I 15-744: Comp

L-5 Fair Queuing

uter Networking I

: , e
Fair Queuing R
| S I I L

+ Fair Queuing
+ Core-stateless Fair queuing

* Assigned reading
» [DKS90] Analysis and Simulation of a Fair
Queueing Algorithm, Internetworking: Research
and Experience
» [SSZ98] Core-Stateless Fair Queueing:
Achieving Approximately Fair Allocations in
High Speed Networks

l/i}\\ﬁ
7N 4 Y
1 LWV \:]J
Overview oL,
. I I I L

* TCP and queues

* Queuing disciplines
+ RED

+ Fair-queuing

+ Core-stateless FQ

+ XCP

Example

* 10Gb/s linecard

* Requires 300Mbytes of buffering.

* Read and write 40 byte packet every 32ns.
* Memory technologies

» DRAM: require 4 devices, but too slow.

« SRAM: require 80 devices, 1kW, $2000.
* Problem gets harder at 40Gb/s

* Hence RLDRAM, FCRAM, etc.

If flows are synchronized p
| I I I L]
S
W e
Wmux
2

» Aggregate window has same dynamics
» Therefore buffer occupancy has same dynamics
* Rule-of-thumb still holds.

Rule-of-thumb v
| I S I |
* Rule-of-thumb makes sense for one flow
» Typical backbone link has > 20,000 flows
* Does the rule-of-thumb still hold?
If flows are not synchronized s
| I .. N .. I .. {% *
EW
N UNAUVARY SAVAVAVATTYS
0
i Lt mj 7 Probability
a0 | H] Distribution
111740

- X
Central Limit Theorem ¥ ;l{
|| I N . N . |

» CLT tells us that the more variables (Congestion
Windows of Flows) we have, the narrower the Gaussian
(Fluctuation of sum of windows)

1
I L
- Buffer size should also decreases with vn

B_>Bn1=2TXC

i

» Width of Gaussian decreases with 7

-
Required buffer size YT
Ny
| | Minimum Required Butfer fo Achieve 95% Goodput |
e Minimum Required Buffer [Pkts] +
120 |5 2T*C/sqrt(n) =======
100 |- &
-
w7 %
g oo
& “ ++‘-_
2 Fi, 2T xC
£ 60 [*F T
£ ’ :ﬁﬁ“?a \n
< Q’-H'.
= i
40 | -13'4:
et
T .
T T ——————,
20 - . oE oo YT
Simulation
0 | | 1
0 50 100 150 200 250 300
Number of TCP flows 9
— e — e — e — —
oy A
. . . . AR
Queuing Disciplines -
N d Y
| I I I L

« Each router must implement some queuing
discipline

* Queuing allocates both bandwidth and
buffer space:

» Bandwidth: which packet to serve (transmit)
next

+ Buffer space: which packet to drop next (when
required)
* Queuing also affects latency

. P
Overview o
| S I I L
» TCP and queues
* Queuing disciplines
« RED
+ Fair-queuing
» Core-stateless FQ
+ XCP
10
LN 2 A
. . 5N
Packet Drop Dimensions Jo sy
| I I I]
Aggregation
Per-connection state Single class

[Class-based queuing [
Drop position .
Head Tail
[Random location [
Early drop Overflow drop

Typical Internet Queuing v

I
* FIFO + drop-tail
+ Simplest choice
* Used widely in the Internet
* FIFO (first-in-first-out)
» Implies single class of traffic
* Drop-tail
 Arriving packets get dropped when queue is full
regardless of flow or importance
* Important distinction:
* FIFO: scheduling discipline
» Drop-tail: drop policy

2
oy e

R

FIFO + Drop-tail Problems Sy

I I L]
» Leaves responsibility of congestion control
to edges (e.g., TCP)
* Does not separate between different flows
» No policing: send more packets - get more
service

» Synchronization: end hosts react to same
events

Active Queue Management Ve
| I .. N .. I .. |

 Design active router queue management to
aid congestion control
* Why?
» Routers can distinguish between propagation
and persistent queuing delays

* Routers can decide on transient congestion,
based on workload

Active Queue Designs s
| N .. I .. I .. L

* Modify both router and hosts
+ DECDbit — congestion bit in packet header
» Modify router, hosts use TCP
» Fair queuing
* Per-connection buffer allocation

* RED (Random Early Detection)

