## Carnegie Mellon Computer Science Department. 15-744 Spring 2007 Problem Set 2

This problem set has 4 questions (each with several parts). Answer them as clearly and concisely as possible. You may discuss ideas with others in the class, but your solutions and writeup must be your own. If you do discuss at length with others, please mention in your solution for the problem who you collaborated with. Do not look at anyone else's solutions or copy them from anywhere.

This assignment is due by 5:00pm, Wed, Oct 14th to the course secretary in Gates 9118.

## A BGP Tables

Route servers (e.g. those available at http://www.traceroute.org/#Route%20Servers) are BGP speaking routers with a publicly accessible interface. In other words, you can telnet to these routers and access their full BGP tables.

route-views.oregon-ix.net is one such route server hosted at the University of Oregon. One use of this route server is that you can potentially get the route(s) from any AS X to any AS Y at an AS path level. You can also get the routes that *almost* any AS X would take to reach a given address prefix P.

For this exercise, download the following routing table entries from the RouteViews server at:

 $http://www.cs.cmu.edu/\sim dga/15-744/S07/ps2/oix-full-snapshot-2007-02-14-1800.dat.bz2$ 

Warning: this is 13 MB! You can use the bzcat command-line program to read it without decompressing it all. Although you only need a small part of this table to answer the following questions, you should to learn how to navigate large datasets like this efficiently. (Hint: write some code)

RouteViews has archived their BGP tables since 1997. You can examine more of them at:

#### http://archive.routeviews.org

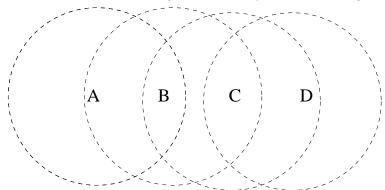
- (a) CMU owns the address block 128.2.0.0/16. Using this information, can you figure out the ISP CMU uses (the AS number of the ISP)? Using the whois service at http://www.arin.net/whois/or the whois command-line program, determine who this AS number actually corresponds to (the name of the ISP). Note: some address blocks allocated pre-CIDR appear without the netmask in the table; i.e., CMU's address block appears as 128.2.0.0. Three, two, and one trailing 0 octets imply a class A (/8), class B (/16), or class C (/24) network, respectively.
- (b) Print the best AS route from the route server to CMU.
- (c) What is the AS number of MIT? List all providers of mit.edu that you can infer from the table. (Hint: MIT is one of the few class A networks. You can use nslookup to get the IP address for a host at MIT)
- (d) Some of the routes to MIT repeat its AS number multiple times. Why would they do that? What does this tell you about the upstream provider in those paths?
- (e) Find the first "Class C" CIDR address in the table (address prefix ≥ 192.0.0.0). How many class C networks does this address correspond to? What is the maximum number of routing table entries that this single CIDR address saves? Why is it that we can only infer the maximum, and not the actual, number of addresses that this CIDR address saves?

You can get more information if you log into this route server by executing:

### telnet route-views.oregon-ix.net

Run sh ip bgp at the prompt and you get the entire BGP table, shown one screen after another (much like when you execute more). In general you can type sh ip BGP? for help on the possible extensions to the sh ip bgp command. For example, you can use the help to figure out that sh ip bgp 12.0.0.0 will give you all the routes from oregon-ix to 12.0.0.0/8.

#### **Solution:**


- (a) **6 points.** The AS number of CMU is 9. The AS number of the ISP CMU uses is 5050. This corresponds to PSC.
- (b) 6 points. The AS path is: 1239 5050 9.
- (c) 6 points. The AS number of MIT is 3. The providers are AS 10578 (Harvard University) (this could be a sibling relationship or a mutual backup), AS 3356 (Level 3 Communications), AS 174 (Cogent), and AS 1239 (Sprint).

- (d) **6 points.** Several of the routes through Cogent (174) have AS 3 duplicated. This is one way to make AS paths longer so that they are less likely to be chosen via BGP's shortest path preference. This is most likely because MIT's link to Cogent is a backup link.
- (e) **6 points.** 192.0.32.0/20 is the first CIDR address in the "Class C" range of addresses. A class C network is a /24, so this corresponds to  $2^4 = 16$  class C networks. This saves up to 15 routing table entries compared with when we had classful networks, since we only need one entry for up to 16 different class C networks. (In the CIDR world, there could be up to  $2^{12} = 4096$  networks in here.)

We can't infer the actual number of addresses this CIDR address saves because we don't know how many of those class C networks are actually in use.

# B RTS/CTS

Consider the following topology of wireless laptops A, B, C and D. The dotted lines indicate the range of wireless transmissions from each node. For example, B is within range of A, A & C are within range of B, B & D are within range of C and only C is within range of D.



