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15-744: Computer Networking 

L-5 Fair Queuing 
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Fair Queuing 

•  Fair Queuing 
•  Core-stateless Fair queuing 
•  Assigned reading 

•  [DKS90] Analysis and Simulation of a Fair 
Queueing Algorithm, Internetworking: Research 
and Experience 

•  [SSZ98] Core-Stateless Fair Queueing: 
Achieving Approximately Fair Allocations in 
High Speed Networks 

Overview 

•  TCP and queues 

•  Queuing disciplines 

•  RED 

•  Fair-queuing 

•  Core-stateless FQ 

•  XCP 
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Example 

•  10Gb/s linecard 
•  Requires 300Mbytes of buffering. 
•  Read and write 40 byte packet every 32ns. 

•  Memory technologies 
•  DRAM: require 4 devices, but too slow.  
•  SRAM: require 80 devices, 1kW, $2000. 

•  Problem gets harder at 40Gb/s 
•  Hence RLDRAM, FCRAM, etc. 
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Rule-of-thumb 
•  Rule-of-thumb makes sense for one flow 
•  Typical backbone link has > 20,000 flows 
•  Does the rule-of-thumb still hold? 
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If flows are synchronized 

•  Aggregate window has same dynamics 
•  Therefore buffer occupancy has same dynamics 
•  Rule-of-thumb still holds. 

t 
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If flows are not synchronized 

Probability 
Distribution 

B 

0 

Buffer Size 
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Central Limit Theorem 

•  CLT tells us that the more variables (Congestion 
Windows of Flows) we have, the narrower the Gaussian 
(Fluctuation of sum of windows) 

•  Width of Gaussian decreases with  
•  Buffer size should also decreases with 
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Required buffer size 

Simulation 

Overview 

•  TCP and queues 

•  Queuing disciplines 

•  RED 

•  Fair-queuing 

•  Core-stateless FQ 

•  XCP 
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Queuing Disciplines 

•  Each router must implement some queuing 
discipline 

•  Queuing allocates both bandwidth and 
buffer space: 
•  Bandwidth: which packet to serve (transmit) 

next  
•  Buffer space: which packet to drop next (when 

required) 
•  Queuing also affects latency 
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Packet Drop Dimensions 

Aggregation 
Per-connection state Single class 

Drop position 
Head Tail 

Random location 

Class-based queuing 

Early drop Overflow drop 
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Typical Internet Queuing 
•  FIFO + drop-tail 

•  Simplest choice 
•  Used widely in the Internet 

•  FIFO (first-in-first-out)  
•  Implies single class of traffic 

•  Drop-tail 
•  Arriving packets get dropped when queue is full 

regardless of flow or importance 
•  Important distinction: 

•  FIFO: scheduling discipline 
•  Drop-tail: drop policy 
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FIFO + Drop-tail Problems 

•  Leaves responsibility of congestion control 
to edges (e.g., TCP) 

•  Does not separate between different flows 
•  No policing: send more packets  get more 

service 
•  Synchronization: end hosts react to same 

events 
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Active Queue Management 

•  Design active router queue management to 
aid congestion control  

•  Why? 
•  Routers can distinguish between propagation 

and persistent queuing delays 
•  Routers can decide on transient congestion, 

based on workload 
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Active Queue Designs 

•  Modify both router and hosts 
•  DECbit – congestion bit in packet header 

•  Modify router, hosts use TCP 
•  Fair queuing 

•  Per-connection buffer allocation 

•  RED (Random Early Detection) 
•  Drop packet or set bit in packet header as soon as 

congestion is starting 
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Overview 

•  TCP and queues 

•  Queuing disciplines 

•  RED 

•  Fair-queuing 

•  Core-stateless FQ 

•  XCP 
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Internet Problems 

•  Full queues 
•  Routers are forced to have have large queues 

to maintain high utilizations 
•  TCP detects congestion from loss 

•  Forces network to have long standing queues in 
steady-state 

•  Lock-out problem 
•  Drop-tail routers treat bursty traffic poorly 
•  Traffic gets synchronized easily  allows a few 

flows to monopolize the queue space 
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Design Objectives 

•  Keep throughput high and delay low 
•  Accommodate bursts 
•  Queue size should reflect ability to accept 

bursts rather than steady-state queuing 
•  Improve TCP performance with minimal 

hardware changes 
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Lock-out Problem 

•  Random drop 
•  Packet arriving when queue is full causes some 

random packet to be dropped 
•  Drop front 

•  On full queue, drop packet at head of queue 
•  Random drop and drop front solve the lock-

out problem but not the full-queues problem 
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Full Queues Problem 

