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Overview 

•  Routing privacy 

•  Web Privacy 

•  Wireless Privacy 

slide 3 

Randomized Routing 

•  Hide message source by routing it randomly 
•  Popular technique: Crowds, Freenet, Onion routing 

•  Routers don’t know for sure if the apparent 
source of a message is the true sender or 
another router 

Onion Routing 

•  Sender chooses a random sequence of routers  
•  Some routers are honest, some controlled by attacker 
•  Sender controls the length of the path 
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Route Establishment 

R4 

R1 

R2 R3 
Bob Alice 

{R2,k1}pk(R1),{                                                                                               }k1 

{R3,k2}pk(R2),{                                                                    }k2 

{R4,k3}pk(R3),{                                         }k3 

{B,k4}pk(R4),{               }k4 

{M}pk(B) 

 Routing info for each link encrypted with router’s public key 
 Each router learns only the identity of the next router 

Tor 
•  Second-generation onion routing network 

•  http://tor.eff.org 
•  Developed by Roger Dingledine, Nick Mathewson 

and Paul Syverson 
•  Specifically designed for low-latency anonymous 

Internet communications 
•  Running since October 2003 
•  100s nodes on four continents, thousands of 

users 
•  “Easy-to-use” client proxy 

•  Freely available, can use it for anonymous 
browsing 
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How does Tor work? How does Tor work? 
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Tor Circuit Setup (1) 

•  Client proxy establish a symmetric session 
key and circuit with Onion Router #1 

slide 9 

Tor Circuit Setup (2) 

•  Client proxy extends the circuit by establishing 
a symmetric session key with Onion Router #2 
•  Tunnel through Onion Router #1 (don’t need     ) 
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Tor Circuit Setup (3) 

•  Client proxy extends the circuit by 
establishing a symmetric session key with 
Onion Router #3 
•  Tunnel through Onion Routers #1 and #2 

slide 11 

Using a Tor Circuit 

•  Client applications connect and communicate 
over the established Tor circuit 
•  Datagrams are decrypted and re-encrypted at each 

link 

slide 12 
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Location Hidden Servers 

•  Goal: deploy a server on the Internet that 
anyone can connect to without knowing 
where it is or who runs it 

•  Accessible from anywhere 
•  Resistant to censorship 
•  Can survive full-blown DoS attack 
•  Resistant to physical attack 

•  Can’t find the physical server! 
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Creating a Location Hidden Server 

slide 14 

Server creates onion routes 
to “introduction points” 

Server gives intro points’ 
descriptors and addresses  
to service lookup directory 

Client obtains service 
descriptor and intro point 
address from directory 

Using a Location Hidden Server 

slide 15 

Client creates onion route 
to a “rendezvous point” 

Client sends address of the 
rendezvous point and any 
authorization, if needed, to 
server through intro point 

If server chooses to talk to client, 
connect to rendezvous point 

Rendezvous point 
mates the circuits 
from client & server 
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Overview 

•  Routing privacy 

•  Web Privacy 

•  Wireless Privacy 
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An “Old” Problem 

•  Many governments/companies trying to limit 
their citizens’ access to information 
•  Censorship (prevent access) 
•  Punishment (deter access) 
•  China, Saudi Arabia, HP 

•  How can we defeat such attempts? 
•  Circumvent censorship 
•  Undetectably 

Proxy-Based Web Censorship 

•  Government manages national web firewall 
•  Not optional---catches ALL web traffic 

•  Block certain requests 
•  Possibly based on content 
•  More commonly on IP address/publisher 
•  China: Western news sites, Taiwan material 

•  Log requests to detect troublemakers 
•  Even without blocking, may just watch traffic 

•  But they don’t turn off the whole net 
•  Creates a crack in their barrier 
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Goal 

•  Circumvent censor via innocent web activity   
•  Normal web server and client cooperate to 

create covert channel 
•  Without consequence for client 
•  And without consequence for server 

•  Broad participation increases system 
robustness 

•  Ensure offering service doesn’t lead to trouble  
•  e.g., loss of business through being blocked 
•  Also, “law knows no boundaries” 

19 

The Big Picture 

20 
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Requirements 

•  Client deniability 
•  Detection could be embarrassing or worse 

•  Client statistical deniability 
•  Even suspicion could be a problem 

•  Server covertness/statistical deniability 
•  If server detected, can be blocked 

•  Communication robustness 
•  Even without detecting, censor could scramble 

covert channel 
•  Performance (bandwidth, latency) 
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(Un)related Work 

•  SSL 
•  Encrypted connection---can’t tell content 
•  Suspicious! 
•  Doesn’t help reach blocked servers 
•  Govt. can require revealing SSL keys 

