
1

15-744: Computer Networking

L-5 Fair Queuing

2

Fair Queuing

•  Fair Queuing
•  Core-stateless Fair queuing
•  Assigned reading

•  [DKS90] Analysis and Simulation of a Fair
Queueing Algorithm, Internetworking: Research
and Experience

•  [SSZ98] Core-Stateless Fair Queueing:
Achieving Approximately Fair Allocations in
High Speed Networks

Overview

•  TCP and queues

•  Queuing disciplines

•  RED

•  Fair-queuing

•  Core-stateless FQ

•  XCP

3 4

Example

•  10Gb/s linecard
•  Requires 300Mbytes of buffering.
•  Read and write 40 byte packet every 32ns.

•  Memory technologies
•  DRAM: require 4 devices, but too slow.
•  SRAM: require 80 devices, 1kW, $2000.

•  Problem gets harder at 40Gb/s
•  Hence RLDRAM, FCRAM, etc.

2

5

Rule-of-thumb
•  Rule-of-thumb makes sense for one flow
•  Typical backbone link has > 20,000 flows
•  Does the rule-of-thumb still hold?

6

If flows are synchronized

•  Aggregate window has same dynamics
•  Therefore buffer occupancy has same dynamics
•  Rule-of-thumb still holds.

t

7

If flows are not synchronized

Probability
Distribution

B

0

Buffer Size

8

Central Limit Theorem

•  CLT tells us that the more variables (Congestion
Windows of Flows) we have, the narrower the Gaussian
(Fluctuation of sum of windows)

•  Width of Gaussian decreases with
•  Buffer size should also decreases with

3

9

Required buffer size

Simulation

Overview

•  TCP and queues

•  Queuing disciplines

•  RED

•  Fair-queuing

•  Core-stateless FQ

•  XCP

10

11

Queuing Disciplines

•  Each router must implement some queuing
discipline

•  Queuing allocates both bandwidth and
buffer space:
•  Bandwidth: which packet to serve (transmit)

next
•  Buffer space: which packet to drop next (when

required)
•  Queuing also affects latency

12

Packet Drop Dimensions

Aggregation
Per-connection state Single class

Drop position
Head Tail

Random location

Class-based queuing

Early drop Overflow drop

4

13

Typical Internet Queuing
•  FIFO + drop-tail

•  Simplest choice
•  Used widely in the Internet

•  FIFO (first-in-first-out)
•  Implies single class of traffic

•  Drop-tail
•  Arriving packets get dropped when queue is full

regardless of flow or importance
•  Important distinction:

•  FIFO: scheduling discipline
•  Drop-tail: drop policy

14

FIFO + Drop-tail Problems

•  Leaves responsibility of congestion control
to edges (e.g., TCP)

•  Does not separate between different flows
•  No policing: send more packets  get more

service
•  Synchronization: end hosts react to same

events

15

Active Queue Management

•  Design active router queue management to
aid congestion control

•  Why?
•  Routers can distinguish between propagation

and persistent queuing delays
•  Routers can decide on transient congestion,

based on workload

16

Active Queue Designs

•  Modify both router and hosts
•  DECbit – congestion bit in packet header

•  Modify router, hosts use TCP
•  Fair queuing

•  Per-connection buffer allocation

•  RED (Random Early Detection)
•  Drop packet or set bit in packet header as soon as

congestion is starting

5

Overview

•  TCP and queues

•  Queuing disciplines

•  RED

•  Fair-queuing

•  Core-stateless FQ

•  XCP

17 18

Internet Problems

•  Full queues
•  Routers are forced to have have large queues

to maintain high utilizations
•  TCP detects congestion from loss

•  Forces network to have long standing queues in
steady-state

•  Lock-out problem
•  Drop-tail routers treat bursty traffic poorly
•  Traffic gets synchronized easily  allows a few

flows to monopolize the queue space

19

Design Objectives

•  Keep throughput high and delay low
•  Accommodate bursts
•  Queue size should reflect ability to accept

bursts rather than steady-state queuing
•  Improve TCP performance with minimal

hardware changes

20

Lock-out Problem

•  Random drop
•  Packet arriving when queue is full causes some

random packet to be dropped
•  Drop front

•  On full queue, drop packet at head of queue
•  Random drop and drop front solve the lock-

out problem but not the full-queues problem

6

21

Full Queues Problem

•  Drop packets before queue becomes full
(early drop)

