
1

15-744: Computer Networking

L-4 TCP

2

TCP Congestion Control

•  Congestion Control
•  RED

•  Assigned Reading
•  [FJ93] Random Early Detection Gateways for

Congestion Avoidance
•  [TFRC] Equation-Based Congestion Control for

Unicast Applications

3

Introduction to TCP
•  Communication abstraction:

•  Reliable
•  Ordered
•  Point-to-point
•  Byte-stream
•  Full duplex
•  Flow and congestion controlled

•  Protocol implemented entirely at the ends
•  Fate sharing

•  Sliding window with cumulative acks
•  Ack field contains last in-order packet received
•  Duplicate acks sent when out-of-order packet received

Key Things You Should Know Already

•  Port numbers
•  TCP/UDP checksum
•  Sliding window flow control

•  Sequence numbers
•  TCP connection setup
•  TCP reliability

•  Timeout
•  Data-driven

•  Chiu&Jain analysis of linear congestion control

4

2

Overview

•  TCP congestion control

•  TFRC

•  TCP and queues

•  Queuing disciplines

•  RED

5 6

TCP Congestion Control
•  Motivated by ARPANET congestion collapse
•  Underlying design principle: packet conservation

•  At equilibrium, inject packet into network only when one
is removed

•  Basis for stability of physical systems

•  Why was this not working?
•  Connection doesn’t reach equilibrium
•  Spurious retransmissions
•  Resource limitations prevent equilibrium

7

TCP Congestion Control - Solutions

•  Reaching equilibrium
•  Slow start

•  Eliminates spurious retransmissions
•  Accurate RTO estimation
•  Fast retransmit

•  Adapting to resource availability
•  Congestion avoidance

8

TCP Congestion Control

•  Changes to TCP motivated by
ARPANET congestion collapse

•  Basic principles
•  AIMD
•  Packet conservation
• Reaching steady state quickly
•  ACK clocking

3

9

AIMD

•  Distributed, fair and efficient
•  Packet loss is seen as sign of congestion and

results in a multiplicative rate decrease
•  Factor of 2

•  TCP periodically probes for available bandwidth
by increasing its rate

Time

Rate

10

Implementation Issue
•  Operating system timers are very coarse – how to pace

packets out smoothly?
•  Implemented using a congestion window that limits how

much data can be in the network.
•  TCP also keeps track of how much data is in transit

•  Data can only be sent when the amount of outstanding
data is less than the congestion window.
•  The amount of outstanding data is increased on a “send” and

decreased on “ack”
•  (last sent – last acked) < congestion window

•  Window limited by both congestion and buffering
•  Sender’s maximum window = Min (advertised window, cwnd)

11

Congestion Avoidance

•  If loss occurs when cwnd = W
•  Network can handle 0.5W ~ W segments
•  Set cwnd to 0.5W (multiplicative decrease)

•  Upon receiving ACK
•  Increase cwnd by (1 packet)/cwnd

•  What is 1 packet?  1 MSS worth of bytes
•  After cwnd packets have passed by 

approximately increase of 1 MSS

•  Implements AIMD

Congestion Avoidance Sequence Plot

12

Time

Sequence No

Packets

Acks

4

13

Congestion Avoidance Behavior

Time

Congestion
Window

Packet loss
+ Timeout

Grabbing
back

Bandwidth

Cut
Congestion

Window
and Rate

14

Packet Conservation

•  At equilibrium, inject packet into network
only when one is removed
•  Sliding window and not rate controlled
•  But still need to avoid sending burst of packets
 would overflow links
•  Need to carefully pace out packets
•  Helps provide stability

•  Need to eliminate spurious retransmissions
•  Accurate RTO estimation
•  Better loss recovery techniques (e.g. fast

retransmit)

15

TCP Packet Pacing
•  Congestion window helps to “pace” the

transmission of data packets
•  In steady state, a packet is sent when an ack is

received
•  Data transmission remains smooth, once it is smooth
•  Self-clocking behavior

Pr
Pb

Ar Ab

Receiver Sender

As

Aside: Packet Pair
•  What would happen if a source transmitted a pair of

packets back-to-back?

