15-744: Computer Networking

L-10 Wireless in the Real World

Wireless in the Real World

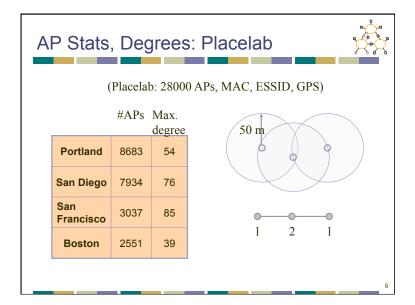
- Real world deployment patterns
- · Mesh networks and deployments
- · Assigned reading
 - Architecture and Evaluation of an Unplanned 802.11b Mesh Network
 - White Space Networking with Wi-Fi like Connectivity

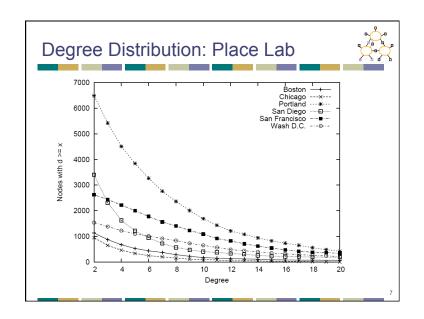
2

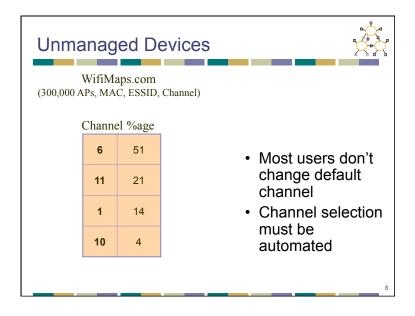
Wireless Challenges

- · Force us to rethink many assumptions
- Need to share airwaves rather than wire
 - · Don't know what hosts are involved
 - · Host may not be using same link technology
- Mobility
- · Other characteristics of wireless
 - Noisy → lots of losses
 - Slow
 - · Interaction of multiple transmitters at receiver
 - · Collisions, capture, interference
 - Multipath interference

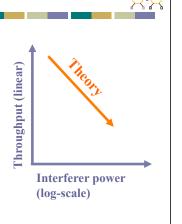
Overview




- 802.11
 - Deployment patterns
 - · Reaction to interference
 - · Interference mitigation
- Mesh networks
 - Architecture
 - Measurements
- · White space networks


Characterizing Current Deployments

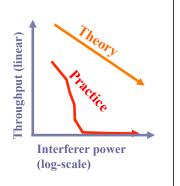
- Datasets
- Place Lab: 28,000 APs
 - · MAC, ESSID, GPS
 - · Selected US cities
 - · www.placelab.org
- Wifimaps: 300,000 APs
 - MAC, ESSID, Channel, GPS (derived)
 - · wifimaps.com
- Pittsburgh Wardrive: 667 APs
 - MAC, ESSID, Channel, Supported Rates, GPS

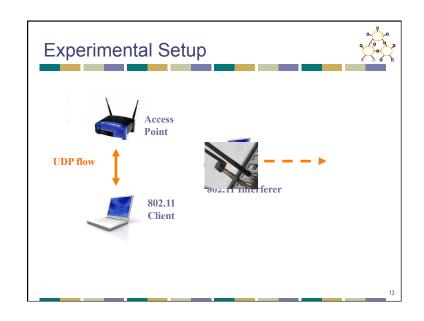

Growing Interference in Unlicensed Bands

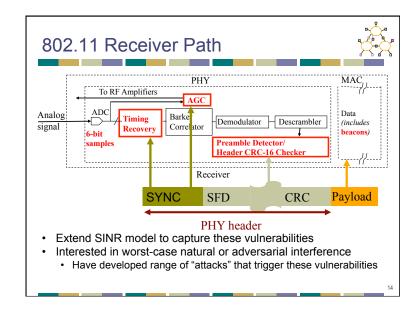
- Anecdotal evidence of problems, but how severe?
- Characterize how 802.11 operates under interference in practice