» Drop packet or set bit in packet header as soon as
congestion is starting

Overview

+ TCP and queues
* Queuing disciplines
+ RED

+ Fair-queuing

Core-stateless FQ

+ XCP

Internet Problems Y

| I
* Full queues

* Routers are forced to have have large queues
to maintain high utilizations

» TCP detects congestion from loss

» Forces network to have long standing queues in
steady-state

* Lock-out problem
* Drop-tail routers treat bursty traffic poorly

+ Traffic gets synchronized easily - allows a few
flows to monopolize the queue space

Design Objectives

+ Keep throughput high and delay low
« Accommodate bursts

* Queue size should reflect ability to accept
bursts rather than steady-state queuing

* Improve TCP performance with minimal
hardware changes

Lock-out Problem Y

| I
* Random drop

» Packet arriving when queue is full causes some
random packet to be dropped

 Drop front
» On full queue, drop packet at head of queue

* Random drop and drop front solve the lock-
out problem but not the full-queues problem

Full Queues Problem P

» Drop packets before queue becomes full
(early drop)

« Intuition: notify senders of incipient
congestion
» Example: early random drop (ERD):

« If glen > drop level, drop each new packet with fixed
probability p

+ Does not control misbehaving users

I L
» Detect incipient congestion, allow bursts

» Keep power (throughput/delay) high
» Keep average queue size low
» Assume hosts respond to lost packets
* Avoid window synchronization
* Randomly mark packets
Avoid bias against bursty traffic
* Some protection against ill-behaved users

Random Early Detection (RED) yodes

RED Algorithm oy

o
5

» Maintain running average of queue length
* If avgq < miny, do nothing

* Low queuing, send packets through
* If avgq > max,,, drop packet

* Protection from misbehaving sources
» Else mark packet in a manner proportional

to queue length

* Notify sources of incipient congestion

RED Operation

Max thresh Min thresh

Average Queue Length
P(drop)

1.0

max,

ming, maxy, Avg queue length

RED Algorithm P

I I I L
« Maintain running average of queue length

* Byte mode vs. packet mode — why?

» For each packet arrival
+ Calculate average queue size (avg)
* If miny, < avgq < max,
+ Calculate probability P,
+ With probability P,
» Mark the arriving packet

* Else if max, < avg
» Mark the arriving packet

Queue Estimation P

+ Standard EWMA: avgq = (1-w,) avgq + w,glen
+ Special fix for idle periods — why?

* Upper bound on w, depends on miny,
« Want to ignore transient congestion

» Can calculate the queue average if a burst arrives
* Set w, such that certain burst size does not exceed min,

* Lower bound on w, to detect congestion relatively
quickly
* Typical w, = 0.002

Thresholds

I I I L
* miny, determined by the utilization
requirement
» Tradeoff between queuing delay and utilization

+ Relationship between max,, and miny,
» Want to ensure that feedback has enough time
to make difference in load
* Depends on average queue increase in one
RTT
» Paper suggest ratio of 2
* Current rule of thumb is factor of 3

Packet Marking Vit
| I I I]

* max, is reflective of typical loss rates

» Paper uses 0.02
* 0.1 is more realistic value

* If network needs marking of 20-30% then
need to buy a better link!

» Gentle variant of RED (recommended)

* Vary drop rate from max; to 1 as the avgq
varies from maxg, to 2* maxy,

* More robust to setting of max, and max,

Ll
oy

Lo
//u }1

Extending RED for Flow Isolation jeses

» Problem: what to do with non-cooperative
flows?

 Fair queuing achieves isolation using per-
flow state — expensive at backbone routers

* How can we isolate unresponsive flows without
per-flow state?

* RED penalty box

» Monitor history for packet drops, identify flows
that use disproportionate bandwidth

* Isolate and punish those flows

Stochastic Fair Blue

Same objective as RED Penalty Box

+ Identify and penalize misbehaving flows

Create L hashes with N bins each

» Each bin keeps track of separate marking rate (p,,)

» Rate is updated using standard technique and a bin
size

* Flow uses minimum p,, of all L bins it belongs to

* Non-misbehaving flows hopefully belong to at least one

bin without a bad flow
« Large numbers of bad flows may cause false positives

oy e

o //u X
Ve

e

Stochastic Fair Blue 3

| I I I L
+ False positives can continuously penalize
same flow

+ Solution: moving hash function over time

+ Bad flow no longer shares bin with same flows

* Is history reset >does bad flow get to make
trouble until detected again?
» No, can perform hash warmup in background

=
b

Overview

TCP and queues
Queuing disciplines
RED

Fair-queuing
Core-stateless FQ

XCP

Fairness Goals P
| I I I .