•  Drop packets before queue becomes full 
(early drop) 

•  Intuition: notify senders of incipient 
congestion 
•  Example: early random drop (ERD): 

•  If qlen > drop level, drop each new packet with fixed 
probability p 

•  Does not control misbehaving users 
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Random Early Detection (RED) 

•  Detect incipient congestion, allow bursts 
•  Keep power (throughput/delay) high 

•  Keep average queue size low 
•  Assume hosts respond to lost packets 

•  Avoid window synchronization 
•  Randomly mark packets 

•  Avoid bias against bursty traffic 
•  Some protection against ill-behaved users 
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RED Algorithm 

•  Maintain running average of queue length 
•  If avgq < minth do nothing 

•  Low queuing, send packets through 
•  If avgq > maxth, drop packet 

•  Protection from misbehaving sources 
•  Else mark packet in a manner proportional 

to queue length 
•  Notify sources of incipient congestion 
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RED Operation 

Min thresh Max thresh 

Average Queue Length 

minth maxth 

maxP 

1.0 

Avg queue length 

P(drop) 
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RED Algorithm 

•  Maintain running average of queue length 
•  Byte mode vs. packet mode – why? 

•  For each packet arrival 
•  Calculate average queue size (avg) 
•  If minth ≤ avgq < maxth 

•  Calculate probability Pa 

•  With probability Pa 
•  Mark the arriving packet 

•  Else if maxth ≤ avg 
•  Mark the arriving packet 
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Queue Estimation 
•  Standard EWMA: avgq = (1-wq) avgq + wqqlen 

•  Special fix for idle periods – why? 
•  Upper bound on wq depends on minth 

•  Want to ignore transient congestion 
•  Can calculate the queue average if a burst arrives 

•  Set wq such that certain burst size does not exceed minth 

•  Lower bound on wq to detect congestion relatively 
quickly 

•  Typical wq = 0.002 
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Thresholds 

•  minth determined by the utilization 
requirement 
•  Tradeoff between queuing delay and utilization 

•  Relationship between maxth and minth 
•  Want to ensure that feedback has enough time 

to make difference in load 
•  Depends on average queue increase in one 

RTT  
•  Paper suggest ratio of 2 

•  Current rule of thumb is factor of 3 
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Packet Marking 

•  maxp is reflective of typical loss rates 
•  Paper uses 0.02 

•  0.1 is more realistic value 
•  If network needs marking of 20-30% then 

need to buy a better link! 
•  Gentle variant of RED (recommended) 

•  Vary drop rate from maxp to 1 as the avgq 
varies from maxth to 2* maxth 

•  More robust to setting of maxth and maxp  
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Extending RED for Flow Isolation 

•  Problem: what to do with non-cooperative 
flows? 

•  Fair queuing achieves isolation using per-
flow state – expensive at backbone routers 
•  How can we isolate unresponsive flows without 

per-flow state? 
•  RED penalty box 

•  Monitor history for packet drops, identify flows 
that use disproportionate bandwidth 

•  Isolate and punish those flows 
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Stochastic Fair Blue 
•  Same objective as RED Penalty Box 

•  Identify and penalize misbehaving flows 
•  Create L hashes with N bins each 

•  Each bin keeps track of separate marking rate (pm) 
•  Rate is updated using standard technique and a bin 

size 
•  Flow uses minimum pm of all L bins it belongs to 
•  Non-misbehaving flows hopefully belong to at least one 

bin without a bad flow 
•  Large numbers of bad flows may cause false positives 
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Stochastic Fair Blue 

•  False positives can continuously penalize 
same flow 

•  Solution: moving hash function over time 
•  Bad flow no longer shares bin with same flows 
•  Is history reset does bad flow get to make 

trouble until detected again? 
•  No, can perform hash warmup in background 

Overview 

•  TCP and queues 

•  Queuing disciplines 

•  RED 

•  Fair-queuing 

•  Core-stateless FQ 

•  XCP 

32 
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Fairness Goals 

•  Allocate resources fairly  
•  Isolate ill-behaved users 

•  Router does not send explicit feedback to 
source 

•  Still needs e2e congestion control 
•  Still achieve statistical muxing 

•  One flow can fill entire pipe if no contenders 
•  Work conserving  scheduler never idles link if 

it has a packet 
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What is Fairness? 
•  At what granularity? 

•  Flows, connections, domains? 
•  What if users have different RTTs/links/etc. 

