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15-744: Computer Networking 

L-4 TCP 
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TCP Congestion Control  

•  Congestion Control 
•  RED 

•  Assigned Reading 
•  [FJ93] Random Early Detection Gateways for 

Congestion Avoidance 
•  [TFRC] Equation-Based Congestion Control for 

Unicast Applications 
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Introduction to TCP 
•  Communication abstraction: 

•  Reliable 
•  Ordered 
•  Point-to-point 
•  Byte-stream 
•  Full duplex 
•  Flow and congestion controlled 

•  Protocol implemented entirely at the ends 
•  Fate sharing 

•  Sliding window with cumulative acks 
•  Ack field contains last in-order packet received 
•  Duplicate acks sent when out-of-order packet received 

Key Things You Should Know Already 

•  Port numbers 
•  TCP/UDP checksum 
•  Sliding window flow control 

•  Sequence numbers 
•  TCP connection setup 
•  TCP reliability 

•  Timeout 
•  Data-driven 

•  Chiu&Jain analysis of linear congestion control 
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Overview 

•  TCP congestion control 

•  TFRC 

•  TCP and queues 

•  Queuing disciplines 

•  RED 
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TCP Congestion Control 
•  Motivated by ARPANET congestion collapse 
•  Underlying design principle: packet conservation 

•  At equilibrium, inject packet into network only when one 
is removed 

•  Basis for stability of physical systems 

•  Why was this not working? 
•  Connection doesn’t reach equilibrium 
•  Spurious retransmissions 
•  Resource limitations prevent equilibrium 
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TCP Congestion Control - Solutions 

•  Reaching equilibrium 
•  Slow start 

•  Eliminates spurious retransmissions 
•  Accurate RTO estimation 
•  Fast retransmit 

•  Adapting to resource availability 
•  Congestion avoidance 
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TCP Congestion Control 

•  Changes to TCP motivated by 
ARPANET congestion collapse 

•  Basic principles 
•  AIMD 
•  Packet conservation 
• Reaching steady state quickly 
•  ACK clocking 
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AIMD 

•  Distributed, fair and efficient 
•  Packet loss is seen as sign of congestion and 

results in a multiplicative rate decrease  
•  Factor of 2 

•  TCP periodically probes for available bandwidth 
by increasing its rate 

Time 

Rate 
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Implementation Issue 
•  Operating system timers are very coarse – how to pace 

packets out smoothly? 
•  Implemented using a congestion window that limits how 

much data can be in the network. 
•  TCP also keeps track of how much data is in transit 

•  Data can only be sent when the amount of outstanding 
data is less than the congestion window. 
•  The amount of outstanding data is increased on a “send” and 

decreased on “ack” 
•  (last sent – last acked) < congestion window 

•  Window limited by both congestion and buffering 
•  Sender’s maximum window = Min (advertised window, cwnd) 
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Congestion Avoidance 

•  If loss occurs when cwnd = W 
•  Network can handle 0.5W ~ W segments 
•  Set cwnd to 0.5W (multiplicative decrease) 

•  Upon receiving ACK 
•  Increase  cwnd by (1 packet)/cwnd 

•  What is 1 packet?  1 MSS worth of bytes 
•  After cwnd packets have passed by  

approximately increase of 1 MSS 

•  Implements AIMD 

Congestion Avoidance Sequence Plot 
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Congestion Avoidance Behavior 
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Packet Conservation 

•  At equilibrium, inject packet into network 
only when one is removed 
•  Sliding window and not rate controlled 
•  But still need to avoid sending burst of packets 
 would overflow links 
•  Need to carefully pace out packets 
•  Helps provide stability  

•  Need to eliminate spurious retransmissions 
•  Accurate RTO estimation 
•  Better loss recovery techniques (e.g. fast 

retransmit) 
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TCP Packet Pacing 
•  Congestion window helps to “pace” the 

transmission of data packets 
•  In steady state, a packet is sent when an ack is 

received 
•  Data transmission remains smooth, once it is smooth 
•  Self-clocking behavior 
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Aside: Packet Pair 
•  What would happen if a source transmitted a pair of 

packets back-to-back? 