•  FIFO scheduling
•  Unlikely that another flows packet will get inserted in-

between
•  Packets sent back-to-back are likely to be queued/

forwarded back-to-back
•  Spacing will reflect link bandwidth

•  Fair queuing
•  Router alternates between different flows
•  Bottleneck router will separate packet pair at exactly fair

share rate

•  Basis for many measurement techniques
16

5

17

Reaching Steady State

•  Doing AIMD is fine in steady state but
slow…

•  How does TCP know what is a good initial
rate to start with?
•  Should work both for a CDPD (10s of Kbps or

less) and for supercomputer links (10 Gbps and
growing)

•  Quick initial phase to help get up to speed
(slow start)

18

Slow Start Packet Pacing

•  How do we get this
clocking behavior to
start?
•  Initialize cwnd = 1
•  Upon receipt of every

ack, cwnd = cwnd + 1
•  Implications

•  Window actually
increases to W in RTT *
log2(W)

•  Can overshoot window
and cause packet loss

19

Slow Start Example

1

One RTT

One pkt time

0R

2
1R

3

4
2R

5
6
7

8
3R

9
10
11

12
13

14
15

1

2 3

4 5 6 7

20

Slow Start Sequence Plot

Time

Sequence No

.

.

.

Packets

Acks

6

21

Return to Slow Start

•  If packet is lost we lose our self clocking as
well
•  Need to implement slow-start and congestion

avoidance together
•  When timeout occurs set ssthresh to 0.5w

•  If cwnd < ssthresh, use slow start
•  Else use congestion avoidance

22

TCP Saw Tooth Behavior

Time

Congestion
Window

Initial
Slowstart

Fast
Retransmit

and Recovery

Slowstart
to pace
packets

Timeouts
may still

occur

Questions
•  Current loss rates – 10% in paper

•  Uniform reaction to congestion – can different
nodes do different things?
•  TCP friendliness, GAIMD, etc.

•  Can we use queuing delay as an indicator?
•  TCP Vegas

•  What about non-linear controls?
•  Binomial congestion control

23

Overview

•  TCP congestion control

•  TFRC

•  TCP and queues

•  Queuing disciplines

•  RED

24

7

25

Changing Workloads
•  New applications are changing the way TCP is used
•  1980’s Internet

•  Telnet & FTP  long lived flows
•  Well behaved end hosts
•  Homogenous end host capabilities
•  Simple symmetric routing

•  2000’s Internet
•  Web & more Web  large number of short xfers
•  Wild west – everyone is playing games to get bandwidth
•  Cell phones and toasters on the Internet
•  Policy routing

•  How to accommodate new applications?

26

TCP Friendliness
•  What does it mean to be TCP friendly?

•  TCP is not going away
•  Any new congestion control must compete with TCP

flows
•  Should not clobber TCP flows and grab bulk of link
•  Should also be able to hold its own, i.e. grab its fair share, or it

will never become popular

•  How is this quantified/shown?
•  Has evolved into evaluating loss/throughput behavior
•  If it shows 1/sqrt(p) behavior it is ok
•  But is this really true?

27

TCP Friendly Rate Control (TFRC)
•  Equation 1 – real TCP response

•  1st term corresponds to simple derivation
•  2nd term corresponds to more complicated timeout

behavior
•  Is critical in situations with > 5% loss rates  where

timeouts occur frequently
•  Key parameters

•  RTO
•  RTT
•  Loss rate

28

RTO/RTT Estimation
•  RTO not used to perform retransmissions

•  Used to model TCP’s extremely slow transmission rate
in this mode

•  Only important when loss rate is high
•  Accuracy is not as critical

•  Different TCP’s have different RTO calculation
•  Clock granularity critical 500ms typical, 100ms,