•  Intuition: notify senders of incipient
congestion
•  Example: early random drop (ERD):

•  If qlen > drop level, drop each new packet with fixed
probability p

•  Does not control misbehaving users

22

Random Early Detection (RED)

•  Detect incipient congestion, allow bursts
•  Keep power (throughput/delay) high

•  Keep average queue size low
•  Assume hosts respond to lost packets

•  Avoid window synchronization
•  Randomly mark packets

•  Avoid bias against bursty traffic
•  Some protection against ill-behaved users

23

RED Algorithm

•  Maintain running average of queue length
•  If avgq < minth do nothing

•  Low queuing, send packets through
•  If avgq > maxth, drop packet

•  Protection from misbehaving sources
•  Else mark packet in a manner proportional

to queue length
•  Notify sources of incipient congestion

24

RED Operation

Min thresh Max thresh

Average Queue Length

minth maxth

maxP

1.0

Avg queue length

P(drop)

7

25

RED Algorithm

•  Maintain running average of queue length
•  Byte mode vs. packet mode – why?

•  For each packet arrival
•  Calculate average queue size (avg)
•  If minth ≤ avgq < maxth

•  Calculate probability Pa

•  With probability Pa
•  Mark the arriving packet

•  Else if maxth ≤ avg
•  Mark the arriving packet

26

Queue Estimation
•  Standard EWMA: avgq = (1-wq) avgq + wqqlen

•  Special fix for idle periods – why?
•  Upper bound on wq depends on minth

•  Want to ignore transient congestion
•  Can calculate the queue average if a burst arrives

•  Set wq such that certain burst size does not exceed minth

•  Lower bound on wq to detect congestion relatively
quickly

•  Typical wq = 0.002

27

Thresholds

•  minth determined by the utilization
requirement
•  Tradeoff between queuing delay and utilization

•  Relationship between maxth and minth
•  Want to ensure that feedback has enough time

to make difference in load
•  Depends on average queue increase in one

RTT
•  Paper suggest ratio of 2

•  Current rule of thumb is factor of 3

28

Packet Marking

•  maxp is reflective of typical loss rates
•  Paper uses 0.02

•  0.1 is more realistic value
•  If network needs marking of 20-30% then

need to buy a better link!
•  Gentle variant of RED (recommended)

•  Vary drop rate from maxp to 1 as the avgq
varies from maxth to 2* maxth

•  More robust to setting of maxth and maxp

8

29

Extending RED for Flow Isolation

•  Problem: what to do with non-cooperative
flows?

•  Fair queuing achieves isolation using per-
flow state – expensive at backbone routers
•  How can we isolate unresponsive flows without

per-flow state?
•  RED penalty box

•  Monitor history for packet drops, identify flows
that use disproportionate bandwidth

•  Isolate and punish those flows

30

Stochastic Fair Blue
•  Same objective as RED Penalty Box

•  Identify and penalize misbehaving flows
•  Create L hashes with N bins each

•  Each bin keeps track of separate marking rate (pm)
•  Rate is updated using standard technique and a bin

size
•  Flow uses minimum pm of all L bins it belongs to
•  Non-misbehaving flows hopefully belong to at least one

bin without a bad flow
•  Large numbers of bad flows may cause false positives

31

Stochastic Fair Blue

•  False positives can continuously penalize
same flow

•  Solution: moving hash function over time
•  Bad flow no longer shares bin with same flows
•  Is history reset does bad flow get to make

trouble until detected again?
•  No, can perform hash warmup in background

Overview

•  TCP and queues

•  Queuing disciplines

•  RED

•  Fair-queuing

•  Core-stateless FQ

•  XCP

32

9

33

Fairness Goals

•  Allocate resources fairly
•  Isolate ill-behaved users

•  Router does not send explicit feedback to
source

•  Still needs e2e congestion control
•  Still achieve statistical muxing

•  One flow can fill entire pipe if no contenders
•  Work conserving  scheduler never idles link if

it has a packet

34

What is Fairness?
•  At what granularity?

•  Flows, connections, domains?
•  What if users have different RTTs/links/etc.

