule-based system
* Optional readings:
* Resilient Overlay Networks

* Future Internet Architecture: Clean-Slate
Versus Evolutionary Research

Better Measurements? }*}f;
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* Rocketfuel [sigcomm02]
* Better router alias resolution
* Detailed maps based on multiple viewpoints
» Reverse traceroute [nsdi10]
* Improves ability to view peer-to-peer links
» RouteViews and BGP collection efforts
l[;" \:‘UJ
Power Laws o e
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» Faloutsos? (Sigcomm’99)
- frequency vs. degree

frequency

topology from BGP tables of 18 routers

D\,n ;lu;
Power Laws jor e
- - - - =
0
» Faloutsos? (Sigcomm’99) L. 2 ‘ ¢

- frequency vs. degree

topology from BGP tables of 18 routers
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 Faloutsos ! ; j : X
* frequency vs. 2 -
degree b )
- s -
* empirical ccdf L5 T
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