•  Should it share a link fairly or be TCP fair? 

•  Maximize fairness index? 
•  Fairness = (Σxi)2/n(Σxi

2)   0<fairness<1 

•  Basically a tough question to answer – typically 
design mechanisms instead of policy 
•  User = arbitrary granularity 
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Max-min Fairness 

•  Allocate user with “small” demand what it 
wants, evenly divide unused resources to 
“big” users 

•  Formally: 
•  Resources allocated in terms of increasing demand 
•  No source gets resource share larger than its 

demand 
•  Sources with unsatisfied demands get equal share 

of resource 
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Max-min Fairness Example 

•  Assume sources 1..n, with resource 
demands X1..Xn in ascending order 

•  Assume channel capacity C. 
•  Give C/n to X1; if this is more than X1 wants, 

divide excess (C/n - X1) to other sources: each 
gets C/n + (C/n - X1)/(n-1) 

•  If this is larger than what X2 wants, repeat 
process 
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Implementing max-min Fairness 

•  Generalized processor sharing 
•  Fluid fairness 
•  Bitwise round robin among all queues 

•  Why not simple round robin? 
•  Variable packet length  can get more service 

by sending bigger packets 
•  Unfair instantaneous service rate 

•  What if arrive just before/after packet departs? 
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Bit-by-bit RR 

•  Single flow: clock ticks when a bit is 
transmitted. For packet i: 
•  Pi = length, Ai = arrival time, Si = begin transmit 

time, Fi = finish transmit time 
•  Fi = Si+Pi  = max (Fi-1, Ai) + Pi 

•  Multiple flows: clock ticks when a bit from all 
active flows is transmitted  round number 
•  Can calculate Fi for each packet if number of 

flows is know at all times 
•  This can be complicated 
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Bit-by-bit RR Illustration 

•  Not feasible to 
interleave bits on 
real networks 
•  FQ simulates bit-by-

bit RR 
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Fair Queuing 

•  Mapping bit-by-bit schedule onto packet 
transmission schedule 

•  Transmit packet with the lowest Fi at any 
given time 
•  How do you compute Fi? 
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FQ Illustration 

Flow 1 

Flow 2 

Flow n 

I/P O/P 

Variation: Weighted Fair Queuing (WFQ) 
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Bit-by-bit RR Example 

F=10 

Flow 1 
(arriving) 

Flow 2 
transmitting Output 

F=2 

F=5 
F=8 

Flow 1 Flow 2 Output 

F=10 

Cannot preempt packet 
currently being transmitted 
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Fair Queuing Tradeoffs 
•  FQ can control congestion by monitoring flows 

•  Non-adaptive flows can still be a problem – why? 
•  Complex state 

•  Must keep queue per flow 
•  Hard in routers with many flows (e.g., backbone routers) 
•  Flow aggregation is a possibility (e.g. do fairness per domain) 

•  Complex computation 
•  Classification into flows may be hard 
•  Must keep queues sorted by finish times 
•  Finish times change whenever the flow count changes 

Overview 

•  TCP and queues 

•  Queuing disciplines 

•  RED 

•  Fair-queuing 

•  Core-stateless FQ 

•  XCP 

44 



12 

45 

Core-Stateless Fair Queuing 
•  Key problem with FQ is core routers 

•  Must maintain state for 1000’s of flows 
•  Must update state at Gbps line speeds 

•  CSFQ (Core-Stateless FQ) objectives 
•  Edge routers should do complex tasks since they have 

fewer flows 
•  Core routers can do simple tasks 

•  No per-flow state/processing  this means that core routers 
can only decide on dropping packets not on order of 
processing 

•  Can only provide max-min bandwidth fairness not delay 
allocation 
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Core-Stateless Fair Queuing 

•  Edge routers keep state about flows and do 
computation when packet arrives 

•  DPS (Dynamic Packet State) 
•  Edge routers label packets with the result of 

state lookup and computation 
•  Core routers use DPS and local 

measurements to control processing of 
packets 
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Edge Router Behavior 

•  Monitor each flow i to measure its arrival 
rate (ri) 
•  EWMA of rate 
•  Non-constant EWMA constant  

•  e-T/K where T = current interarrival, K = constant 
•  Helps adapt to different packet sizes and arrival 

patterns 

•  Rate is attached to each packet 
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Core Router Behavior 

•  Keep track of fair share rate α 
•  Increasing α does not increase load (F) by N * 
α 

•  F(α) = Σi min(ri, α)  what does this look like? 
•  Periodically update α 
•  Keep track of current arrival rate 