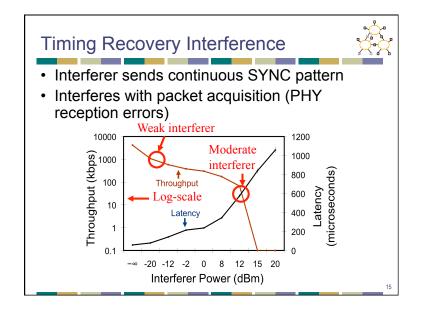
What do we expect?

- Throughput to decrease linearly with interference
- There to be lots of options for 802.11 devices to tolerate interference
 - · Bit-rate adaptation
 - · Power control
 - FEC
 - Packet size variation
 - · Spread-spectrum processing
 - Transmission and reception diversity


Key Questions


- How damaging can a low-power and/or narrow-band interferer be?
- How can today's hardware tolerate interference well?
 - What 802.11 options work well, and why?


What we see


- Effects of interference more severe in practice
- Caused by hardware limitations of commodity cards, which theory doesn't model

11

Interference Management

- · Interference will get worse
 - Density/device diversity is increasing
 - · Unlicensed spectrum is not keeping up
- Spectrum management
 - "Channel hopping" 802.11 effective at mitigating some performance problems [Sigcomm07]
 - · Coordinated spectrum use based on RF sensor network
- Transmission power control
 - Enable spatial reuse of spectrum by controlling transmit power
 - · Must also adapt carrier sense behavior to take advantage

/

Overview

- 802.11
 - · Deployment patterns
 - · Reaction to interference
 - Interference mitigation
- Mesh networks
 - Architecture
 - Measurements
- White space networks

Roofnet

- Share a few wired Internet connections
- Goals
 - Operate without extensive planning or central management
 - Provide wide coverage and acceptable performance
- Design decisions
 - Unconstrained node placement
 - · Omni-directional antennas
 - Multi-hop routing
 - Optimization of routing for throughput in a slowly changing network

_ 18

Roofnet Design

- Deployment
 - Over an area of about four square kilometers in Cambridge, Messachusetts
 - Most nodes are located in buildings
 - 3~4 story apartment buildings
 - 8 nodes are in taller buildings
 - · Each Rooftnet node is hosted by a volunteer user
- Hardware
 - · PC, omni-directional antenna, hard drive ...
 - 802.11b card
 - RTS/CTS disabled
 - Share the same 802.11b channel
 - Non-standard "pseudo-IBSS" mode
 - Similar to standard 802.11b IBSS (ad hoc)
 - Omit beacon and BSSID (network ID)

19

Roofnet Node Map 1 kilometer

Typical Rooftop View

A Roofnet Self-Installation Kit

Antenna (\$65)

8dBi, 20 degree vertical

Computer (\$340) 533 MHz PC, hard disk, CDROM

802.11b card (\$155) Engenius Prism 2.5, 200mW

50 ft. Cable (\$40)

Low loss (3dB/100ft)

Miscellaneous (\$75)
Chimney Mount.

Chimney Mount, Lightning Arrestor, etc.