•  Should it share a link fairly or be TCP fair?

•  Maximize fairness index?
•  Fairness = (Σxi)2/n(Σxi

2) 0<fairness<1

•  Basically a tough question to answer – typically
design mechanisms instead of policy
•  User = arbitrary granularity

35

Max-min Fairness

•  Allocate user with “small” demand what it
wants, evenly divide unused resources to
“big” users

•  Formally:
•  Resources allocated in terms of increasing demand
•  No source gets resource share larger than its

demand
•  Sources with unsatisfied demands get equal share

of resource

36

Max-min Fairness Example

•  Assume sources 1..n, with resource
demands X1..Xn in ascending order

•  Assume channel capacity C.
•  Give C/n to X1; if this is more than X1 wants,

divide excess (C/n - X1) to other sources: each
gets C/n + (C/n - X1)/(n-1)

•  If this is larger than what X2 wants, repeat
process

10

37

Implementing max-min Fairness

•  Generalized processor sharing
•  Fluid fairness
•  Bitwise round robin among all queues

•  Why not simple round robin?
•  Variable packet length  can get more service

by sending bigger packets
•  Unfair instantaneous service rate

•  What if arrive just before/after packet departs?

38

Bit-by-bit RR

•  Single flow: clock ticks when a bit is
transmitted. For packet i:
•  Pi = length, Ai = arrival time, Si = begin transmit

time, Fi = finish transmit time
•  Fi = Si+Pi = max (Fi-1, Ai) + Pi

•  Multiple flows: clock ticks when a bit from all
active flows is transmitted  round number
•  Can calculate Fi for each packet if number of

flows is know at all times
•  This can be complicated

39

Bit-by-bit RR Illustration

•  Not feasible to
interleave bits on
real networks
•  FQ simulates bit-by-

bit RR

40

Fair Queuing

•  Mapping bit-by-bit schedule onto packet
transmission schedule

•  Transmit packet with the lowest Fi at any
given time
•  How do you compute Fi?

11

41

FQ Illustration

Flow 1

Flow 2

Flow n

I/P O/P

Variation: Weighted Fair Queuing (WFQ)

42

Bit-by-bit RR Example

F=10

Flow 1
(arriving)

Flow 2
transmitting Output

F=2

F=5
F=8

Flow 1 Flow 2 Output

F=10

Cannot preempt packet
currently being transmitted

43

Fair Queuing Tradeoffs
•  FQ can control congestion by monitoring flows

•  Non-adaptive flows can still be a problem – why?
•  Complex state

•  Must keep queue per flow
•  Hard in routers with many flows (e.g., backbone routers)
•  Flow aggregation is a possibility (e.g. do fairness per domain)

•  Complex computation
•  Classification into flows may be hard
•  Must keep queues sorted by finish times
•  Finish times change whenever the flow count changes

Overview

•  TCP and queues

•  Queuing disciplines

•  RED

•  Fair-queuing

•  Core-stateless FQ

•  XCP

44

12

45

Core-Stateless Fair Queuing
•  Key problem with FQ is core routers

•  Must maintain state for 1000’s of flows
•  Must update state at Gbps line speeds

•  CSFQ (Core-Stateless FQ) objectives
•  Edge routers should do complex tasks since they have

fewer flows
•  Core routers can do simple tasks

•  No per-flow state/processing  this means that core routers
can only decide on dropping packets not on order of
processing

•  Can only provide max-min bandwidth fairness not delay
allocation

46

Core-Stateless Fair Queuing

•  Edge routers keep state about flows and do
computation when packet arrives

•  DPS (Dynamic Packet State)
•  Edge routers label packets with the result of

state lookup and computation
•  Core routers use DPS and local

measurements to control processing of
packets

47

Edge Router Behavior

•  Monitor each flow i to measure its arrival
rate (ri)
•  EWMA of rate
•  Non-constant EWMA constant

•  e-T/K where T = current interarrival, K = constant
•  Helps adapt to different packet sizes and arrival

patterns

•  Rate is attached to each packet

48

Core Router Behavior

•  Keep track of fair share rate α
•  Increasing α does not increase load (F) by N *
α

•  F(α) = Σi min(ri, α)  what does this look like?
•  Periodically update α
•  Keep track of current arrival rate

