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Wireless Challenges
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» Force us to rethink many assumptions
* Need to share airwaves rather than wire
» Don’t know what hosts are involved
* Host may not be using same link technology
* Mobility
» Other characteristics of wireless
* Noisy - lots of losses
» Slow

* Interaction of multiple transmitters at receiver
« Collisions, capture, interference
» Multipath interference

Wireless in the Real World Ry
| I I I L]
* Real world deployment patterns
* Mesh networks and deployments
* Assigned reading
* Architecture and Evaluation of an Unplanned
802.11b Mesh Network
* White Space Networking with Wi-Fi like
Connectivity
Overview Vs
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+ 802.11

* Deployment patterns
* Reaction to interference
* Interference mitigation

* Mesh networks
* Architecture

¢ Measurements

* White space networks
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Growing Interference in Unlicensed Bands
| I I I

» Anecdotal evidence of problems, but how
severe?

» Characterize how 802.11 operates under
interference in practice
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What do we expect?

» Throughput to decrease
linearly with interference

» There to be lots of options

for 802.11 devices to
tolerate interference
« Bit-rate adaptation

« Power control

- FEC

« Packet size variation

» Spread-spectrum processing
« Transmission and reception

diversity

Throughput (linear)

n

Interferer power
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Key Questions v
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« How damaging can a low-power and/or
narrow-band interferer be?

* How can today’s hardware tolerate
interference well?
» What 802.11 options work well, and why?

What we see

N ..

 Effects of interference
more severe in
practice

» Caused by hardware
limitations of
commodity cards,
which theory doesn’t
model
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» Extend SINR model to capture these vulnerabilities
* Interested in worst-case natural or adversarial interference
» Have developed range of “attacks” that trigger these vulnerabilities
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+ Interference will get worse
» Density/device diversity is increasing
» Unlicensed spectrum is not keeping up

* Spectrum management
» “Channel hopping” 802.11 effective at mitigating some
performance problems [SigcommO07]
» Coordinated spectrum use — based on RF sensor network

* Transmission power control
» Enable spatial reuse of spectrum by controlling transmit
power
» Must also adapt carrier sense behavior to take advantage




Roofnet
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» Share a few wired Internet connections
» Goals

» Operate without extensive planning or central
management

» Provide wide coverage and acceptable
performance

* Design decisions
» Unconstrained node placement
* Omni-directional antennas
* Multi-hop routing

+ Optimization of routing for throughput in a slowly
changing network

Overview el
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* 802.11
» Deployment patterns
* Reaction to interference
* Interference mitigation
¢ Mesh networks
 Architecture
» Measurements
* White space networks
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+ Deployment
» Over an area of about four square kilometers in Cambridge,
Messachusetts
* Most nodes are located in buildings
* 3~4 story apartment buildings
« 8 nodes are in taller buildings
» Each Rooftnet node is hosted by a volunteer user
+ Hardware
* PC, omni-directional antenna, hard drive ...
» 802.11b card
* RTS/CTS disabled
« Share the same 802.11b channel
* Non-standard “pseudo-IBSS” mode

+ Similar to standard 802.11b IBSS (ad hoc)
» Omit beacon and BSSID (network ID)

Roofnet Node Map




Typlcal Rooftop View ; »}:

A Roofnet Self-Installation Kit ¥ ;’;{ 7

50 ft. Cable ($40)
Low loss (3dB/100ft)

Antenna ($65)
8dBi, 20 degree vertical

Computer ($340) Miscellaneous ($75)
533 MHz PC, hard Chimney Mount,
disk, CDROM Lightning Arrestor, etc.

Software (“free”)
Our networking
software based on
Click

Total: $685

802.11b card ($155)
Engenius Prism 2.5,
200mw

Takes a user about 45 minutes to install on a flat roof
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Software and Auto-Configuration Yo

 Linux, routing software, DHCP server, web server ...
+ Automatically solve a number of problems
» Allocating addresses
» Finding a gateway between Roofnet and the Internet
* Choosing a good multi-hop route to that gateway
. Addressmg
Roofnet carries IP packets inside its own header format and
routing protocol
* Assign addresses automatically
* Only meaningful inside Roofnet, not globally routable
* The address of Roofnet nodes
« Low 24 bits are the low 24 bits of the node’s Ethernet address
« High 8 bits are an unused class-A IP address block
* The address of hosts

« Allocate 192.168.1.x via DHCP and use NAT between the Ethernet and
Roofnet
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Software and Auto-Configuration ‘;f{ I
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* Gateway and Internet Access
* A small fraction of Roofnet users will share their
wired Internet access links
* Nodes which can reach the Internet

+ Advertise itself to Roofnet as an Internet gateway

 Acts as a NAT for connection from Roofnet to the
Internet

» Other nodes
+ Select the gateway which has the best route metric

* Roofnet currently has four Internet gateways
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Roofnet Nodes

=~ Wired Gateways
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Is it Bursty Interference?
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* May interfere but not impact SNR
measurement
e

«» L

Is it Multipath Interference?