200ms, 1s also common
•  RTO = 4 * RTT is close enough for reasonable

operation
•  EWMA RTT

•  RTTn+1 = (1-α)RTTn + αRTTSAMP

8

29

Loss Estimation
•  Loss event rate vs. loss rate
•  Characteristics

•  Should work well in steady loss rate
•  Should weight recent samples more
•  Should increase only with a new loss
•  Should decrease only with long period without loss

•  Possible choices
•  Dynamic window – loss rate over last X packets
•  EWMA of interval between losses
•  Weighted average of last n intervals

•  Last n/2 have equal weight

30

Loss Estimation

•  Dynamic windows has many flaws
•  Difficult to chose weight for EWMA
•  Solution WMA

•  Choose simple linear decrease in weight for
last n/2 samples in weighted average

•  What about the last interval?
•  Include it when it actually increases WMA value
•  What if there is a long period of no losses?
•  Special case (history discounting) when current

interval > 2 * avg

31

Slow Start

•  Used in TCP to get rough estimate of
network and establish ack clock
•  Don’t need it for ack clock
•  TCP ensures that overshoot is not > 2x
•  Rate based protocols have no such limitation –

why?
•  TFRC slow start

•  New rate set to min(2 * sent, 2 * recvd)
•  Ends with first loss report  rate set to ½

current rate

32

Congestion Avoidance
•  Loss interval increases in order to increase rate

•  Primarily due to the transmission of new packets in
current interval

•  History discounting increases interval by removing old
intervals

•  .14 packets per RTT without history discounting
•  .22 packets per RTT with discounting

•  Much slower increase than TCP
•  Decrease is also slower

•  4 – 8 RTTs to halve speed

9

Overview

•  TCP congestion control

•  TFRC

•  TCP and queues

•  Queuing disciplines

•  RED

33 34

TCP Performance

•  Can TCP saturate a link?
•  Congestion control

•  Increase utilization until… link becomes
congested

•  React by decreasing window by 50%
•  Window is proportional to rate * RTT

•  Doesn’t this mean that the network
oscillates between 50 and 100% utilization?
•  Average utilization = 75%??
•  No…this is *not* right!

35

TCP Congestion Control

Only W packets
may be outstanding

Rule for adjusting W
•  If an ACK is received: W ← W+1/W
•  If a packet is lost: W ← W/2

Source Dest

t

Window size

36

Single TCP Flow
Router without buffers

10

37

Summary Unbuffered Link

t

W Minimum window
for full utilization

•  The router can’t fully utilize the link
•  If the window is too small, link is not full
•  If the link is full, next window increase causes drop
•  With no buffer it still achieves 75% utilization

38

TCP Performance

•  In the real world, router queues play
important role
•  Window is proportional to rate * RTT

•  But, RTT changes as well the window

•  Window to fill links = propagation RTT *
bottleneck bandwidth
•  If window is larger, packets sit in queue on

bottleneck link

39

TCP Performance
•  If we have a large router queue  can get

100% utilization
•  But, router queues can cause large delays

•  How big does the queue need to be?
•  Windows vary from W  W/2

•  Must make sure that link is always full
•  W/2 > RTT * BW
•  W = RTT * BW + Qsize
•  Therefore, Qsize > RTT * BW

•  Ensures 100% utilization
•  Delay?

•  Varies between RTT and 2 * RTT

40

Single TCP Flow
Router with large enough buffers for full link utilization

11

41

Summary Buffered Link

t

W

Minimum window
for full utilization

•  With sufficient buffering we achieve full link utilization
•  The window is always above the critical threshold
•  Buffer absorbs changes in window size

•  Buffer Size = Height of TCP Sawtooth
•  Minimum buffer size needed is 2T*C

•  This is the origin of the rule-of-thumb

Buffer

Overview

•  TCP congestion control

•  TFRC

•  TCP and queues

•  Queuing disciplines

•  RED

42

43

Queuing Disciplines

•  Each router must implement some queuing
discipline

•  Queuing allocates both bandwidth and
buffer space:
•  Bandwidth: which packet to serve (transmit)

next
•  Buffer space: which packet to drop next (when

required)
•  Queuing also affects latency

44

Packet Drop Dimensions

Aggregation
Per-connection state Single class

Drop position
Head Tail

Random location

Class-based queuing

Early drop Overflow drop

12

45

Typical Internet Queuing
•  FIFO + drop-tail

•  Simplest choice
•  Used widely in the Internet

•  FIFO (first-in-first-out)
•  Implies single class of traffic

•  Drop-tail
•  Arriving packets get dropped when queue is full

regardless of flow or importance
•  Important distinction:

•  FIFO: scheduling discipline
•  Drop-tail: drop policy

46

FIFO + Drop-tail Problems

•  Leaves responsibility of congestion control
to edges (e.g., TCP)

•  Does not separate between different flows
•  No policing: send more packets  get more

service
•  Synchronization: end hosts react to same

events

47

Active Queue Management

•  Design active router queue management to
aid congestion control

•  Why?
•  Routers can distinguish between propagation

and persistent queuing delays
•  Routers can decide on transient congestion,

based on workload

48

Active Queue Designs

•  Modify both router and hosts
•  DECbit – congestion bit in packet header

•  Modify router, hosts use TCP
•  Fair queuing

•  Per-connection buffer allocation

•  RED (Random Early Detection)
•  Drop packet or set bit in packet header as soon as

congestion is starting

13

Overview

•  TCP congestion control

•  TFRC

•  TCP and queues

•  Queuing disciplines

•  RED

49 50

Internet Problems

•  Full queues
•  Routers are forced to have have large queues

to maintain high utilizations
•  TCP detects congestion from loss

•  Forces network to have long standing queues in
steady-state

•  Lock-out problem
•  Drop-tail routers treat bursty traffic poorly
•  Traffic gets synchronized easily  allows a few

flows to monopolize the queue space

51

Design Objectives

•  Keep throughput high and delay low
•  Accommodate bursts
•  Queue size should reflect ability to accept

bursts rather than steady-state queuing
•  Improve TCP performance with minimal

hardware changes

52

Lock-out Problem

•  Random drop
•  Packet arriving when queue is full causes some

random packet to be dropped
•  Drop front

•  On full queue, drop packet at head of queue
•  Random drop and drop front solve the lock-

out problem but not the full-queues problem

14

53

Full Queues Problem

•  Drop packets before queue becomes full
(early drop)

•  Intuition: notify senders of incipient
congestion
•  Example: early random drop (ERD):

•  If qlen > drop level, drop each new packet with fixed
probability p

•  Does not control misbehaving users

54

Random Early Detection (RED)

•  Detect incipient congestion, allow bursts
•  Keep power (throughput/delay) high

•  Keep average queue size low
•  Assume hosts respond to lost packets

•  Avoid window synchronization
•  Randomly mark packets

•  Avoid bias against bursty traffic
•  Some protection against ill-behaved users

55

RED Algorithm

•  Maintain running average of queue length
•  If avgq < minth do nothing

•  Low queuing, send packets through
•  If avgq > maxth, drop packet

•  Protection from misbehaving sources
•  Else mark packet in a manner proportional

to queue length
•  Notify sources of incipient congestion

56

RED Operation

Min thresh Max thresh

Average Queue Length

minth maxth

maxP

1.0

Avg queue length

P(drop)

15

57

RED Algorithm

•  Maintain running average of queue length
•  Byte mode vs. packet mode – why?

•  For each packet arrival
•  Calculate average queue size (avg)
•  If minth ≤ avgq < maxth

•  Calculate probability Pa

•  With probability Pa
•  Mark the arriving packet

•  Else if maxth ≤ avg
•  Mark the arriving packet

58

Queue Estimation
•  Standard EWMA: avgq = (1-wq) avgq + wqqlen

•  Special fix for idle periods – why?
•  Upper bound on wq depends on minth

•  Want to ignore transient congestion
•  Can calculate the queue average if a burst arrives

•  Set wq such that certain burst size does not exceed minth

•  Lower bound on wq to detect congestion relatively
quickly

•  Typical wq = 0.002

59

Thresholds

•  minth determined by the utilization
requirement
•  Tradeoff between queuing delay and utilization

