

Forwarding and Routers

- Forwarding
- IP lookup
- · High-speed router architecture
- Readings
 - [McK97] A Fast Switched Backplane for a Gigabit Switched Router
 - [KCY03] Scaling Internet Routers Using Optics
 - Know RIP/OSPF
- Optional
 - [D+97] Small Forwarding Tables for Fast Routing Lookups
 - [BV01] Scalable Packet Classification

_ 2

Outline

- IP router design
- IP route lookup
- Variable prefix match algorithms
- Packet classification

IP Router Design

- Different architectures for different types of routers
- High speed routers incorporate large number of processors
- · Common case is optimized carefully

What Does a Router Look Like?

- Currently:
 - · Network controller
 - Line cards
 - · Switched backplane
- In the past?
 - Workstation
 - · Multiprocessor workstation
 - · Line cards + shared bus

Network Processor

table to line cards

easy switchover

· Performs "slow" path processing

· Handles ICMP error messages

· Handles IP option processing

· Runs routing protocol and downloads forwarding

• Some line cards maintain two forwarding tables to allow

Line Cards

- · Network interface cards
- · Provides parallel processing of packets
- · Fast path per-packet processing
 - Forwarding lookup (hardware/ASIC vs. software)

Switch Design Issues

- · Have N inputs and M outputs
 - Multiple packets for same output output contention
 - Switch contention switch cannot support arbitrary set of transfers
 - Crossbar
 - Bus
 - High clock/transfer rate needed for bus
 - - Complex scheduling needed to avoid switch contention
 - Solution buffer packets where needed

Switch Buffering

- Input buffering
 - · Which inputs are processed each slot schedule?
 - · Head of line packets destined for busy output blocks other packets
- · Output buffering
 - · Output may receive multiple packets per slot
 - · Need speedup proportional to # inputs
- Internal buffering
 - · Head of line blocking
 - Amount of buffering needed

Line Card Interconnect

- · Virtual output buffering
 - Maintain per output buffer at input
 - · Solves head of line blocking problem
 - · Each of MxN input buffer places bid for output
- Crossbar connect
- Challenge: map of bids to schedule for crossbar

ISLIP 1 g=B 2 g=A 2 g=A 3 g=A 4 g=A REQUEST Round 1, Iteration 2 1 g=B 2 g=A 3 g=A 3 a=1 REQUEST Round2. Iteration 1 2 <u>g</u>=A 2 g=B 4 g=A 4 g=A a=1 REQUEST

Limits to Scaling

- · Overall power is dominated by linecards
 - Sheer number
 - Optical WAN components
 - · Per packet processing and buffering.
- But power density is dominated by switch fabric

Multi-rack Routers Reduce Power Density

Limit today ~2.5Tb/s

Electronics

Switch

Switch

Limit today ~2.5Tb/s

Description:

Opto-electronic conversion

Question

- Instead, can we use an **optical** fabric at 100Tb/s with 100% throughput?
- · Conventional answer: No
 - Need to reconfigure switch too often
 - 100% throughput requires complex electronic scheduler.

Original IP Route Lookup – Example

- www.cmu.edu address 128.2.11.43
 - Class B address class + network is 128.2
 - · Lookup 128.2 in forwarding table
 - · Prefix part of address that really matters for routing
- Forwarding table contains
 - · List of class+network entries
 - A few fixed prefix lengths (8/16/24)
- Large tables
 - · 2 Million class C networks
- 32 bits does not give enough space encode network location information inside address – i.e., create a structured hierarchy

29

CIDR Revisited

- Supernets
 - · Assign adjacent net addresses to same org
 - Classless routing (CIDR)
- · How does this help routing table?
 - Combine routing table entries whenever all nodes with same prefix share same hop
 - Routing protocols carry prefix with destination network address
 - · Longest prefix match for forwarding

_ 30

Provider is given 201.10.0.0/21 Provider 201.10.0.0/22 201.10.4.0/24 201.10.5.0/24 201.10.6.0/23

• Multi-homing • Customer selecting a new provider 201.10.0.0/21 Provider 1 Provider 2 201.10.0.0/22 201.10.4.0/24 201.10.5.0/24 201.10.6.0/23 or Provider 2 address

Outline

- IP router design
- IP route lookup
- · Variable prefix match algorithms
- Packet classification

33

Trie Using Sample Database

Sample Database

- P1 = 10*
- P2 = 111*
- P3 = 11001*
- P4 = 1*
- P5 = 0*
- P6 = 1000*
- P7 = 100000*
- P8 = 1000000*

How To Do Variable Prefix Match

- Traditional method Patricia Tree
 - Arrange route entries into a series of bit tests
- Worst case = 32 bit tests
 - Problem: memory speed is a bottleneck