•  Only update α if entire period was congested or 
uncongested 

•  Drop probability for packet = max(1- α/r, 0) 



13 

49 

F vs. Alpha 

New alpha 

C [linked capacity] 

r1 r2 r3 old alpha 
alpha 

F
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Estimating Fair Share 
•  Need F(α) = capacity = C 

•  Can’t keep map of F(α) values  would require per 
flow state 

•  Since F(α) is concave, piecewise-linear 
•  F(0) = 0 and F(α) = current accepted rate = Fc 

•  F(α) = Fc/ α 
•  F(αnew) = C  αnew = αold * C/Fc 

•  What if a mistake was made? 
•  Forced into dropping packets due to buffer capacity 
•  When queue overflows α is decreased slightly 
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Other Issues 

•  Punishing fire-hoses – why? 
•  Easy to keep track of in a FQ scheme 

•  What are the real edges in such a scheme? 
•  Must trust edges to mark traffic accurately 
•  Could do some statistical sampling to see if 

edge was marking accurately 

Overview 

•  TCP and queues 

•  Queuing disciplines 

•  RED 

•  Fair-queuing 

•  Core-stateless FQ 

•  XCP 

52 
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Feedback  

Round Trip Time 

Congestion Window 

Congestion Header 

Feedback             

Round Trip Time 

Congestion Window 

 How does XCP Work? 

Feedback  =               
+ 0.1 packet 
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Feedback =                
+ 0.1 packet   

Round Trip Time 

Congestion Window 

Feedback  =                
- 0.3 packet 

 How does XCP Work? 
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 Congestion Window = Congestion Window + Feedback 

Routers compute feedback without 
any per-flow state  

 How does XCP Work? 

XCP extends ECN and CSFQ 
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How Does an XCP Router Compute the 
Feedback? 

Congestion Controller Fairness Controller 
Goal: Divides Δ between 
flows to converge to fairness 

Looks at a flow’s state in 
Congestion Header  

Algorithm: 
If Δ > 0 ⇒ Divide Δ equally 
between flows 
If Δ < 0 ⇒ Divide Δ between 
flows proportionally to their 
current rates 

 MIMD  AIMD 

Goal: Matches input traffic to 
link capacity & drains the queue 

Looks at aggregate traffic & 
queue 

Algorithm: 
Aggregate traffic changes by Δ 
Δ ~ Spare Bandwidth 
Δ  ~ - Queue Size 
So, Δ = α davg Spare - β Queue 

Δ Congestion 
Controller 

Fairness 
Controller 
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Δ = α davg Spare - β Queue 

Theorem:  System converges 
to optimal utilization (i.e., 
stable) for any link bandwidth, 
delay, number of sources if: 

(Proof based on Nyquist 
Criterion) 

Getting the devil out of the details … 

Congestion Controller Fairness Controller 

No Parameter Tuning    

Algorithm: 
If Δ > 0 ⇒ Divide Δ equally between flows 
If Δ < 0 ⇒ Divide Δ between flows 
proportionally to their current rates 

Need to estimate number of 
flows N 

RTTpkt : Round Trip Time in header  
Cwndpkt : Congestion Window in header 
T: Counting Interval No Per-Flow State 

Discussion 
•  RED 

•  Parameter settings 
•  RED vs. FQ 

•  How much do we need per flow tracking? At what cost? 
•  FQ vs. XCP/CSFQ 

•  Is coarse-grained fairness sufficient? 
•  Misbehaving routers/trusting the edge 
•  Deployment (and incentives) 
•  How painful is FQ  

•  XCP vs CSFQ  
•  What are the key differences 

•  Granularity of fairness 
•  Mechanism vs. policy  will see this in QoS 
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Important Lessons 
•  How does TCP implement AIMD? 

•  Sliding window, slow start & ack clocking 
•  How to maintain ack clocking during loss recovery 
 fast recovery 

•  How does TCP fully utilize a link? 
•  Role of router buffers 

•  TCP alternatives 
•  TCP being used in new/unexpected ways 
•  Key changes needed 
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Lessons 
•  Fairness and isolation in routers 

•  Why is this hard? 
•  What does it achieve – e.g. do we still need congestion 

control? 