Software ("free")
Our networking

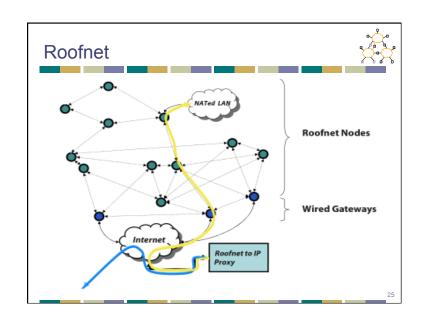
Our networking software based on Click

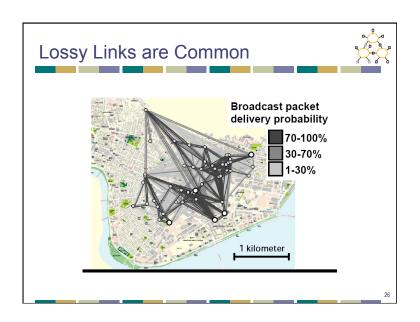
Total: \$685

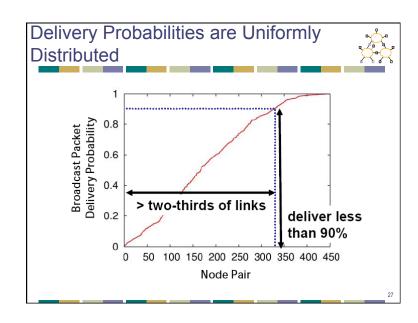
Takes a user about 45 minutes to install on a flat roof

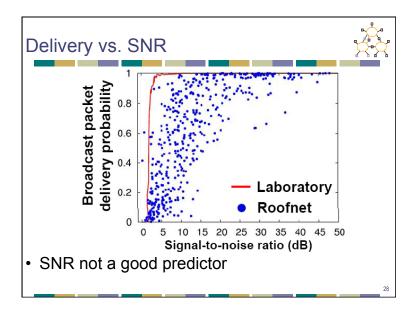
22

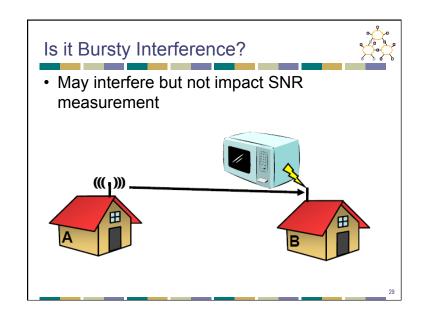
Software and Auto-Configuration

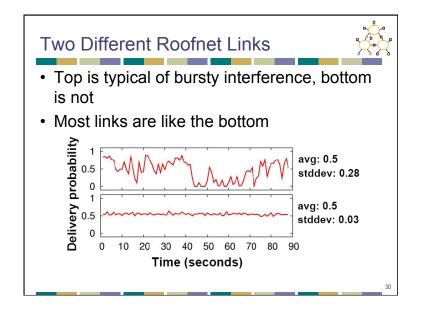

- Linux, routing software, DHCP server, web server ...
- Automatically solve a number of problems
 - · Allocating addresses
 - Finding a gateway between Roofnet and the Internet
 - Choosing a good multi-hop route to that gateway
- Addressing
 - Roofnet carries IP packets inside its own header format and routing protocol
 - · Assign addresses automatically
 - · Only meaningful inside Roofnet, not globally routable
 - · The address of Roofnet nodes
 - · Low 24 bits are the low 24 bits of the node's Ethernet address
 - High 8 bits are an unused class-A IP address block
 - The address of hosts
 - Allocate 192.168.1.x via DHCP and use NAT between the Ethernet and Roofnet

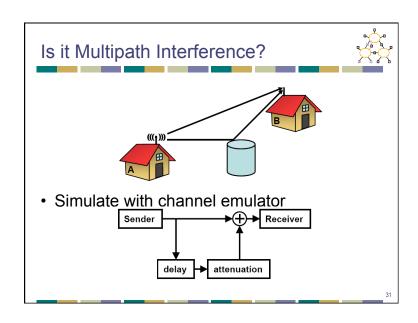

Software and Auto-Configuration

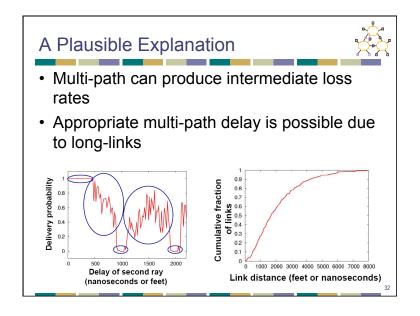



- Gateway and Internet Access
 - A small fraction of Roofnet users will share their wired Internet access links
 - · Nodes which can reach the Internet
 - · Advertise itself to Roofnet as an Internet gateway
 - Acts as a NAT for connection from Roofnet to the Internet
 - Other nodes
 - Select the gateway which has the best route metric
 - · Roofnet currently has four Internet gateways