•  Anonymizing Proxies 
•  Prevent servers from knowing identity of client 
•  But proxy inside censor can’t reach content 
•  And proxy outside censor can be blocked 
•  And use of proxy is suspicious 
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Safeweb/Triangle boy 

•  Operation 
•  Client contacts triangle-boy “reflector” 
•  Reflector forwards requests to blocked server 
•  Server returns content to client (IP spoof) 

•  Circumvents censorship 
•  But still easily detected 

•  “Local monitoring of the user only reveals an 
encrypted conversation between User and 
Triangle Boy machine.”  (Safeweb manual) 

24 

Summary 

•  Easy to hide what you are getting 
•  Just use SSL 

•  And easy to circumvent censors 
•  Safeweb 

•  But hard to hide that you are doing it 
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Circumventing Censors 

•  Censors allow certain traffic 
•  Use to construct a covert channel 

•  Talk to normal servers 
•  Embed requests for censored content in 

normal-seeming requests 
•  Receive censored content hidden in normal-

seeming responses 
•  Requester: client asking for hidden content 
•  Responder: server covertly providing it 

System Architecture 
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Receiving Content is Easier Half 

•  Responder is a normal web server, serving 
images (among other things) 

•  Encrypt data using requestor key 
•  Embed in “unimportant, random” bits of 

images 
•  E.g., high order color bits 
•  Watermarking 

•  Encrypted data looks random---only 
requestor can tell it isn’t (and decrypt) 
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Example 

•  One image has embedded content 
•  You can’t tell which (shows it’s working) 
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Goals Analysis 

•  Client looks innocent (receives images) 
•  Infranet users & nonusers indistinguishable 

•  Server less so 
•  Any one image seems innocent 
•  But same image with different “random bits” in 

each copy is suspicious 
•  Evasion: never use same image-URL twice 

•  Justify: per-individual customized web site 
•  Human inspection might detect odd URL usage 

•  Evasion: use time-varying image (webcam) 
•  Performance: 1/3 of image bits 
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Upstream (Requests) is Harder 

•  No “random content bits” that can be fiddled to 
send messages to responder 

•  Solution: let browsing pattern itself be the 
message 

•  Suppose web page has k links.   
•  GET on ith link signifies symbol “i” to requestor 
•  Result: log2(k) message bits from link click 

•  Can be automated 
•  To prevent censor from seeing message, 

encrypt with responder key  
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Goals Analysis 

•  Deniability: requestor generates standard 
http GETs to allowed web sites 
•  Fact of GETs isn’t itself proof of wrongdoing 
•  Known rule for translating GETs to message, but 

message is encrypted, so not evidence 
•  Statistical deniability 

•  Encrypting message produces “random” string 
•  Sent via series of “random” GETs 
•  Problem: normal user browsing not random 

•  Some links rare 
•  Conditional dependence of browsing on past browsing 
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Performance vs. Deniability 

•  Middling deniability, poor performance 
•  Request URL may be (say) 50 characters 
•  16 Links/Page (say) means 4 bits 
•  So need 100 GETs to request one URL! 
•  And still poor statistical deniability 

•  Can we enhance deniability? 
•  Yes, by decreasing performance further 

•  Can we enhance performance? 
•  Yes, and enhance deniability at same time 
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Paranoid Alternative 

•  Settle for one message bit per GET 
•  Odd/even links on page 
•  Or generalize to “mod k” for some small k 

•  User has many link choices for each bit 
•  Can choose one that is reasonable 
•  Incorporate error correcting code in case no 

reasonable next link sends correct bit 
•  Drawback: user must be directly involved in 

sending each message bit 
•  Very low bandwidth vs time spent 
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Higher Performance 

•  Idea: arithmetic coding of requests 
•  If request i has probability pi, then entropy of 

request distribution is –Σ pi log pi 
•  Arithmetic coding encodes request i using log pi 

bits 
•  Result: expected request size equals entropy 
•  Optimal 

•  Problem: requestor doesn’t know probability 
distribution of requests 
•  Doesn’t have info needed for encoding 

Solution: Range Mapping 
•  Adler-Maggs 
•  Exploit asymmetric bandwidth 
•  Responder sends probability distribution to 

requester using easy, downstream path 
•  Requestor uses this “dictionary” to build 

arithmetic code, send encoded result 
•  Variation for non-binary 

•  Our messages aren’t bits, they are clicks 
•  And server knows different clicks should have 

different probabilities 
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Toy Example 
•  Suppose possible requests fewer than links on 

page 
•  Responder sends dictionary:  