« Simulate with channel emulator
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Two Different Roofnet Links yodes
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* Top is typical of bursty interference, bottom
is not

* Most links are like the bottom
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A Plausible Explanation v
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* Multi-path can produce intermediate loss
rates

» Appropriate multi-path delay is possible due
to long-links
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Key Implications ¥
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. Lack of a link abstraction!

 Links aren’t on or off... sometimes in-between

» Protocols must take advantage of these
intermediate quality links to perform well

How unique is this to Roofnet?
» Cards designed for indoor environments used

Roofnet Design - Routing Protocol

I I
. Srcr
» Find the highest throughput route between any pair of Roofnet nodes
» Source-routes data packets like DSR
+ Maintains a partial database of link metrics
* Learning fresh link metrics
» Forward a packet
* Flood to find a route
» Overhear queries and responses
. F|nd|ng a route to a gateway
Each Roofnet gateway periodically floods a dummy query
* When a node receives a new query, it adds the link metric information
* The node computes the best route
* The node re-broadcasts the query

+ Send a notification to a failed packet’s source if the link condition is
changed

34

outdoors
Roofnet Design v
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* Routing Metric

« ETT (Estimated Transmission Time) metric = <=—T

ity

« Srcr chooses routes with ETT

« Predict the total amount of time it would take to send a data
packet

« Take into account link’s highest-throughput transmit bit-rate
and delivery probability

« Each Roofnet node sends periodic 1500-byte broadcasts
+ Bit-rate Selection
» 802.11b transmit bit-rates
* 1,2,5.5, 11 Mbits/s
* SampleRate
« Judge which bit-rate will provide the highest throughput
« Base decisions on actual data transmission
« Periodically sends a packet at some other bit-rate
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ETX measurement results ¥
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* Delivery is probabilistic
* A 1/r*2 model wouldn’t really predict this!
» Sharp cutoff (by spec) of “good” vs “no” reception.
Intermediate loss range band is just a few dB wide!
Why?
* Biggest factor: Multi-path interference
» 802.11 receivers can suppress reflections < 250ns

» Outdoor reflections delay often > 1 \mu sec

 Delay offsets == symbol time look like valid symbols (large
interferece)

+ Offsets != symbol time look like random noise
Small changes in delay == big changes in loss rate




Deciding Between Links v
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» Most early protocols: Hop Count

* Link-layer retransmission can mask some loss

» But: a 50% loss rate means your link is only
50% as fast!

» Threshold?
» Can sacrifice connectivity. ®
* Isn’'t a 90% path better than an 80% path?
* Real life goal: Find highest throughput
paths

Is there a better metric?

 Cut-off threshold
» Disconnected network
» Product of link delivery ratio along path
» Does not account for inter-hop interference
 Bottleneck link (highest-loss-ratio link)
» Same as above
* End-to-end delay
» Depends on interface queue lengths

ETX Metric Design Goals T

| I
* Find high throughput paths

Account for lossy links

Account for asymmetric links

Account for inter-link interference

Independent of network load (don’t incorporate
congestion)

Forwarding Packets is Expensive

* Throughput of 802.11b =~ 11Mbits/s
* In reality, you can get about 5.

* What is throughput of a chain?
+A> B ~>C ?
+rA>B>C>D ?

* Assume minimum power for radios.

* Routing metric should take this into
account! Affects throughput

10
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» Measure each link’s delivery probability with
broadcast probes (& measure reverse)
» P(delivery) = (d;*d,) (ACK must be
delivered too...)

- Link ETX = 1/ P(delivery)

* Route ETX = Z link ETX

» Assumes all hops interfere - not true, but
seems to work okay so far

.

ETX: Sanity Checks jOSe;

+ ETX of perfect 1-hop path: 1
* ETX of 50% delivery 1-hop path: 2
* ETX of perfect 3-hop path: 3

* (So, e.g., a 50% loss path is better than a
perfect 3-hop path! A threshold would
probably fail here...)

Rate Adaptation T
|

I I I L
« What if links @ different rates?
* ETT — expected transmission time
* ETX/ Link rate = 1/ ( P(delivery) * Rate)
» What is best rate for link?
» The one that maximizes ETT for the link!

» SampleRate is a technique to adaptively figure
this out.

Discussion
| I I .
+ Value of implementation & measurement

» Simulators did not “do” multipath

* Routing protocols dealt with the simulation environment
just fine

» Real world behaved differently and really broke a lot of
the proposed protocols that worked so well in simulation!

* Rehash: Wireless differs from wired...
* Metrics: Optimize what matters; hop count
often a very bad proxy in wireless
* What we didn’t look at: routing protocol
overhead
» One cool area: Geographic routing

11



Overview ;%%

+ 802.11
* Deployment patterns
» Reaction to interference
* Interference mitigation

¢ Mesh networks
¢ Architecture
¢« Measurements

* White space networks
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Whlte Spaces Spectrum Availability
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White Spaces Spectrum Availability

Spatial Variation

Cannot assume same

channel free everywhere

Location impacts spectrum availability => Spectrum exhibits spatial variation

50

White Spaces Spectrum Availability

Temporal Variation
Same Channel will
not always be free

Any connection can be
disrupted any time

Incumbents appear/disappear over time = Must reconfigure after disconnection

Channel Assignment in Wi-Fi %

§ —
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Fixed Width Channels = Optimize which channel to use

52
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Spectrum Assignment in WhiteFi o
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Spectrum Assignment

Problem
Goal Maximize Throughput
Include Spectrum at clients
. Center Channel
Assign &
Width
Fragmentation = Optimize for both, center channel and width

Spatial Variation = BS must use channel iff free at client
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Intuition <<<<( ))>>>
Use widest possible channel

A BS
But

Limited by most busy channel I‘;r’;.