24







Key Implications

- Lack of a link abstraction!
 - · Links aren't on or off... sometimes in-between
- Protocols must take advantage of these intermediate quality links to perform well
- How unique is this to Roofnet?
 - Cards designed for indoor environments used outdoors

33

Roofnet Design - Routing Protocol

- Srcr
 - Find the highest throughput route between any pair of Roofnet nodes
 - · Source-routes data packets like DSR
 - · Maintains a partial database of link metrics
- · Learning fresh link metrics
 - · Forward a packet
 - · Flood to find a route
 - · Overhear queries and responses
- · Finding a route to a gateway
 - · Each Roofnet gateway periodically floods a dummy query
 - · When a node receives a new query, it adds the link metric information
 - · The node computes the best route
 - · The node re-broadcasts the query
 - Send a notification to a failed packet's source if the link condition is changed

34

Roofnet Design

- Routing Metric
 - ETT (Estimated Transmission Time) metric
- $t = \frac{1}{2}$
 - · Srcr chooses routes with ETT
 - Predict the total amount of time it would take to send a data packet
 - Take into account link's highest-throughput transmit bit-rate and delivery probability
 - · Each Roofnet node sends periodic 1500-byte broadcasts
- Bit-rate Selection
 - 802.11b transmit bit-rates
 - 1, 2, 5.5, 11 Mbits/s
 - SampleRate
 - · Judge which bit-rate will provide the highest throughput
 - Base decisions on actual data transmission
 - · Periodically sends a packet at some other bit-rate

35

ETX measurement results

- Delivery is probabilistic
 - A 1/r^2 model wouldn't really predict this!
 - Sharp cutoff (by spec) of "good" vs "no" reception. Intermediate loss range band is just a few dB wide!
- · Why?
 - Biggest factor: Multi-path interference
 - 802.11 receivers can suppress reflections < 250ns
 - Outdoor reflections delay often > 1 \mu sec
 - Delay offsets == symbol time look like valid symbols (large interferece)
 - Offsets != symbol time look like random noise
 - Small changes in delay == big changes in loss rate

Deciding Between Links

- · Most early protocols: Hop Count
 - Link-layer retransmission can mask some loss
 - But: a 50% loss rate means your link is only 50% as fast!
- Threshold?
 - Can sacrifice connectivity. 🕾
 - Isn't a 90% path better than an 80% path?
- Real life goal: Find highest throughput paths

Is there a better metric?

- · Cut-off threshold
 - Disconnected network
- Product of link delivery ratio along path
 - Does not account for inter-hop interference
- Bottleneck link (highest-loss-ratio link)
 - · Same as above
- End-to-end delay
 - · Depends on interface queue lengths

ETX Metric Design Goals

- · Find high throughput paths
- · Account for lossy links
- Account for asymmetric links
- Account for inter-link interference
- Independent of network load (don't incorporate congestion)

Forwarding Packets is Expensive

- Throughput of 802.11b =~ 11Mbits/s
 - In reality, you can get about 5.
- · What is throughput of a chain?
 - \cdot A \rightarrow B \rightarrow C
 - $\bullet A \rightarrow B \rightarrow C \rightarrow D$?
 - · Assume minimum power for radios.
- Routing metric should take this into account! Affects throughput