•  Routers 
•  FIFO, drop-tail interacts poorly with TCP 
•  Various schemes to desynchronize flows and control loss 

rate (e.g. RED) 
•  Fair-queuing 

•  Clean resource allocation to flows 
•  Complex packet classification and scheduling 

•  Core-stateless FQ & XCP 
•  Coarse-grain fairness 
•  Carrying packet state can reduce complexity  
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Next Lecture: TCP & Routers 

•  RED 
•  XCP 
•  Assigned reading 

•  [FJ93] Random Early Detection Gateways for 
Congestion Avoidance 

•  [KHR02] Congestion Control for High 
Bandwidth-Delay Product Networks 

EXTRA SLIDES 

The rest of the slides are FYI 
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Overview 

•  Fairness 
•  Fair-queuing 
•  Core-stateless FQ 
•  Other FQ variants 
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Delay Allocation in FQ 
•  Reduce delay for flows using less than fair share 

•  Advance finish times for sources whose queues drain 
temporarily 

•  Schedule based on Bi instead of Fi 
•  Fi = Pi + max (Fi-1, Ai)  Bi = Pi + max (Fi-1, Ai - δ) 
•  If Ai < Fi-1, conversation is active and δ has no effect 
•  If Ai > Fi-1, conversation is inactive and δ determines 

how much history to take into account 
•  Infrequent senders do better when history is used 
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Stochastic Fair Queuing 
•  Compute a hash on each packet 
•  Instead of per-flow queue have a queue per 

hash bin 
•  An aggressive flow steals traffic from other 

flows in the same hash 
•  Queues serviced in round-robin fashion 

•  Has problems with packet size unfairness 
•  Memory allocation across all queues 

•  When no free buffers, drop packet from longest 
queue 
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Deficit Round Robin 

•  Each queue is allowed to send Q bytes per 
round 

•  If Q bytes are not sent (because packet is 
too large) deficit counter of queue keeps 
track of unused portion 

•  If queue is empty, deficit counter is reset to 
0 

•  Uses hash bins like Stochastic FQ 
•  Similar behavior as FQ but computationally 

simpler 
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Self-clocked Fair Queuing 

•  Virtual time to make computation of finish 
time easier 

•  Problem with basic FQ 
•  Need be able to know which flows are really 

backlogged 
•  They may not have packet queued because they 

were serviced earlier in mapping of bit-by-bit to 
packet 

•  This is necessary to know how bits sent map onto 
rounds 

•  Mapping of real time to round is piecewise linear  
however slope can change often 
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Self-clocked FQ 

•  Use the finish time of the packet being 
serviced as the virtual time 
•  The difference in this virtual time and the real 

round number can be unbounded 
•  Amount of service to backlogged flows is 

bounded by factor of 2 
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Start-time Fair Queuing 

•  Packets are scheduled in order of their start 
not finish times 

•  Self-clocked  virtual time = start time of 
packet in service 

•  Main advantage  can handle variable rate 
service better than other schemes 
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TCP Modeling 
•  Given the congestion behavior of TCP can we 

predict what type of performance we should get? 
•  What are the important factors 

•  Loss rate 
•  Affects how often window is reduced 

•  RTT 
•  Affects increase rate and relates BW to window 

•  RTO 
•  Affects performance during loss recovery 

•  MSS  
•  Affects increase rate 
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Overall TCP Behavior 

Time 

Window 

•  Let’s concentrate on steady state behavior 
with no timeouts and perfect loss recovery 
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Simple TCP Model 
•  Some additional assumptions 

•  Fixed RTT 
•  No delayed ACKs 

•  In steady state, TCP losses packet each time 
window reaches W packets 
•  Window drops to W/2 packets 
•  Each RTT window increases by 1 packetW/2 * RTT 

before next loss 
•  BW = MSS * avg window/RTT =  

•  MSS * (W + W/2)/(2 * RTT) 
•  .75 * MSS * W / RTT 
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Simple Loss Model 

•  What was the loss rate? 
•  Packets transferred between losses =  

•  Avg BW * time =  
•  (.75 W/RTT) * (W/2 * RTT) = 3W2/8 

•  1 packet lost  loss rate = p = 8/3W2 
•  W = sqrt( 8 / (3 * loss rate)) 

•  BW = .75 * MSS * W / RTT 
•  BW = MSS / (RTT * sqrt (2/3p)) 
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TCP Friendliness 
•  What does it mean to be TCP friendly? 

•  TCP is not going away 
•  Any new congestion control must compete with TCP 

flows 
•  Should not clobber TCP flows and grab bulk of link 
•  Should also be able to hold its own, i.e. grab its fair share, or it 

will never become popular 

•  How is this quantified/shown? 
•  Has evolved into evaluating loss/throughput behavior 
•  If it shows 1/sqrt(p) behavior it is ok 
•  But is this really true? 