•  FIFO scheduling 
•  Unlikely that another flows packet will get inserted in-

between 
•  Packets sent  back-to-back are likely to be queued/

forwarded back-to-back 
•  Spacing will reflect link bandwidth 

•  Fair queuing 
•  Router alternates between different flows 
•  Bottleneck router will separate packet pair at exactly fair 

share rate 

•  Basis for many measurement techniques 
16 
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Reaching Steady State 

•  Doing AIMD is fine in steady state but 
slow… 

•  How does TCP know what is a good initial 
rate to start with? 
•  Should work both for a CDPD (10s of Kbps or 

less) and for supercomputer links (10 Gbps and 
growing) 

•  Quick initial phase to help get up to speed 
(slow start) 
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Slow Start Packet Pacing 

•  How do we get this 
clocking behavior to 
start? 
•  Initialize cwnd = 1 
•  Upon receipt of every 

ack, cwnd = cwnd + 1 
•  Implications 

•  Window actually 
increases to W in RTT * 
log2(W) 

•  Can overshoot window 
and cause packet loss 
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Slow Start Example 
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Slow Start Sequence Plot 

Time 

Sequence No 

. 

. 

. 

Packets 

Acks 



6 

21 

Return to Slow Start 

•  If packet is lost we lose our self clocking as 
well 
•  Need to implement slow-start and congestion 

avoidance together 
•  When timeout occurs set ssthresh to 0.5w 

•  If cwnd < ssthresh, use slow start 
•  Else use congestion avoidance 
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TCP Saw Tooth Behavior 
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Questions 
•  Current loss rates – 10% in paper 

•  Uniform reaction to congestion – can different 
nodes do different things? 
•  TCP friendliness, GAIMD, etc. 

•  Can we use queuing delay as an indicator? 
•  TCP Vegas 

•  What about non-linear controls? 
•  Binomial congestion control 
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Overview 

•  TCP congestion control 

•  TFRC 

•  TCP and queues 

•  Queuing disciplines 

•  RED 

24 
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Changing Workloads 
•  New applications are changing the way TCP is used 
•  1980’s Internet 

•  Telnet & FTP  long lived flows 
•  Well behaved end hosts 
•  Homogenous end host capabilities 
•  Simple symmetric routing 

•  2000’s Internet 
•  Web & more Web  large number of short xfers 
•  Wild west – everyone is playing games to get bandwidth 
•  Cell phones and toasters on the Internet 
•  Policy routing 

•  How to accommodate new applications? 
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TCP Friendliness 
•  What does it mean to be TCP friendly? 

•  TCP is not going away 
•  Any new congestion control must compete with TCP 

flows 
•  Should not clobber TCP flows and grab bulk of link 
•  Should also be able to hold its own, i.e. grab its fair share, or it 

will never become popular 

•  How is this quantified/shown? 
•  Has evolved into evaluating loss/throughput behavior 
•  If it shows 1/sqrt(p) behavior it is ok 
•  But is this really true? 
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TCP Friendly Rate Control (TFRC) 
•  Equation 1 – real TCP response 

•  1st term corresponds to simple derivation 
•  2nd term corresponds to more complicated timeout 

behavior 
•  Is critical in situations with > 5% loss rates  where 

timeouts occur frequently 
•  Key parameters 

•  RTO 
•  RTT 
•  Loss rate 
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RTO/RTT Estimation 
•  RTO not used to perform retransmissions 

•  Used to model TCP’s extremely slow transmission rate 
in this mode 

•  Only important when loss rate is high 
•  Accuracy is not as critical 

•  Different TCP’s have different RTO calculation 
•  Clock granularity critical 500ms typical, 100ms, 

200ms, 1s also common 
•  RTO = 4 * RTT is close enough for reasonable 

operation 
•  EWMA RTT 

•  RTTn+1 = (1-α)RTTn + αRTTSAMP 
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Loss Estimation 
•  Loss event rate vs. loss rate 
•  Characteristics 

•  Should work well in steady loss rate 
•  Should weight recent samples more 
•  Should increase only with a new loss 
•  Should decrease only with long period without loss 

•  Possible choices 
•  Dynamic window – loss rate over last X packets 
•  EWMA of interval between losses 
•  Weighted average of last n intervals 