Speeding up Prefix Match (P+98)

- Cut prefix tree at 16 bit depth
 - 64K bit mask
 - Bit = 1 if tree continues below cut (root head)
 - Bit = 1 if leaf at depth 16 or less (genuine head)
 - Bit = 0 if part of range covered by leaf

Speeding up Prefix Match (P+98)

- Each 1 corresponds to either a route or a subtree
 - · Keep array of routes/pointers to subtree
 - Need index into array how to count # of 1s
 - Keep running count to 16bit word in base index + code word (6 bits)
 - · Need to count 1s in last 16bit word
 - Clever tricks
- Subtrees are handled separately

Speeding up Prefix Match (P+98)

- Scaling issues
 - How would it handle IPv6
- Update issues
- Other possibilities
 - Why were the cuts done at 16/24/32 bits?
 - Improve data structure by shuffling bits

Speeding up Prefix Match - Alternatives

- · Route caches
 - · Temporal locality
 - Many packets to same destination
- Other algorithms
 - Waldvogel Sigcomm 97
 - · Binary search on prefixes
 - · Works well for larger addresses
 - Bremler-Barr Sigcomm 99
 - Clue = prefix length matched at previous hop
 - · Why is this useful?
 - Lampson Infocom 98
 - · Binary search on ranges

41

Binary Search on Ranges

- Encode each prefix as range and place all range endpoints in binary search table or tree. Need two next hops per entry for > and = case. [Lampson, Srinivasan, Varghese]
- Problem: Slow search (log₂ N+1 = 20 for a million prefixes) and update (O(n)).
 - · Some clever implementation tricks to improve on this

Speeding up Prefix Match - Alternatives

- Content addressable memory (CAM)
 - Hardware based route lookup
 - Input = tag, output = value associated with tag
 - · Requires exact match with tag
 - Multiple cycles (1 per prefix searched) with single CAM
 - Multiple CAMs (1 per prefix) searched in parallel
 - Ternary CAM
 - 0,1,don't care values in tag match
 - · Priority (I.e. longest prefix) by order of entries in CAM

Outline

- IP router design
- · IP route lookup
- · Variable prefix match algorithms
- Packet classification

Packet Classification

- · Typical uses
 - · Identify flows for QoS
 - · Firewall filtering
- Requirements
 - · Match on multiple fields
 - · Strict priority among rules
 - E.g 1. no traffic from 128.2.*
 - 2. ok traffic on port 80

Complexity

- N rules and k header fields for k > 2
 - O(log N^{k-1}) time and O(N) space
 - O(log N) time and O(Nk) space
 - Special cases for k = 2 → source and destination
 - O(log N) time and O(N) space solutions exist
- How many rules?
 - Largest for firewalls & similar → 1700
 - Diffserv/QoS → much larger → 100k (?)

Observations [GM99]

- Common rule sets have important/useful characteristics
 - Packets rarely match more than a few rules (rule intersection)
 - E.g., max of 4 rules seen on common databases up to 1700 rules

49

Aggregating Rules [BV01]

- Common case: very few 1's in bit vector → aggregate bits
- OR together A bits at a time → N/A bit-long vector
 - · A typically chosen to match word-size
 - Can be done hierarchically → aggregate the aggregates
- AND of aggregate bits indicates which groups of A rules have a possible match
 - Hopefully only a few 1's in AND'ed vector
 - AND of aggregated bit vectors may have false positives
- Fetch and AND just bit vectors associated with positive entries

50

Rearranging Rules [BV01]

- Problem: false positives may be common
- · Solution: reorder rules to minimize false positives
 - What about the priority order of rules?
- How to rearrange?
 - Heuristic → sort rules based on single field's values
 - First sort by prefix length then by value
 - Moves similar rules close together → reduces false positives

Summary: Addressing/Classification

- Router architecture carefully optimized for IP forwarding
- · Key challenges:
 - · Speed of forwarding lookup/classification
 - Power consumption
- Some good examples of common case optimization
 - · Routing with a clue
 - · Classification with few matching rules
 - · Not checksumming packets

Open Questions

- · Fanout vs. bandwidth
- · MPLS vs. longest prefix match
- More vs. less functionality in routers
- · Hardware vs. software
 - · CAMs vs. software
- · Impact of router design on network design

Skip Count vs. Path Compression

(Skip count) Skip
2
or
11 (path compressed)
P2
0
P1
0
P2
0
P1
P3
P4

• Removing one way branches ensures # of trie nodes is at most twice # of prefixes
• Using a skip count requires exact match at end and backtracking on failure → path compression simpler