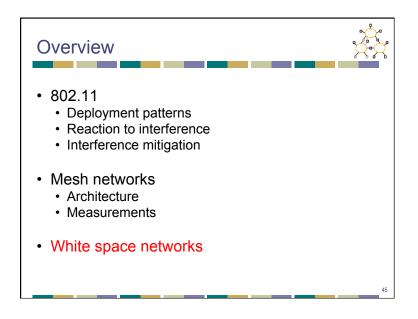
ETX

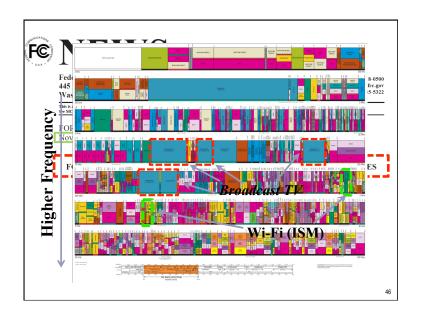
- Measure each link's delivery probability with broadcast probes (& measure reverse)
- P(delivery) = (d_f * d_r) (ACK must be delivered too...)
- Link ETX = 1 / P(delivery)
- Route ETX = Σ link ETX
 - Assumes all hops interfere not true, but seems to work okay so far

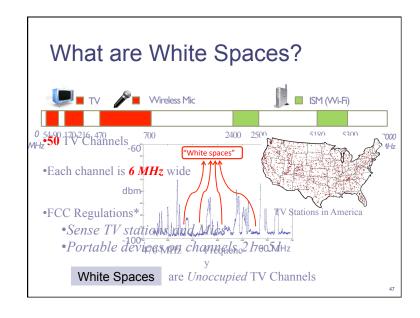
ETX: Sanity Checks

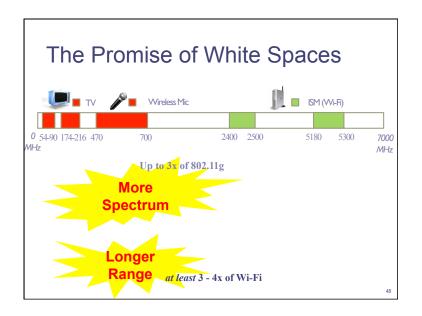
- ETX of perfect 1-hop path: 1
- ETX of 50% delivery 1-hop path: 2
- ETX of perfect 3-hop path: 3
- (So, e.g., a 50% loss path is better than a perfect 3-hop path! A threshold would probably fail here...)

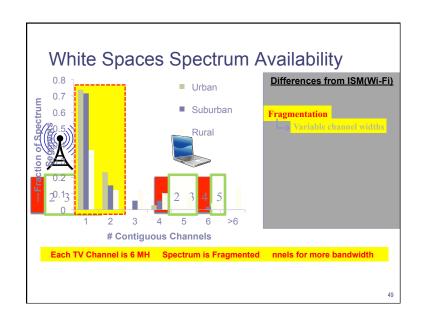
Rate Adaptation

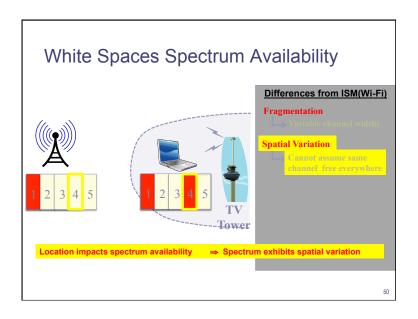


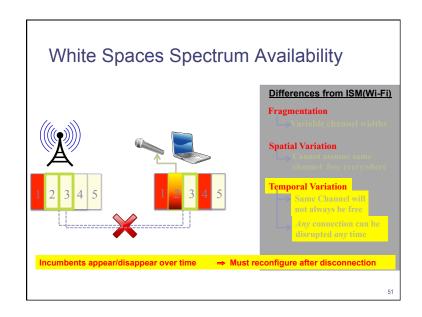

- · What if links @ different rates?
- ETT expected transmission time
 - ETX / Link rate = 1 / (P(delivery) * Rate)
- · What is best rate for link?
 - The one that maximizes ETT for the link!
 - SampleRate is a technique to adaptively figure this out.