•  Last n/2 have equal weight 
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Loss Estimation 

•  Dynamic windows has many flaws 
•  Difficult to chose weight for EWMA 
•  Solution WMA 

•  Choose simple linear decrease in weight for 
last n/2 samples in weighted average 

•  What about the last interval? 
•  Include it when it actually increases WMA value 
•  What if there is a long period of no losses? 
•  Special case (history discounting) when current 

interval > 2 * avg 
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Slow Start 

•  Used in TCP to get rough estimate of 
network and establish ack clock 
•  Don’t need it for ack clock 
•  TCP ensures that overshoot is not > 2x 
•  Rate based protocols have no such limitation – 

why? 
•  TFRC slow start 

•  New rate set to min(2 * sent, 2 * recvd) 
•  Ends with first loss report  rate set to ½ 

current rate 
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Congestion Avoidance 
•  Loss interval increases in order to increase rate 

•  Primarily due to the transmission of new packets in 
current interval 

•  History discounting increases interval by removing old 
intervals 

•  .14 packets per RTT without history discounting 
•  .22 packets per RTT with discounting 

•  Much slower increase than TCP 
•  Decrease is also slower 

•   4 – 8 RTTs to halve speed 
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Overview 

•  TCP congestion control 

•  TFRC 

•  TCP and queues 

•  Queuing disciplines 

•  RED 
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TCP Performance 

•  Can TCP saturate a link? 
•  Congestion control 

•  Increase utilization until… link becomes 
congested 

•  React by decreasing window by 50% 
•  Window is proportional to rate * RTT 

•  Doesn’t this mean that the network 
oscillates between 50 and 100% utilization? 
•  Average utilization = 75%?? 
•  No…this is *not* right! 
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TCP Congestion Control 

Only W packets  
may be outstanding 

Rule for adjusting W 
•  If an ACK is received:  W ← W+1/W 
•  If a packet is lost:  W ← W/2 

Source Dest 

t 

Window size 
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Single TCP Flow 
Router without buffers 
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Summary Unbuffered Link 

t 

W Minimum window 
for full utilization 

•  The router can’t fully utilize the link 
•  If the window is too small, link is not full 
•  If the link is full, next window increase causes drop 
•  With no buffer it still achieves 75% utilization 
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TCP Performance 

•  In the real world, router queues play 
important role 
•  Window is proportional to rate * RTT 

•  But, RTT changes as well the window 

•  Window to fill links = propagation RTT * 
bottleneck bandwidth 
•  If window is larger, packets sit in queue on 

bottleneck link 
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TCP Performance 
•  If we have a large router queue  can get 

100% utilization 
•  But, router queues can cause large delays 

•  How big does the queue need to be? 
•  Windows vary from W  W/2 

•  Must make sure that link is always full 
•  W/2 > RTT * BW 
•  W = RTT * BW + Qsize 
•  Therefore, Qsize > RTT * BW 

•  Ensures 100% utilization 
•  Delay? 

•  Varies between RTT and 2 * RTT 
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Single TCP Flow 
Router with large enough buffers for full link utilization 
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Summary Buffered Link 

t 

W 

Minimum window 
for full utilization 

•  With sufficient buffering we achieve full link utilization 
•  The window is always above the critical threshold 
•  Buffer absorbs changes in window size 

•  Buffer Size = Height of TCP Sawtooth 
•  Minimum buffer size needed is 2T*C 

•  This is the origin of the rule-of-thumb 

Buffer 

Overview 

•  TCP congestion control 

•  TFRC 

•  TCP and queues 

•  Queuing disciplines 

•  RED 
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Queuing Disciplines 

•  Each router must implement some queuing 
discipline 

•  Queuing allocates both bandwidth and 
buffer space: 
•  Bandwidth: which packet to serve (transmit) 

next  
•  Buffer space: which packet to drop next (when 

required) 
•  Queuing also affects latency 
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Packet Drop Dimensions 

Aggregation 
Per-connection state Single class 

Drop position 
Head Tail 

Random location 

Class-based queuing 

Early drop Overflow drop 
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Typical Internet Queuing 
•  FIFO + drop-tail 