* Allocate resources fairly
* Isolate ill-behaved users

» Router does not send explicit feedback to
source

+ Still needs e2e congestion control
« Still achieve statistical muxing
* One flow can fill entire pipe if no contenders

* Work conserving = scheduler never idles link if
it has a packet

Max-min Fairness oy
. N . N . N . L

 Allocate user with “small” demand what it
wants, evenly divide unused resources to
“big” users

* Formally:
» Resources allocated in terms of increasing demand

» No source gets resource share larger than its
demand

» Sources with unsatisfied demands get equal share
of resource

What is Fairness? yodes
| S I I L
+ At what granularity?
* Flows, connections, domains?
* What if users have different RTTs/links/etc.
+ Should it share a link fairly or be TCP fair?
* Maximize fairness index?
+ Fairness = (=x,)?/n(Ex;?) 0<fairness<1
» Basically a tough question to answer — typically
design mechanisms instead of policy
* User = arbitrary granularity
Max-min Fairness Example Vs
| I I I]

* Assume sources 1..n, with resource
demands X1..Xn in ascending order

» Assume channel capacity C.

» Give C/n to X1; if this is more than X1 wants,
divide excess (C/n - X1) to other sources: each
gets C/n + (C/n - X1)/(n-1)

* If this is larger than what X2 wants, repeat
process

Implementing max-min Fairness jos s

» Generalized processor sharing
* Fluid fairness
* Bitwise round robin among all queues
* Why not simple round robin?
» Variable packet length > can get more service
by sending bigger packets
» Unfair instantaneous service rate
» What if arrive just before/after packet departs?

Bit-by-bit RR vhs
| I I I L]
+ Single flow: clock ticks when a bit is
transmitted. For packet i:
» P, =length, A, = arrival time, S; = begin transmit
time, F, = finish transmit time
« F=S5#+P; =max (F.y, Aj) + P,
» Multiple flows: clock ticks when a bit from all
active flows is transmitted - round number
+ Can calculate F; for each packet if number of
flows is know at all times
* This can be complicated

Bit-by-bit RR lllustration o
- - - - —

* Not feasible to
interleave bits on
real networks

« FQ simulates bit-by- -
bit RR

Fair Queuing Vel

| I N . N . L

* Mapping bit-by-bit schedule onto packet
transmission schedule

* Transmit packet with the lowest F, at any
given time
* How do you compute F,?

10

FQ lllustration ;ﬁ’%

4

Bit-by-bit RR Example “;@{

Flow 1 Flow 2 Output

F=1
F=8
F=5 Flow 1 Flow 2
(arriving) transmitting Output
F=1
F=2

Cannot preempt packet
currently being transmitted

42

ot
Fair Queuing Tradeoffs “ﬁ%

| I I I L
» FQ can control congestion by monitoring flows

» Non-adaptive flows can still be a problem — why?
» Complex state

* Must keep queue per flow
« Hard in routers with many flows (e.g., backbone routers)
« Flow aggregation is a possibility (e.g. do fairness per domain)

» Complex computation
« Classification into flows may be hard
* Must keep queues sorted by finish times
 Finish times change whenever the flow count changes

43

Overview ;@{

* TCP and queues

* Queuing disciplines
+ RED

+ Fair-queuing

+ Core-stateless FQ

+ XCP

11

Core-Stateless Fair Queuing

| I S
» Key problem with FQ is core routers
* Must maintain state for 1000’s of flows
» Must update state at Gbps line speeds

» CSFQ (Core-Stateless FQ) objectives

» Edge routers should do complex tasks since they have

fewer flows

» Core routers can do simple tasks

* No per-flow state/processing - this means that core routers
can only decide on dropping packets not on order of

2
oy e

Core-Stateless Fair Queuing *:

| I I I L]
» Edge routers keep state about flows and do

computation when packet arrives
« DPS (Dynamic Packet State)
» Edge routers label packets with the result of
state lookup and computation
» Core routers use DPS and local
measurements to control processing of
packets

»
%

processing
« Can only provide max-min bandwidth fairness not delay
allocation
N 2 A
. q //u \R =
Edge Router Behavior R
[e - - e - -
» Monitor each flow i to measure its arrival
rate (r;)