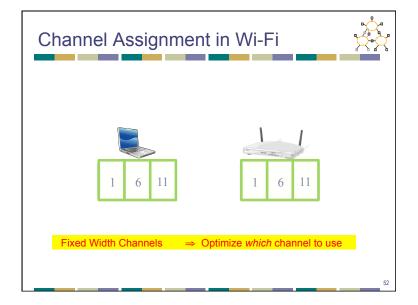

Discussion

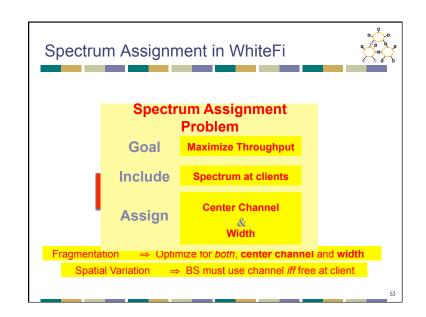


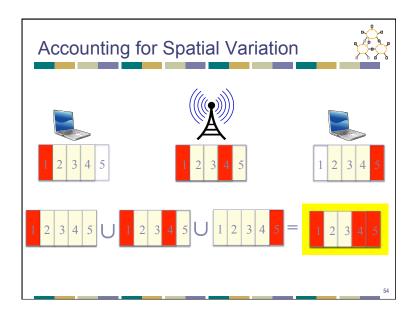

- · Value of implementation & measurement
 - · Simulators did not "do" multipath
 - Routing protocols dealt with the simulation environment just fine
 - Real world behaved differently and really broke a lot of the proposed protocols that worked so well in simulation!
- · Rehash: Wireless differs from wired...
- Metrics: Optimize what matters; hop count often a very bad proxy in wireless
- What we didn't look at: routing protocol overhead
 - One cool area: Geographic routing