•  Relationship between maxth and minth
•  Want to ensure that feedback has enough time

to make difference in load
•  Depends on average queue increase in one

RTT
•  Paper suggest ratio of 2

•  Current rule of thumb is factor of 3

60

Packet Marking

•  maxp is reflective of typical loss rates
•  Paper uses 0.02

•  0.1 is more realistic value
•  If network needs marking of 20-30% then

need to buy a better link!
•  Gentle variant of RED (recommended)

•  Vary drop rate from maxp to 1 as the avgq
varies from maxth to 2* maxth

•  More robust to setting of maxth and maxp

16

Talks
•  Radia Perlman – TRILL: Soul of a New Protocol

•  CIC 1201 – Noon Monday 9/27

•  Alberto Toledo – Exploiting WLAN Deployment Density: Fair
WLAN Backhaul Aggregation
•  Gates 8102 – 1:30 Monday 9/27

•  Nina Taft – ANTIDOTE: Understanding and Defending against
the Poisoning of Anomaly Detectors
•  Gates 8102 – Noon Wednesday 9/29

•  Oct 14th – noon Google talk on M-lab

•  Nov 4th – networking for the 3rd world

61

Next Week

•  Attend one of the talks
•  Monday lecture: fair queuing
•  Wed no lecture
•  Fri

62

EXTRA SLIDES

The rest of the slides are FYI

64

Extending RED for Flow Isolation

•  Problem: what to do with non-cooperative
flows?

•  Fair queuing achieves isolation using per-
flow state – expensive at backbone routers
•  How can we isolate unresponsive flows without

per-flow state?
•  RED penalty box

•  Monitor history for packet drops, identify flows
that use disproportionate bandwidth

•  Isolate and punish those flows

17

65

Stochastic Fair Blue
•  Same objective as RED Penalty Box

•  Identify and penalize misbehaving flows
•  Create L hashes with N bins each

•  Each bin keeps track of separate marking rate (pm)
•  Rate is updated using standard technique and a bin

size
•  Flow uses minimum pm of all L bins it belongs to
•  Non-misbehaving flows hopefully belong to at least one

bin without a bad flow
•  Large numbers of bad flows may cause false positives

66

Stochastic Fair Blue

•  False positives can continuously penalize
same flow

•  Solution: moving hash function over time
•  Bad flow no longer shares bin with same flows
•  Is history reset does bad flow get to make

trouble until detected again?
•  No, can perform hash warmup in background

67

How to Change Window

•  When a loss occurs have W packets
outstanding

•  New cwnd = 0.5 * cwnd
•  How to get to new state?

68

Fast Recovery

•  Each duplicate ack notifies sender that
single packet has cleared network

•  When < cwnd packets are outstanding
•  Allow new packets out with each new duplicate

acknowledgement
•  Behavior

•  Sender is idle for some time – waiting for ½
cwnd worth of dupacks

•  Transmits at original rate after wait
•  Ack clocking rate is same as before loss

18

69

Fast Recovery

Time

Sequence No
Sent for each dupack after

W/2 dupacks arrive
X

70

Packet Marking in RED

•  Marking probability based on queue length
•  Pb = maxp(avgq - minth) / (maxth - minth)

•  Just marking based on Pb can lead to
clustered marking
•  Could result in synchronization
•  Better to bias Pb by history of unmarked

packets
•  Pa = Pb/(1 - count*Pb)

71

CHOKe

•  CHOse and Keep/Kill (Infocom 2000)
•  Existing schemes to penalize unresponsive

flows (FRED/penalty box) introduce additional
complexity

•  Simple, stateless scheme
•  During congested periods

•  Compare new packet with random pkt in queue
•  If from same flow, drop both
•  If not, use RED to decide fate of new packet

72

CHOKe

•  Can improve behavior by selecting more
than one comparison packet
•  Needed when more than one misbehaving flow

•  Does not completely solve problem
•  Aggressive flows are punished but not limited to

fair share
•  Not good for low degree of multiplexing 

why?