« EWMA of rate
* Non-constant EWMA constant
« eTKwhere T = current interarrival, K = constant

» Helps adapt to different packet sizes and arrival
patterns

» Rate is attached to each packet

Core Router Behavior joy

| I I I]
» Keep track of fair share rate a

* Increasing a does not increase load (F) by N *
a

* F(a) = Z; min(r;, a) = what does this look like?
* Periodically update a

» Keep track of current arrival rate

* Only update a if entire period was congested or
uncongested

» Drop probability for packet = max(1- a/r, 0)

12

F vs. Alpha Y

C [linked capacity]

— i l i alpha
1 r2 r3 | old alpha
New alpha
49
?
N A
//n \“l
Other Issues jevel
| N . I N . L

* Punishing fire-hoses — why?
+ Easy to keep track of in a FQ scheme

« What are the real edges in such a scheme?
» Must trust edges to mark traffic accurately

+ Could do some statistical sampling to see if
edge was marking accurately

H H H =y 70 {:p
Estimating Fair Share vy
| I I I L]
* Need F(a) = capacity = C
» Can’t keep map of F(a) values - would require per
flow state
 Since F(a) is concave, piecewise-linear
» F(0) = 0 and F(a) = current accepted rate = F
* F(a)=F/a
¢ F(unew) =C-> Ohew = Goig * C/Fc
+ What if a mistake was made?
» Forced into dropping packets due to buffer capacity
* When queue overflows a is decreased slightly
50
N 2 A
H o /b Ra
Overview £33
[- . - . - —

* TCP and queues

* Queuing disciplines
 RED

+ Fair-queuing

+ Core-stateless FQ

+ XCP

13

_How does XCP Work? Ak

Rou Round Trip Time

Conb Congestion Window

Feedback =
+ 0.1 packet

Congestion Header

How does XCP Work?

Round Trip Time

Congestion Window

Feedback =
‘ - 0.3 packet

How does XCP Work? ik

Congestion Window = Congestion Window + Feedback

XCP extends ECN and CSFQ

Routers compute feedback without
any per-flow state

How Does an XCP Router Compute the ‘;q;’
Feedback?
| N .

queue B MIMD

Algorithm:
Aggregate traffic changes by A

A~ Spar'e Bandwidth
- Queue Size
So A = ad,, Spare - f Queue

avg

Congestion He AIMD
Algorithm:

If A >0 = Divide A equally
between flows

If A <0 = Divide A between

flows proportionally to their
current rates

14

Ll
oy e

Getting the devil out of the details ... o
VAR Y
| I I I L
Congestion Controller Fairness Controller
Algorithm:

Az a davg Spare - 3 Queue If A>0 = Divide A equally between flows

If A <O = Divide A between flows
roportionally to their current rates

Theorem: System converges = '

to optimal utilization (i.e., Need to estimate number of

stable) for any link bandwidth, | flows N
delay, number of sources if:
_ 1
O<a<2 ad p=a’\2 N‘pk,jzmrTx(andpk,/RTTpk,)

42

RTT,: Round Trip Time in header

No Parameter Tuning No Per-Flow State

57

Discussion
[I .

« RED
» Parameter settings
+ REDvs. FQ

* How much do we need per flow tracking? At what cost?

* FQ vs. XCP/CSFQ
* Is coarse-grained fairness sufficient?
» Misbehaving routers/trusting the edge
» Deployment (and incentives)
* How painful is FQ
+ XCPvs CSFQ
* What are the key differences
» Granularity of fairness
» Mechanism vs. policy - will see this in QoS

Important Lessons SRy
= - - = - -

|
* How does TCP implement AIMD?
+ Sliding window, slow start & ack clocking

» How to maintain ack clocking during loss recovery
-> fast recovery

* How does TCP fully utilize a link?
* Role of router buffers

« TCP alternatives
* TCP being used in new/unexpected ways
» Key changes needed

Lessons

« Fairness and isolation in routers

* Why is this hard?

* What does it achieve — e.g. do we still need congestion

control?