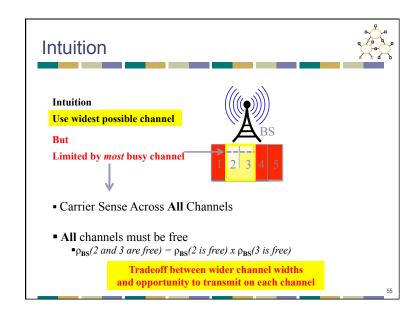


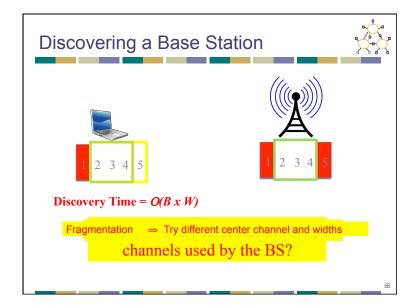


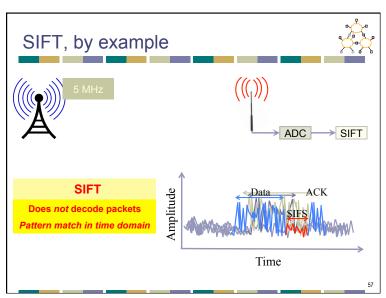


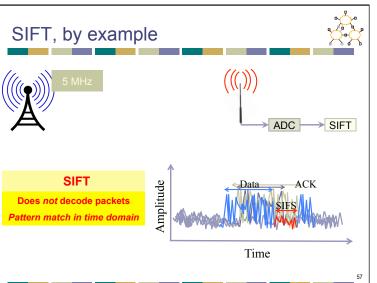




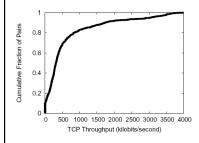








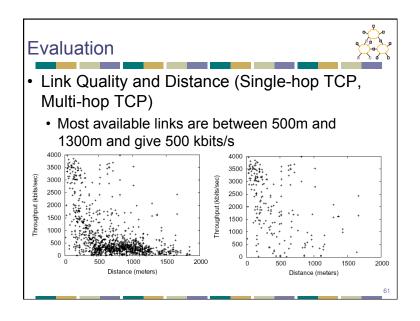
Evaluation

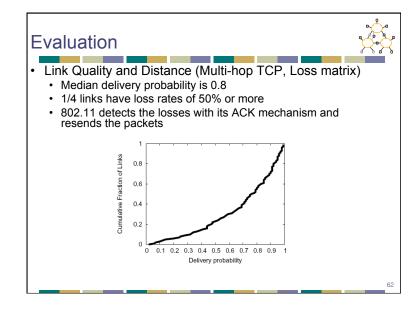


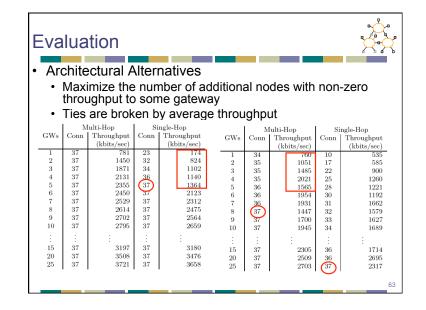
- Method
 - Multi-hop TCP
 - 15 second one-way bulk TCP transfer between each pair of Roofnet nodes
 - Single-hop TCP
 - The direct radio link between each pair of routes
 - Loss matrix
 - The loss rate between each pair of nodes using 1500-byte broadcasts
 - Multi-hop density
 - TCP throughput between a fixed set of four nodes
 - · Varying the number of Roofnet nodes that are participating in routing

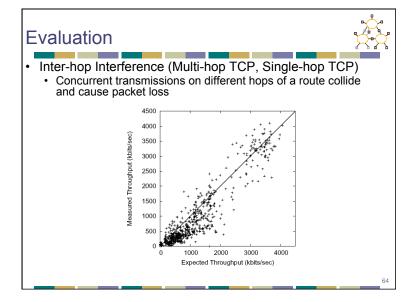
Evaluation

- The routes with low hop-count have much higher throughput
- Multi-hop routes suffer from inter-hop collisions


Hops	Number of	Throughput	Latency
11000	Pairs	(kbits/sec)	(ms)
1	158	2451	14
2	303	771	26
3	301	362	45
4	223	266	50
5	120	210	60
6	43	272	100
7	33	181	83
8	14	159	119
9	4	175	182
10	1	182	218
no route	132	0	_
Avg: 2.9	Total: 1332	(Avg: 627)	Avg: 39


Evaluation




- Basic Performance (Multi-hop TCP)
 - TCP throughput to each node from its chosen gateway
 - Round-trip latencies for 84-byte ping packets to estimate interactive delay

Hops	Number of nodes	Throughput (kbits/sec)	Latency (ms)
1	12	2752	9
2	8	940	19
3	5	552	27
4	7	379	43
5	1	89	37
Avg: 2.3	Total: 33	(Avg: 1395)	Avg: 22

Roofnet Summary

- · The network's architectures favors
 - · Ease of deployment
 - Omni-directional antennas
 - Self-configuring software
 - Link-quality-aware multi-hop routing
- · Evaluation of network performance
 - Average throughput between nodes is 627kbits/s
 - Well served by just a few gateways whose position is determined by convenience
 - Multi-hop mesh increases both connectivity and throughput

Roofnet Link Level Measurements

- Analyze cause of packet loss
- Neighbor Abstraction
 - Ability to hear control packets or No Interference
 - Strong correlation between BER and S/N
- · RoofNet pairs communicate
 - · At intermediate loss rates
 - Temporal Variation
 - Spatial Variation

66