Assume that each node uses an RTS/CTS based MAC protocol (i.e. like MACAW)

2. If C is sending B an RTS, why does A know not to transmit?

Solution: 4 points A hears the CTS

3. If B is sending data to C, why does D know not to transmit?

Solution: 4 points D heard the CTS from C

4. Using the nodes above, give an example of the hidden terminal problem.

**Solution:** 4 points If A wants to transmit to B and C wants to transmit to D, the transmissions will clobber each other, even though A and C cannot hear each others transmissions.

5. Irene Packet is considering implementing a walkie-talkie service for her wireless PDAs. Her program largely uses small packets to avoid delaying any voice. Should Irene use RTS/CTS for her deployment? Why?

**Solution:** 4 points No. RTS/CTS is primarily to permit collision resolution to finish quickly. The overhead of RTS/CTS isn't worth it for really small packets.

## C Collision Detection

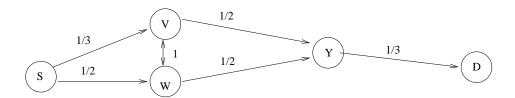
- 6. The first random media access control (MAC) protocol developed in 1970 was the ALOHA protocol developed for wireless networks, which was a major building block for the Ethernet protocol. ALOHA's basic "collision" detection technique was that, after every transmission, the transmitter waited for an acknowledgement packet from the receiver to know that the transmission was successful. If an ACK was not received within a time period, the sender decided to retransmit the packet. Answer the following short questions.
  - (a) ALOHA's "collision detection" technique in wireless networks is not truly collision detection. Why doesn't the ACK technique accurately detect collisions in wireless networks?

**Solution:** A failure to receive an ACK does not necessarily mean a collision occurred. The packet could have been corrupted due to other sources of wireless interference that can cause the reception to be corrupt.

(b) Ethernet, on the other hand, does not use ACK packets to detect collisions on the network. It has a true collision detection technique by which it ensures that a minimum packet size allows a sender to hear another transmission during its own transmission. What are the benefits of this over using an ACK to ensure successful transmission?

**Solution:** By using ACKs, you require that the medium is idle for some time while another transmitter transmits an ACK and you receive it. This means that you are wasting additional link capacity for the purpose of determining success. Additionally, ACK packets can be lost or corrupted. If a frame is corrupted, you also waste idle time on the link while no ACK is transmitted.

(c) After collision detection was developed for Ethernet, its technique was not adopted by wireless networks. Why is it not possible to achieve true collision detection in wireless networks?


**Solution:** It is not possible due to the hardware. The transmission power from the sender is so great that it cannot detect another lower powered transmission at its receiver.

(d) Finally, in wireless and wired protocols alike, a backoff occurs once a collision is detected. What is the purpose of the backoff, and why is the backoff value chosen randomly?

**Solution:** The purpose of the backoff and random value is that so the two senders do not collide again by immediately transmitting again at the same time. Also, by choosing random backoff values we introduce some amount of fairness in the network.

#### $\mathbf{D}$ ETX-OR

Consider the wireless network pictured below. Assume that links experience Bernoulli losses. The labeled edges indicate the combined delivery ratio (i.e., the probability that a packet is successfully received in the forward direction and that the acknowledgement is received in the reverse direction). V and W can hear each other perfectly. If there is no edge, assume that no packets make it through.



7. Assume that the link layer performs retransmissions. What is the expected number of transmissions to send one packet from S to D using the ETX metric along the path S-W-Y-D?

Solution: 5 points.

path ETX = 
$$\sum_{hops}$$
 link ETX (1)  
=  $\sum_{hops} \frac{1}{\text{Link loss rate}}$ 

$$= \sum_{hops} \frac{1}{\text{Link loss rate}} \tag{2}$$

$$= 2+2+3$$
 (3)

$$= 7 \tag{4}$$

8. What is the expected number of transmissions needed to send a packet from S to D using ExOR? (Assume that there are enough packets in the batch so that the overhead of ExOR headers and its batch maps is insignificant, and that batch maps are received 100% reliably.)

Solution: 5 points. To analyze ExOR, split it into two parts: 1) the number of transmissions needed to successfully reach Y; (2) the number of transmissions from Y to D, which we know from above is simply 3.

Assuming losses on the paths are independent, when S broadcasts, there is a 1/3 chance that the packet reaches V and a 1/2 chance that the packet reaches W. Regardless of which of these nodes gets the packet, ExOR would then require expected 2 hops to reach Y. So the ETX is the expected number of hops to reach either V or W.

$$P[VorW] = 1 - P[!Vand!W] \tag{5}$$

$$= 1 - P[!V]P[!W] \tag{6}$$

$$= 1 - P[!V]P[!W]$$

$$= 1 - \frac{1}{2} \frac{2}{3}$$
(6)

$$= \frac{2}{3} \tag{8}$$

The path ETX with ExOR is thus 1.5 + 2 + 3 = 6.5.