•  Only update α if entire period was congested or
uncongested

•  Drop probability for packet = max(1- α/r, 0)

13

49

F vs. Alpha

New alpha

C [linked capacity]

r1 r2 r3 old alpha
alpha

F

50

Estimating Fair Share
•  Need F(α) = capacity = C

•  Can’t keep map of F(α) values  would require per
flow state

•  Since F(α) is concave, piecewise-linear
•  F(0) = 0 and F(α) = current accepted rate = Fc

•  F(α) = Fc/ α
•  F(αnew) = C  αnew = αold * C/Fc

•  What if a mistake was made?
•  Forced into dropping packets due to buffer capacity
•  When queue overflows α is decreased slightly

51

Other Issues

•  Punishing fire-hoses – why?
•  Easy to keep track of in a FQ scheme

•  What are the real edges in such a scheme?
•  Must trust edges to mark traffic accurately
•  Could do some statistical sampling to see if

edge was marking accurately

Overview

•  TCP and queues

•  Queuing disciplines

•  RED

•  Fair-queuing

•  Core-stateless FQ

•  XCP

52

14

53

Feedback

Round Trip Time

Congestion Window

Congestion Header

Feedback

Round Trip Time

Congestion Window

 How does XCP Work?

Feedback =
+ 0.1 packet

54

Feedback =
+ 0.1 packet

Round Trip Time

Congestion Window

Feedback =
- 0.3 packet

 How does XCP Work?

55

 Congestion Window = Congestion Window + Feedback

Routers compute feedback without
any per-flow state

 How does XCP Work?

XCP extends ECN and CSFQ

56

How Does an XCP Router Compute the
Feedback?

Congestion Controller Fairness Controller
Goal: Divides Δ between
flows to converge to fairness

Looks at a flow’s state in
Congestion Header

Algorithm:
If Δ > 0 ⇒ Divide Δ equally
between flows
If Δ < 0 ⇒ Divide Δ between
flows proportionally to their
current rates

 MIMD AIMD

Goal: Matches input traffic to
link capacity & drains the queue

Looks at aggregate traffic &
queue

Algorithm:
Aggregate traffic changes by Δ
Δ ~ Spare Bandwidth
Δ  ~ - Queue Size
So, Δ = α davg Spare - β Queue

Δ Congestion
Controller

Fairness
Controller

15

57

Δ = α davg Spare - β Queue

Theorem: System converges
to optimal utilization (i.e.,
stable) for any link bandwidth,
delay, number of sources if:

(Proof based on Nyquist
Criterion)

Getting the devil out of the details …

Congestion Controller Fairness Controller

No Parameter Tuning

Algorithm:
If Δ > 0 ⇒ Divide Δ equally between flows
If Δ < 0 ⇒ Divide Δ between flows
proportionally to their current rates

Need to estimate number of
flows N

RTTpkt : Round Trip Time in header
Cwndpkt : Congestion Window in header
T: Counting Interval No Per-Flow State

Discussion
•  RED

•  Parameter settings
•  RED vs. FQ

•  How much do we need per flow tracking? At what cost?
•  FQ vs. XCP/CSFQ

•  Is coarse-grained fairness sufficient?
•  Misbehaving routers/trusting the edge
•  Deployment (and incentives)
•  How painful is FQ

•  XCP vs CSFQ
•  What are the key differences

•  Granularity of fairness
•  Mechanism vs. policy  will see this in QoS

58

59

Important Lessons
•  How does TCP implement AIMD?

•  Sliding window, slow start & ack clocking
•  How to maintain ack clocking during loss recovery
 fast recovery

•  How does TCP fully utilize a link?
•  Role of router buffers

•  TCP alternatives
•  TCP being used in new/unexpected ways
•  Key changes needed

60

Lessons
•  Fairness and isolation in routers

•  Why is this hard?
•  What does it achieve – e.g. do we still need congestion

control?