= Carrier Sense Across All Channels

= All channels must be free
"pps(2 and 3 are free) = pyy(2 is fiee) x pyy(3 is fiee)

Tradeoff between wider channel widths
and opportunity to transmit on each channel

Discovering a Base Station -

S
I

I 2 3 4}5
Discovery Time = OB x W)
Fragmentation = Try different center channel and widths

channels used by the BS?
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* Method

* Multi-hop TCP

» 15 second one-way bulk TCP transfer between each pair
of Roofnet nodes

+ Single-hop TCP
« The direct radio link between each pair of routes
* Loss matrix
* The loss rate between each pair of nodes using 1500-
byte broadcasts
* Multi-hop density
» TCP throughput between a fixed set of four nodes

« Varying the number of Roofnet nodes that are
participating in routing
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+ Basic Performance (Multi-h

[ !
op TCP)

* The routes with low hop-count have much higher

throughput

* Multi-hop routes suffer from inter-hop collisions

1

0.8
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0.4

Cumulative Fraction of Pairs

0.2

0
0 500 1000 1500 2000 2500 3000 3500 4000
TCP Throughput (kilobits/second)

Hops Number of | Throughput | Latency
Pairs (kbits /sec) (ms)

1 158 2451 14

2 303 771 26

3 301 362 45

4 223 266 50

5 120 210 60

6 43 272 100

7 33 181 83

8 14 159 119

9 4 175 182

10 1 182 218
no route 132 0 —
Avg: 2.0 | Total 1332 w Avg 39
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Evaluation
N . |

» Basic Performance (Multi-hop TCP)
» TCP throughput to each node from its chosen
gateway

» Round-trip latencies for 84-byte ping packets to
estimate interactive delay

Hops Number | Throughput | Latency
of nodes | (kbits/sec) (ms)

1 12 2752 9

2 8 940 19

3 5 552 27

4 7 379 43

5 1 89 37
Avg: 2.3 | Total: 33 w Avg: 22
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* Link Quality and Distance (Single-hop TCP,
Multi-hop TCP)

* Most available links are between 500m and
1300m and give 500 kbits/s

Evaluation
- - - - -
+ Link Quality and Distance (Multi-hop TCP, Loss matrix)
* Median delivery probability is 0.8
* 1/4 links have loss rates of 50% or more

* 802.11 detects the losses with its ACK mechanism and
resends the packets
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¢ Architectural Alternatives

« Maximize the number of additional nodes with non-zero
throughput to some gateway

» Ties are broken by average throughput

Multi-Hop Single-Hop Multi-Hop Single-Hop
GWs | Conn | Throughput | Conn | Throughput GWs | Conn | Throughput | Conn | Throughput
(kbits/sec) (kbits/sec) (kbits/sec) (kbit%/mc)
T 37 TSL| 23 71 T 3T 010 535
2 37 1450 | 32 824 2 35 1051 | 17 585
3 37 1871 34 1102 3 35 1485 22 900
4 37 2131 éb 1140 4 35 2021 | 25 1260
5 37 2355 1364 5 36 1565 | 28 1221
6 37 2450 7 2123 6 36 1954 | 30 1192
7 37 2520 | 37 2312 7 1031 | 31 1662
8 37 2614 | 37 2475 8 é 1447 | 32 1579
9 37 2702 | 37 2564 9 37 1700 | 33 1627
10 37 2795 | 37 2659 10 37 1945 | 34 1689
15 37 3197 | 37 3180 15 37 " o305 | 36 1714
20 37 3508 | 37 3476 20 37 2509 [ 36 2695
25 37 3721 | 37 3658 25 37 270: @ 2317
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* Inter-hop Interference (Multi-hop TCP, Single-hop TCP)
» Concurrent transmissions on different hops of a route collide
and cause packet loss
4500 T T T T
4000 R *_’ + 4
0 ie *Y
& 3500 -y
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£ 3000 - . *+¢§ 1
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Expected Throughput (kbits/sec)
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Roofnet Summary
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» The network’s architectures favors
» Ease of deployment
* Omni-directional antennas
+ Self-configuring software
* Link-quality-aware multi-hop routing

» Evaluation of network performance
+ Average throughput between nodes is 627kbits/s

» Well served by just a few gateways whose position
is determined by convenience

» Multi-hop mesh increases both connectivity and
throughput
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Roofnet Link Level Measurements

* Analyze cause of packet loss
* Neighbor Abstraction

* Ability to hear control packets or No
Interference

« Strong correlation between BER and S/N
* RoofNet pairs communicate

» Atintermediate loss rates

» Temporal Variation

» Spatial Variation
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