

Outline

- Administrivia
- Layering

2

Who's Who?

- Professor: Srinivasan Seshan
 - http://www.cs.cmu.edu/~srini
 - srini@cmu.edu
 - Office hours: by appt.
- TA: Xi Liu
 - http://www.cs.cmu.edu/~xil
 - xil@cs.cmu.edu
- Course info
 - http://www.cs.cmu.edu/~srini/15-744/F10/

Objectives

- Understand the state-of-the-art in network protocols, architectures and applications
- Understand how networking research is done
 - Teach the typical constraints and thought processes used in networking research
- How is class different from undergraduate networking (15-441)
 - Training network programmers vs. training network researchers

Web Page

- · Check regularly!!
- · Course schedule
- Reading list
- Lecture notes/videos
- Announcements
- Assignments
- · Project ideas
- Exams

Discussion Site

- http://sourcery.cmcl.cs.cmu.edu:4000/
 - Please visit http://sourcery.cmcl.cs.cmu.edu: 4000/ and create an account. Open the collection CMU 15-744: Computer Networks --Fall 10. You should then add yourself to the collection using the subscription code: "15744"

5

Discussion Site

- For each lecture, post a brief comment about each paper:
 - Since I would like to read the reviews before the lecture, you should have this done by 5pm the day before the lecture.
 - · Learn to critique and appreciate systems papers
 - Try to be positive...
 - Why or why not keep this paper in syllabus?
 - What issues are left open for future research?
 - · What are the important implications of the work?
 - · What would have done differently?
- Each student will present a 10 minute broader critique in class once this semester and post longer "public" review once
 - · Looking at related work, etc.
 - Email signup

Course Materials

- · Research papers
 - · Links to ps or pdf on Web page
 - Combination of classic and recent work
 - ~40 papers
 - Optional readings
- · Recommended textbooks
 - · For students not familiar with networking
 - Peterson & Davie or Kurose & Ross

Grading

- Homework assignments (15%)
 - 4 Problem sets & hands-on assignments
- Class + discussion site participation (10%)
- Midterm exam + final exam (35%)
 - · Closed book, in-class
- 2 or 3 person project (40%)
 - · Main focus of class work
 - Make project productive for you!

Class Coverage

- Little coverage of physical and data link layer
- Little coverage of undergraduate material
 - · Students expected to know this
- Focus on network to application layer
- · We will deal with:
 - · Protocol rules and algorithms
 - · Investigate protocol trade-offs
 - · Why this way and not another?

Lecture Topics

Traditional

- Layering
- Internet architecture Mobility/wireless
- Routing (IP)
- Transport (TCP)
- (FQ, RED)
- Naming (DNS)

Recent Topics

- Machine rooms
- QoS
- Security
- Queue management Network measurement
 - Overlay networks
 - · P2P applications
 - + 2 TBD slots

Homework 0

- Email xil@cs.cmu.edu & srini@cs.cmu.edu
 - 4 lecture choices for critique/public review
 - 1 topic choice for first TBD lecture
 - 1 sentence version of project interest & list of project partner
 - E.g., I want to apply game theory to network routing.
- Register on discussion site
 - Post response for 1st two papers (extended deadline - 9am Friday)

Outline

- Administrivia
- Layering

13

This/Next Lecture: Design Considerations

- How to determine split of functionality
 - · Across protocol layers
 - Across network nodes
- Assigned Reading
 - [SRC84] End-to-end Arguments in System Design
 - [Cla88] Design Philosophy of the DARPA Internet Protocols
- Optional Reading
 - [CT90] Architectural Considerations for a New Generation of Protocols

What is the Objective of Networking?

- Communication between applications on different computers
- Must understand application needs/ demands
 - · Traffic data rate
 - Traffic pattern (bursty or constant bit rate)
 - Traffic target (multipoint or single destination, mobile or fixed)
 - · Delay sensitivity
 - · Loss sensitivity

Back in the Old Days...

Positives

Interleave packets from different sources

- Efficient: resources used on demand
 - · Statistical multiplexing
- General
 - Multiple types of applications
- Allows for bursty traffic
 - Addition of queues

Challenges

- Store and forward
 - Packets are self contained units
 - Can use alternate paths reordering
- Contention
 - Congestion
 - Delay

Challenge

- · Many differences between networks
 - Address formats
 - Performance bandwidth/latency
 - Packet size
 - Loss rate/pattern/handling
 - Routing
- How to translate between various network technologies?

Internet[work]

- A collection of interconnected networks
- Host: network endpoints (computer, PDA, light switch, ...)
- Router: node that connects networks
 - How do we translate?

Flow controlFragmentationEtc....

Layering Characteristics

- Each layer relies on services from layer below and exports services to layer above
- Interface defines interaction
- Hides implementation layers can change without disturbing other layers (black box)

User A

User B

Application

Transport

Network

Link

Host

Layering: technique to simplify complex systems

E.g.: OSI Model: 7 Protocol Layers

- · Physical: how to transmit bits
- · Data link: how to transmit frames
- Network: how to route packets
- Transport: how to send packets end2end
- Session: how to tie flows together
- Presentation: byte ordering, security
- · Application: everything else

Is Layering Harmful?

- · Sometimes...
 - Layer N may duplicate lower level functionality (e.g., error recovery)
 - Layers may need same info (timestamp, MTU)
 - Strict adherence to layering may hurt performance

Next Lecture: Design Considerations

- How to determine split of functionality
 - Across protocol layers
 - Across network nodes
- Assigned Reading
 - [SRC84] End-to-end Arguments in System Design
 - [Cla88] Design Philosophy of the DARPA Internet Protocols
- · Optional Reading
 - [CT90] Architectural Considerations for a New Generation of Protocols

Homework 0

- Email xil@cs.cmu.edu & srini@cs.cmu.edu
 - 4 lecture choices for critique/public review
 - 1 topic choice for first TBD lecture
 - 1 sentence version of project interest & list of project partner
 - E.g., I want to apply game theory to network routing.
- · Register on discussion site
 - Post response for 1st two papers (extended deadline – 9am Friday)

Layer Encapsulation

User A

Get index.html

Connection ID

Link Address

40