•  Simplest choice 
•  Used widely in the Internet 

•  FIFO (first-in-first-out)  
•  Implies single class of traffic 

•  Drop-tail 
•  Arriving packets get dropped when queue is full 

regardless of flow or importance 
•  Important distinction: 

•  FIFO: scheduling discipline 
•  Drop-tail: drop policy 
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FIFO + Drop-tail Problems 

•  Leaves responsibility of congestion control 
to edges (e.g., TCP) 

•  Does not separate between different flows 
•  No policing: send more packets  get more 

service 
•  Synchronization: end hosts react to same 

events 
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Active Queue Management 

•  Design active router queue management to 
aid congestion control  

•  Why? 
•  Routers can distinguish between propagation 

and persistent queuing delays 
•  Routers can decide on transient congestion, 

based on workload 
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Active Queue Designs 

•  Modify both router and hosts 
•  DECbit – congestion bit in packet header 

•  Modify router, hosts use TCP 
•  Fair queuing 

•  Per-connection buffer allocation 

•  RED (Random Early Detection) 
•  Drop packet or set bit in packet header as soon as 

congestion is starting 
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Overview 

•  TCP congestion control 

•  TFRC 

•  TCP and queues 

•  Queuing disciplines 

•  RED 
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Internet Problems 

•  Full queues 
•  Routers are forced to have have large queues 

to maintain high utilizations 
•  TCP detects congestion from loss 

•  Forces network to have long standing queues in 
steady-state 

•  Lock-out problem 
•  Drop-tail routers treat bursty traffic poorly 
•  Traffic gets synchronized easily  allows a few 

flows to monopolize the queue space 
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Design Objectives 

•  Keep throughput high and delay low 
•  Accommodate bursts 
•  Queue size should reflect ability to accept 

bursts rather than steady-state queuing 
•  Improve TCP performance with minimal 

hardware changes 
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Lock-out Problem 

•  Random drop 
•  Packet arriving when queue is full causes some 

random packet to be dropped 
•  Drop front 

•  On full queue, drop packet at head of queue 
•  Random drop and drop front solve the lock-

out problem but not the full-queues problem 
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Full Queues Problem 

•  Drop packets before queue becomes full 
(early drop) 

•  Intuition: notify senders of incipient 
congestion 
•  Example: early random drop (ERD): 

•  If qlen > drop level, drop each new packet with fixed 
probability p 

•  Does not control misbehaving users 
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Random Early Detection (RED) 

•  Detect incipient congestion, allow bursts 
•  Keep power (throughput/delay) high 

•  Keep average queue size low 
•  Assume hosts respond to lost packets 

•  Avoid window synchronization 
•  Randomly mark packets 

•  Avoid bias against bursty traffic 
•  Some protection against ill-behaved users 
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RED Algorithm 

•  Maintain running average of queue length 
•  If avgq < minth do nothing 

•  Low queuing, send packets through 
•  If avgq > maxth, drop packet 

•  Protection from misbehaving sources 
•  Else mark packet in a manner proportional 

to queue length 
•  Notify sources of incipient congestion 
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RED Operation 

Min thresh Max thresh 

Average Queue Length 

minth maxth 

maxP 

1.0 

Avg queue length 

P(drop) 
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RED Algorithm 

•  Maintain running average of queue length 
•  Byte mode vs. packet mode – why? 

•  For each packet arrival 
•  Calculate average queue size (avg) 
•  If minth ≤ avgq < maxth 

•  Calculate probability Pa 

•  With probability Pa 
•  Mark the arriving packet 

•  Else if maxth ≤ avg 
•  Mark the arriving packet 
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Queue Estimation 
•  Standard EWMA: avgq = (1-wq) avgq + wqqlen 

•  Special fix for idle periods – why? 
•  Upper bound on wq depends on minth 

•  Want to ignore transient congestion 
•  Can calculate the queue average if a burst arrives 

•  Set wq such that certain burst size does not exceed minth 

•  Lower bound on wq to detect congestion relatively 
quickly 

•  Typical wq = 0.002 
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Thresholds 

•  minth determined by the utilization 
requirement 
•  Tradeoff between queuing delay and utilization 