•  “link 1 means http://mit.edu” 
•  “link 2 means http://stanford.edu” 
•  Assigns common requests to common GETs 

•  Requestor GETs link matching intended 
request 

•  One GET sends full (possibly huge) request  
•  Problem: in general, ∞ possible requests 

•  Can’t send a dictionary for all 

36 
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Overview 

•  Routing privacy 

•  Web Privacy 

•  Wireless Privacy 

      Our Wireless World 
tcpdump 

PrivatePhoto1.jpg Link Layer 
Header 

Link Layer 
Header 

Home location=(47.28,
… 

Link Layer 
Header 

Buddy list: Alice, Bob, 
… 

PrivateVideo1.avi Link Layer 
Header 

Link Layer 
Header Blood pressure: high 
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Best Security Practices 

SSID:	
  Bob’s	
  Network	
  
Key:	
  0x2384949…	
  

Discover 
802.11 probe Is Bob’s Network here? 

802.11 beacon Bob’s Network is here 

Username:	
  Alice	
  
Key:	
  0x348190…	
  

802.11 auth Proof that I’m Alice  

802.11 auth Proof that I’m Bob 

Authenticate 
and Bind 

802.11 header   

802.11 header   
Send Data 

Bootstrap 

Out-of-band (e.g., password, WiFi 
Protected Setup) 

tcpdump 

• Confidentiality 
• Authenticity 
•  Integrity 
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802.11 header   
Send Data 

MAC addr, seqno, … 

Bootstrap 

SSID:	
  Bob’s	
  Network	
  
Secret:	
  0x2384949…	
  

Username:	
  Alice	
  
Secret:	
  0x348190…	
  

Privacy Problems Remain 

Discover 
802.11 probe Is Bob’s Network here? 

802.11 beacon Bob’s Network is here 

tcpdump 

802.11 auth Proof that I’m Alice  

802.11 auth Proof that I’m Bob 
Authenticate 

and Bind 

Is Bob’s Network here? 

Proof that I’m Bob 

Bob’s Network is here 

MAC addr, seqno, … 

Many exposed bits are (or can be used as) 
identifiers that are linked over time 

• Confidentiality 
• Authenticity 
•  Integrity 

40 
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Problem: Long-Term Linking 

41 

Alice	
   Alice?	
  

MAC: 12:34:56:78:90:ab 

Alice’s iPod is here 802.11 beacon Alice’s iPod is here 802.11 beacon 

Easy	
  to	
  idenGfy	
  and	
  relate	
  devices	
  over	
  Gme	
  

Is Alice’s iPod here? 802.11 probe 

tcpdump 

MAC: 12:34:56:78:90:ab 

Alice’s	
  friend?	
  

Problem: Long-Term Linking 

42 

www.bluetoothtracking.org 

Linking enables location tracking, user profiling, 
inventorying, relationship profiling, …  
[Greenstein, HotOS ’07; Jiang, MobiSys ’07; Pang, MobiCom ’07, HotNets ’07] 

Hom
e 

www.wigle.net 

802.11 header   Is “djw” here? “djw” is here 

Alice -> 
AP 

00:00:99:99:11:11 

12:34:56:78:90:a
b 

12:34:56:78:90:a
b 

Alice -> 
AP 

00:00:99:99:11:11 

Alice -> 
AP 

00:00:99:99:11:11 

12:34:56:78:90:a
b 

12:34:56:78:90:a
b 

Problem: Short-Term Linking 

43 

12:34:56:78:90:ab, seqno: 1, 
… 
12:34:56:78:90:ab, seqno: 2, 
… 

12:34:56:78:90:ab, seqno: 3, 
… 

12:34:56:78:90:ab, seqno: 4, 
… 

00:00:99:99:11:11, seqno: 103, 
… 

00:00:99:99:11:11, seqno: 104, 
… 

00:00:99:99:11:11, seqno: 102, 
… 

Easy	
  to	
  isolate	
  disGnct	
  packet	
  streams	
  

3-9 data streams overlap 
each 100 ms, on average 

tcpdump 

Problem: Short-Term Linking 

44 

Isolated	
  data	
  streams	
  are	
  more	
  suscepGble	
  to	
  side-­‐
channel	
  analysis	
  on	
  packet	
  sizes	
  and	
  Gming	
  

–  Exposes	
  keystrokes,	
  VoIP	
  calls,	
  webpages,	
  movies,	
  …	
  
[Liberatore,	
  CCS	
  ‘06;	
  Pang,	
  MobiCom	
  ’07;	
  Saponas,	
  Usenix	
  Security	
  ’07;	
  	