* Routers
» FIFO, drop-tail interacts poorly with TCP

» Various schemes to desynchronize flows and control loss

rate (e.g. RED)
* Fair-queuing
» Clean resource allocation to flows
» Complex packet classification and scheduling
» Core-stateless FQ & XCP
» Coarse-grain fairness
» Carrying packet state can reduce complexity

15

Next Lecture: TCP & Routers }*}f !
. RED

+ XCP

 Assigned reading
» [FJ93] Random Early Detection Gateways for
Congestion Avoidance

» [KHRO02] Congestion Control for High
Bandwidth-Delay Product Networks

IEXTRA SLIDES I

The rest of the slides are FYI

7
oy e

Overview oS
| I I I L
» Fairness

» Fair-queuing
« Core-stateless FQ
* Other FQ variants

VAW
ISR
DeIay Allocation in FQ Ve
I N . N . .

. Reduce delay for flows using less than fair share
» Advance finish times for sources whose queues drain
temporarily
» Schedule based on B; instead of F;
* F,=P;+ max (F.;, A) > B; =P, + max (F.4, A;- 9)
 If A, < F_,, conversation is active and & has no effect

» If A,> F4, conversation is inactive and & determines
how much history to take into account
« Infrequent senders do better when history is used

16

Stochastic Fair Queuing v

| I I
* Compute a hash on each packet

Instead of per-flow queue have a queue per
hash bin

An aggressive flow steals traffic from other
flows in the same hash

Queues serviced in round-robin fashion

» Has problems with packet size unfairness
Memory allocation across all queues

» When no free buffers, drop packet from longest

2
oy e

Deficit Round Robin jolte

» Each queue is allowed to send Q bytes per
round

+ If Q bytes are not sent (because packet is
too large) deficit counter of queue keeps
track of unused portion

* If queue is empty, deficit counter is reset to
0

» Uses hash bins like Stochastic FQ

+ Similar behavior as FQ but computationally
simpler

»
%

queue
Self-clocked Fair Queuing vty
== - - — - - - -

+ Virtual time to make computation of finish
time easier

* Problem with basic FQ

* Need be able to know which flows are really
backlogged

» They may not have packet queued because they
were serviced earlier in mapping of bit-by-bit to
packet

» This is necessary to know how bits sent map onto
rounds

* Mapping of real time to round is piecewise linear >
however slope can change often

Self-clocked FQ o

I I I]
+ Use the finish time of the packet being
serviced as the virtual time
+ The difference in this virtual time and the real
round number can be unbounded
* Amount of service to backlogged flows is
bounded by factor of 2

17

Ll

oy e

Start-time Fair Queuing jo s

[I . I . I . L]
» Packets are scheduled in order of their start

not finish times

» Self-clocked = virtual time = start time of
packet in service

* Main advantage - can handle variable rate
service better than other schemes

»
b

TCP Modeling JoSg

. leen the congestion behavior of TCP can we
predict what type of performance we should get?

* What are the important factors
* Loss rate
« Affects how often window is reduced
« RTT

 Affects increase rate and relates BW to window

« RTO
« Affects performance during loss recovery

+ MSS

« Affects increase rate

Ll
oy

Overall TCP Behavior ik

VAN
I I I .

. Let s concentrate on steady state behavior
with no timeouts and perfect loss recovery

Window

=
b

Slmple TCP Model v
I I I]
. Some additional assumptions
* Fixed RTT

* No delayed ACKs

* In steady state, TCP losses packet each time
window reaches W packets
* Window drops to W/2 packets
» Each RTT window increases by 1 packet>W/2 * RTT
before next loss

* BW = MSS * avg window/RTT =
« MSS * (W + W/2)/(2 * RTT)
« 75*MSS*W/RTT

L]

18

Simple Loss Model

I . I . I .
 What was the loss rate?

» Packets transferred between losses =
» Avg BW * time =
« (75 W/RTT) * (W/2 * RTT) = 3W2%/8
« 1 packet lost > loss rate = p = 8/3W?
* W=sqrt(8/ (3 * loss rate))
s BW=.75*MSS*W/RTT
« BW=MSS/(RTT * sqrt (2/3p))

TCP Friendliness yodes
| S I I L

» What does it mean to be TCP friendly?
* TCP is not going away
* Any new congestion control must compete with TCP
flows

» Should not clobber TCP flows and grab bulk of link

» Should also be able to hold its own, i.e. grab its fair share, or it
will never become popular

* How is this quantified/shown?
» Has evolved into evaluating loss/throughput behavior
« If it shows 1/sqrt(p) behavior it is ok
* Butis this really true?

19