19

73

FRED

•  Fair Random Early Drop (Sigcomm, 1997)
•  Maintain per flow state only for active flows

(ones having packets in the buffer)
•  minq and maxq  min and max number of

buffers a flow is allowed occupy
•  avgcq = average buffers per flow
•  Strike count of number of times flow has

exceeded maxq

74

FRED – Fragile Flows

•  Flows that send little data and want to avoid
loss

•  minq is meant to protect these
•  What should minq be?

•  When large number of flows  2-4 packets
•  Needed for TCP behavior

•  When small number of flows  increase to
avgcq

75

FRED

•  Non-adaptive flows
•  Flows with high strike count are not allowed

more than avgcq buffers
•  Allows adaptive flows to occasionally burst to

maxq but repeated attempts incur penalty

76

TCP Vegas Slow Start

•  ssthresh estimation via packet pair
•  Only increase every other RTT

•  Tests new window size before increasing

20

77

Packet Pair

•  What would happen if a source transmitted
a pair of packets back-to-back?

•  Spacing of these packets would be
determined by bottleneck link
•  Basis for ack clocking in TCP

•  What type of bottleneck router behavior
would affect this spacing
•  Queuing scheduling

78

Packet Pair in Practice

•  Most Internet routers are FIFO/Drop-Tail
•  Easy to measure link bandwidths

•  Bprobe, pathchar, pchar, nettimer, etc.
•  How can this be used?

•  NewReno and Vegas use it to initialize ssthresh
•  Prevents large overshoot of available

bandwidth
•  Want a high estimate – otherwise will take a

long time in linear growth to reach desired
bandwidth

79

TCP Vegas
•  Use change in observed end-to-end delay to detect onset of

congestion
•  Compare expected to actual throughput
•  Expected = window size / round trip time
•  Actual = acks / round trip time

•  If actual < expected < actual + α	

•  Queues decreasing  increase rate

•  If actual + α < expected < actual + β	

•  Don’t do anything

•  If expected > actual + β	

•  Queues increasing  decrease rate before packet drop

•  Thresholds of α and β correspond to how many packets Vegas
is willing to have in queues

80

TCP Vegas Congestion Avoidance

•  Only reduce cwnd if packet sent after last
such action
•  Reaction per congestion episode not per loss

•  Congestion avoidance vs. control
•  Use change in observed end-to-end delay to

detect onset of congestion
•  Compare expected to actual throughput
•  Expected = window size / round trip time
•  Actual = acks / round trip time

21

81

TCP Vegas
•  Fine grain timers

•  Check RTO every time a dupack is received or for
“partial ack”

•  If RTO expired, then re-xmit packet
•  Standard Reno only checks at 500ms

•  Allows packets to be retransmitted earlier
•  Not the real source of performance gain

•  Allows retransmission of packet that would have
timed-out
•  Small windows/loss of most of window
•  Real source of performance gain
•  Shouldn’t comparison be against NewReno/SACK

82

TCP Vegas

•  Flaws
•  Sensitivity to delay variation
•  Paper did not do great job of explaining where

performance gains came from
•  Some ideas have been incorporated into

more recent implementations
•  Overall

•  Some very intriguing ideas
•  Controversies killed it

83

Binomial Congestion Control

•  In AIMD
•  Increase: Wn+1 = Wn + α	

•  Decrease: Wn+1 = (1- β) Wn

•  In Binomial
•  Increase: Wn+1 = Wn + α/Wn

k
•  Decrease: Wn+1 = Wn - β Wn

l

•  k=0 & l=1  AIMD
•  l < 1 results in less than multiplicative decrease

•  Good for multimedia applications

84

Binomial Congestion Control

•  Rate ~ 1/ (loss rate)1/(k+l+1)

•  If k+l=1  rate ~ 1/p0.5
•  TCP friendly if l ≤ 1

•  AIMD (k=0, l=1) is the most aggressive of
this class
•  Good for applications that want to probe quickly

and can use any available bandwidth

22

85

Rate Halving Recovery

Time

Sequence No

Sent after every
other dupack

X