•  Relationship between maxth and minth 
•  Want to ensure that feedback has enough time 

to make difference in load 
•  Depends on average queue increase in one 

RTT  
•  Paper suggest ratio of 2 

•  Current rule of thumb is factor of 3 

60 

Packet Marking 

•  maxp is reflective of typical loss rates 
•  Paper uses 0.02 

•  0.1 is more realistic value 
•  If network needs marking of 20-30% then 

need to buy a better link! 
•  Gentle variant of RED (recommended) 

•  Vary drop rate from maxp to 1 as the avgq 
varies from maxth to 2* maxth 

•  More robust to setting of maxth and maxp  
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Talks 
•  Radia Perlman – TRILL: Soul of a New Protocol 

•  CIC 1201 – Noon Monday 9/27 

•  Alberto Toledo – Exploiting WLAN Deployment Density: Fair 
WLAN Backhaul Aggregation 
•  Gates 8102 – 1:30 Monday 9/27 

•  Nina Taft – ANTIDOTE: Understanding and Defending against 
the Poisoning of Anomaly Detectors 
•  Gates 8102 – Noon Wednesday 9/29 

•  Oct 14th – noon Google talk on M-lab 

•  Nov 4th – networking for the 3rd world 
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Next Week 

•  Attend one of the talks 
•  Monday lecture: fair queuing  
•  Wed no lecture 
•  Fri  
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EXTRA SLIDES 

The rest of the slides are FYI 
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Extending RED for Flow Isolation 

•  Problem: what to do with non-cooperative 
flows? 

•  Fair queuing achieves isolation using per-
flow state – expensive at backbone routers 
•  How can we isolate unresponsive flows without 

per-flow state? 
•  RED penalty box 

•  Monitor history for packet drops, identify flows 
that use disproportionate bandwidth 

•  Isolate and punish those flows 
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Stochastic Fair Blue 
•  Same objective as RED Penalty Box 

•  Identify and penalize misbehaving flows 
•  Create L hashes with N bins each 

•  Each bin keeps track of separate marking rate (pm) 
•  Rate is updated using standard technique and a bin 

size 
•  Flow uses minimum pm of all L bins it belongs to 
•  Non-misbehaving flows hopefully belong to at least one 

bin without a bad flow 
•  Large numbers of bad flows may cause false positives 
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Stochastic Fair Blue 

•  False positives can continuously penalize 
same flow 

•  Solution: moving hash function over time 
•  Bad flow no longer shares bin with same flows 
•  Is history reset does bad flow get to make 

trouble until detected again? 
•  No, can perform hash warmup in background 
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How to Change Window 

•  When a loss occurs have W packets 
outstanding 

•  New cwnd = 0.5 * cwnd 
•  How to get to new state? 
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Fast Recovery 

•  Each duplicate ack notifies sender that 
single packet has cleared network 

•  When < cwnd packets are outstanding 
•  Allow new packets out with each new duplicate 

acknowledgement 
•  Behavior 

•  Sender is idle for some time – waiting for ½ 
cwnd worth of dupacks 

•  Transmits at original rate after wait 
•  Ack clocking rate is same as before loss 
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Fast Recovery  

Time 

Sequence No 
Sent for each dupack after 

W/2 dupacks arrive 
X 
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Packet Marking in RED 

•  Marking probability based on queue length 
•  Pb = maxp(avgq - minth) / (maxth - minth) 

•  Just marking based on Pb can lead to 
clustered marking  
•  Could result in synchronization 
•  Better to bias Pb by history of unmarked 

packets 
•  Pa = Pb/(1 - count*Pb) 
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CHOKe 

•  CHOse and Keep/Kill (Infocom 2000) 
•  Existing schemes to penalize unresponsive 

flows (FRED/penalty box) introduce additional 
complexity 

•  Simple, stateless scheme 
•  During congested periods 

•  Compare new packet with random pkt in queue 
•  If from same flow, drop both 
•  If not, use RED to decide fate of new packet 
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CHOKe 

•  Can improve behavior by selecting more 
than one comparison packet 
•  Needed when more than one misbehaving flow 

•  Does not completely solve problem 
•  Aggressive flows are punished but not limited to 

fair share 
•  Not good for low degree of multiplexing  

why? 
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FRED 

•  Fair Random Early Drop (Sigcomm, 1997) 
•  Maintain per flow state only for active flows 

(ones having packets in the buffer) 
•  minq and maxq  min and max number of 

buffers a flow is allowed occupy 
•  avgcq = average buffers per flow 
•  Strike count of number of times flow has 

exceeded maxq 
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FRED – Fragile Flows 

•  Flows that send little data and want to avoid 
loss 

•  minq is meant to protect these 
•  What should minq be? 