  
Song,	
  Usenix	
  Security	
  ‘01;	
  Wright,	
  IEEE	
  S&P	
  ‘08;	
  Wright,	
  Usenix	
  Security	
  ‘07]	
  

≈ 
DFT 

transmission sizes transmission sizes 

300 
250 
200 

100 
500 

120 
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Bootstrap 

SSID:	
  Bob’s	
  Network	
  
Secret:	
  0x2384949…	
  

Username:	
  Alice	
  
Secret:	
  0x348190…	
  

Fundamental Problem 

45 

Discover 
802.11 probe Is Bob’s Network 

here? 
802.11 beacon Bob’s Network is 

here 

tcpdump 

802.11 auth Proof that I’m Alice  

802.11 auth Proof that I’m Bob 

Authenticate 
and Bind 

Send Data 

Many exposed bits are (or can be used as) 
identifiers that are linked over time 

Is Bob’s Network here? 

Proof that I’m Bob 

Bob’s Network is here 

MAC addr, seqno, … 

MAC addr, seqno, … 

Discover 

Goal: Make All Bits Appear Random 

46 

Authenticate 
and Bind 

Send Data 

Bootstrap 

SSID:	
  Bob’s	
  Network	
  
Key:	
  0x2384949…	
  

Username:	
  Alice	
  
Key:	
  0x348190…	
  

tcpdump 

?

Challenge: Filtering without Identifiers 

47 

Which	
  packets	
  are	
  mine?	
   Which	
  packets	
  are	
  mine?	
  

Design Requirements 

•  When A generates Message to B, she sends: 
 PrivateMessage                 =               F(A, B, Message) 

where F has these properties: 
–  Confidentiality: Only A and B can determine Message. 
–  Authenticity:  B can verify A created PrivateMessage. 
–  Integrity:  B can verify Message not modified. 

–  Unlinkability:  Only A and B can link PrivateMessages 
   to same sender or receiver. 

–  Efficiency:  B can process PrivateMessages as fast  
   as he can receive them. 

48 

A→B  Header… Unencrypted payload 
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Solution Summary 

Un
lin
ka
bil
ity
	
  

Int
eg
rit
y	
  

Au
th
en
1c
ity
	
  

Effi
cie
nc
y	
  

Co
nfi
de
n1
ali
ty
	
  

802.11	
  WPA	
  

MAC Pseudonyms 

Public Key 
Symmetric Key 

SlyFi: Discovery/Binding 

SlyFi: Data packets 
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Only	
  
Data	
  

Payload	
  

Only	
  
Data	
  

Payload	
  

Only	
  
Data	
  

Payload	
  

Straw man: MAC Pseudonyms 

•  Idea: change MAC address periodically 
•  Per session or when idle [Gruteser ’05, Jiang ‘07] 

•  Other fields remain (e.g., in discovery/
binding) 
•  No mechanism for data authentication/encryption 
•  Doesn’t hide network names during discovery or 

credentials during authentication 

•  Pseudonyms are linkable in the short-term 
•  Same MAC must be used for each association 
•  Data streams still vulnerable to side-channel leaks 
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Solution Summary 
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Only	
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Term	
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Only	
  
Data	
  

Payload	
  

Only	
  
Data	
  

Payload	
  

Straw man: Encrypt Everything 

52 

Bootstrap 

SSID:	
  Bob’s	
  Network	
  
Key:	
  0x2384949…	
  

Username:	
  Alice	
  
Key:	
  0x348190…	
  

Discover 

Authenticat
e 

and Bind 

Send Data 

Idea:	
  Use	
  bootstrapped	
  keys	
  to	
  encrypt	
  everything	
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Straw man: Public Key Protocol 

Probe	
  “Bob”	
  

Key-­‐private	
  encrypGon	
  
(e.g.,	
  ElGamal)	
  

KBob	
  

Check	
  signature:	
  

Try	
  to	
  decrypt	
  

K-­‐1Bob	
  

KAlice	
  

Based	
  on	
  [Abadi	
  ’04]	
  

K-­‐1Alice	
  Sign:	
   Slow!	
  (>100ms)	
  

Client	
   Service	
  

53 

Straw man: Symmetric Key Protocol 

Probe	
  “Bob”	
  

Client	
   Service	
  

Symmetric	
  encrypGon	
  
(e.g.,	
  AES	
  w/	
  random	
  IV)	
  

Check	
  MAC:	
  

MAC:	
   KAB	
  

KAB	
  

KAB	
  

Try	
  to	
  
decrypt	
  

with	
  each	
  	
  
shared	
  key	
  

KShared1	
  
KShared2	
  
KShared3	
  

…	
  

Slow!	
  (scales	
  w/	
  #	
  keys)	
  