•  Routers
•  FIFO, drop-tail interacts poorly with TCP
•  Various schemes to desynchronize flows and control loss

rate (e.g. RED)
•  Fair-queuing

•  Clean resource allocation to flows
•  Complex packet classification and scheduling

•  Core-stateless FQ & XCP
•  Coarse-grain fairness
•  Carrying packet state can reduce complexity

16

61

Next Lecture: TCP & Routers

•  RED
•  XCP
•  Assigned reading

•  [FJ93] Random Early Detection Gateways for
Congestion Avoidance

•  [KHR02] Congestion Control for High
Bandwidth-Delay Product Networks

EXTRA SLIDES

The rest of the slides are FYI

63

Overview

•  Fairness
•  Fair-queuing
•  Core-stateless FQ
•  Other FQ variants

64

Delay Allocation in FQ
•  Reduce delay for flows using less than fair share

•  Advance finish times for sources whose queues drain
temporarily

•  Schedule based on Bi instead of Fi
•  Fi = Pi + max (Fi-1, Ai)  Bi = Pi + max (Fi-1, Ai - δ)
•  If Ai < Fi-1, conversation is active and δ has no effect
•  If Ai > Fi-1, conversation is inactive and δ determines

how much history to take into account
•  Infrequent senders do better when history is used

17

Stochastic Fair Queuing
•  Compute a hash on each packet
•  Instead of per-flow queue have a queue per

hash bin
•  An aggressive flow steals traffic from other

flows in the same hash
•  Queues serviced in round-robin fashion

•  Has problems with packet size unfairness
•  Memory allocation across all queues

•  When no free buffers, drop packet from longest
queue

65 66

Deficit Round Robin

•  Each queue is allowed to send Q bytes per
round

•  If Q bytes are not sent (because packet is
too large) deficit counter of queue keeps
track of unused portion

•  If queue is empty, deficit counter is reset to
0

•  Uses hash bins like Stochastic FQ
•  Similar behavior as FQ but computationally

simpler

67

Self-clocked Fair Queuing

•  Virtual time to make computation of finish
time easier

•  Problem with basic FQ
•  Need be able to know which flows are really

backlogged
•  They may not have packet queued because they

were serviced earlier in mapping of bit-by-bit to
packet

•  This is necessary to know how bits sent map onto
rounds

•  Mapping of real time to round is piecewise linear 
however slope can change often

68

Self-clocked FQ

•  Use the finish time of the packet being
serviced as the virtual time
•  The difference in this virtual time and the real

round number can be unbounded
•  Amount of service to backlogged flows is

bounded by factor of 2

18

69

Start-time Fair Queuing

•  Packets are scheduled in order of their start
not finish times

•  Self-clocked  virtual time = start time of
packet in service

•  Main advantage  can handle variable rate
service better than other schemes

70

TCP Modeling
•  Given the congestion behavior of TCP can we

predict what type of performance we should get?
•  What are the important factors

•  Loss rate
•  Affects how often window is reduced

•  RTT
•  Affects increase rate and relates BW to window

•  RTO
•  Affects performance during loss recovery

•  MSS
•  Affects increase rate

71

Overall TCP Behavior

Time

Window

•  Let’s concentrate on steady state behavior
with no timeouts and perfect loss recovery

72

Simple TCP Model
•  Some additional assumptions

•  Fixed RTT
•  No delayed ACKs

•  In steady state, TCP losses packet each time
window reaches W packets
•  Window drops to W/2 packets
•  Each RTT window increases by 1 packetW/2 * RTT

before next loss
•  BW = MSS * avg window/RTT =

•  MSS * (W + W/2)/(2 * RTT)
•  .75 * MSS * W / RTT

19

73

Simple Loss Model

•  What was the loss rate?
•  Packets transferred between losses =

•  Avg BW * time =
•  (.75 W/RTT) * (W/2 * RTT) = 3W2/8

•  1 packet lost  loss rate = p = 8/3W2
•  W = sqrt(8 / (3 * loss rate))

•  BW = .75 * MSS * W / RTT
•  BW = MSS / (RTT * sqrt (2/3p))

74

TCP Friendliness
•  What does it mean to be TCP friendly?

•  TCP is not going away
•  Any new congestion control must compete with TCP

flows
•  Should not clobber TCP flows and grab bulk of link
•  Should also be able to hold its own, i.e. grab its fair share, or it

will never become popular

•  How is this quantified/shown?
•  Has evolved into evaluating loss/throughput behavior
•  If it shows 1/sqrt(p) behavior it is ok
•  But is this really true?