•  When large number of flows  2-4 packets 
•  Needed for TCP behavior 

•  When small number of flows  increase to 
avgcq 
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FRED 

•  Non-adaptive flows 
•  Flows with high strike count are not allowed 

more than avgcq buffers 
•  Allows adaptive flows to occasionally burst to 

maxq but repeated attempts incur penalty 
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TCP Vegas Slow Start 

•  ssthresh estimation via packet pair 
•  Only increase every other RTT  

•  Tests new window size before increasing 
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Packet Pair 

•  What would happen if a source transmitted 
a pair of packets back-to-back? 

•  Spacing of these packets would be 
determined by bottleneck link 
•  Basis for ack clocking in TCP 

•  What type of bottleneck router behavior 
would affect this spacing 
•  Queuing scheduling 
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Packet Pair in Practice 

•  Most Internet routers are FIFO/Drop-Tail 
•  Easy to measure link bandwidths 

•  Bprobe, pathchar, pchar, nettimer, etc. 
•  How can this be used? 

•  NewReno and Vegas use it to initialize ssthresh 
•  Prevents large overshoot of available 

bandwidth 
•  Want a high estimate – otherwise will take a 

long time in linear growth to reach desired 
bandwidth 
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TCP Vegas 
•  Use change in observed end-to-end delay to detect onset of 

congestion 
•  Compare expected to actual throughput 
•  Expected = window size / round trip time 
•  Actual = acks / round trip time 

•  If actual < expected < actual + α	


•  Queues decreasing  increase rate 

•  If actual + α < expected < actual + β	


•  Don’t do anything 

•  If expected > actual + β	


•  Queues increasing  decrease rate before packet drop 

•  Thresholds of α and β correspond to how many packets Vegas 
is willing to have in queues 
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TCP Vegas Congestion Avoidance 

•  Only reduce cwnd if packet sent after last 
such action 
•  Reaction per congestion episode not per loss 

•  Congestion avoidance vs. control 
•  Use change in observed end-to-end delay to 

detect onset of congestion 
•  Compare expected to actual throughput 
•  Expected = window size / round trip time 
•  Actual = acks / round trip time 



21 

81 

TCP Vegas 
•  Fine grain timers 

•  Check RTO every time a dupack is received or for 
“partial ack” 

•  If RTO expired, then re-xmit packet 
•  Standard Reno only checks at 500ms 

•  Allows packets to be retransmitted earlier 
•  Not the real source of performance gain 

•  Allows retransmission of packet that would have 
timed-out 
•  Small windows/loss of most of window 
•  Real source of performance gain 
•  Shouldn’t comparison be against NewReno/SACK 
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TCP Vegas 

•  Flaws 
•  Sensitivity to delay variation 
•  Paper did not do great job of explaining where 

performance gains came from 
•  Some ideas have been incorporated into 

more recent implementations 
•  Overall 

•  Some very intriguing ideas 
•  Controversies killed it 
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Binomial Congestion Control 

•  In AIMD 
•  Increase: Wn+1 = Wn + α	


•  Decrease: Wn+1 = (1- β) Wn 

•  In Binomial 
•  Increase: Wn+1 = Wn + α/Wn

k 
•  Decrease: Wn+1 = Wn - β Wn

l 

•  k=0 & l=1  AIMD 
•  l < 1 results in less than multiplicative decrease 

•  Good for multimedia applications 
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Binomial Congestion Control 

•  Rate ~ 1/ (loss rate)1/(k+l+1) 

•  If k+l=1  rate ~ 1/p0.5 
•  TCP friendly if l ≤ 1 

•  AIMD (k=0, l=1) is the most aggressive of 
this class  
•  Good for applications that want to probe quickly 

and can use any available bandwidth 
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Rate Halving Recovery 

Time 

Sequence No 

Sent after every 
other dupack 

X 