54 

Different symmetric key per potential sender 

Can’t identify the 
decryption key in 
the packet or 
else it is linkable 

Solution Summary 
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MAC	
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Public	
  Key	
  Protocol	
  
Symmetric	
  Key	
  Protocol	
  

SlyFi: Discovery/Binding 

SlyFi: Data packets 

Long	
  
Term	
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Only	
  
Data	
  

Payload	
  

Only	
  
Data	
  

Payload	
  

Only	
  
Data	
  

Payload	
  

SlyFi 
•  Symmetric key almost works, but tension 

between: 
•  Unlinkability: can’t expose the identity of the key 
•  Efficiency: need to identify the key to avoid trying all keys 

•  Idea: Identify the key in an unlinkable way 

•  Approach: 
•  Sender A and receiver B agree on tokens:  T1  , T2  , T3  , … 

•  A attaches Ti     to encrypted packet for B 

56 

AB	
  

AB	
  

AB	
   AB	
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SlyFi 

Probe	
  “Bob”	
  

Client	
   Service	
  

Symmetric	
  encrypGon	
  
(e.g.,	
  AES	
  w/	
  random	
  IV)	
  

Check	
  MAC:	
  

MAC:	
   KAB	
  

KAB	
  

KAB	
  

KAB	
  

Lookup	
  Ti	
  	
  	
  	
  	
  in	
  a	
  
table	
  to	
  get	
  KAB	
  

Ti      
AB	
  

AB	
  

57 

  Required properties: 
–  Third parties can not link Ti    and Tj    if i ≠ j 
–  A doesn’t reuse Ti	
   
–  A and B can compute Ti    independently 

AB	
   AB	
  

AB	
  

AB	
  

Ti	
  	
  	
  	
  =	
  	
  AESK	
  	
  	
  (i)	
  AB	
  

AB	
  Ti	
  	
  	
  	
  =	
  	
  AESK	
  	
  	
  (i)	
  AB	
  

AB	
  

Main	
  challenge:	
  
Sender	
  and	
  receiver	
  must	
  synchronize	
  i	
  

SlyFi: Data Transport 

• Data messages: 
•  Only sent over established connections 
⇒ Expect messages to be delivered 
⇒ Use implicit transmission number to synchronize i 

Ti	
  	
  	
  	
  =	
  	
  AESK	
  	
  	
  (i)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  where	
  i	
  =	
  transmission	
  #	
  
AB	
  

AB	
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Ti     
AB	
  

Ti+1 AB	
  

Ti +2 AB	
  

Ti +3 AB	
  

SlyFi: Data Transport 

• Data messages: 
•  Only sent over established connections 
⇒ Expect messages to be delivered 
⇒ Use implicit transmission number to synchronize i 

Ti	
  	
  	
  	
  =	
  	
  AESK	
  	
  	
  (i)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  where	
  i	
  =	
  transmission	
  #	
  
AB	
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•  On receipt of Ti  , B computes next expected: Ti+1 
•  Handling message loss: 

–  On receipt of Ti   save Ti+1, … , Ti+k  in table 

–  Tolerates k consecutive losses (k=50 is enough) 
–  No loss ⇒ compute one token per reception 

AB	
  

AB	
   AB	
  AB	
  

AB	
   AB	
  

SlyFi: Discovery/Binding 

• Discovery & binding messages: 
•  Often sent when other party is not present 
⇒ Can’t expect most messages to be delivered 
⇒ Can’t rely on transmission reception to synchronize i 

60 

Is Bob’s Network here? Ti     
AB	
  

i = ? 

Is Bob’s Network here? Ti +1 
AB	
  

Is Bob’s Network here? Ti +3 
AB	
  

Is Bob’s Network here? Ti +2 
AB	
  

.. 
.. 

…
... 

Nope. 

Nope. 

Nope. 
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SlyFi: Discovery/Binding 

• Discovery & binding messages: 
•  Infrequent: only sent when trying to associate 

•  Narrow interface: single application, few side-channels 
⇒ Linkability at short timescales is usually OK 
⇒ Use loosely synchronized time to synchronize i 

Ti	
  	
  	
  	
  =	
  	
  AESK	
  	
  	
  (i)	
  	
  	
  	
  	
  	
  	
  	
  where	
  i	
  =	
  ⎣current	
  Gme/5	
  min⎦	
  
AB	
  

AB	
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802.11 probe 
802.11 beacon 

802.11 auth 
802.11 auth 

Ti     
AB	
  

Ti     
AB	
  

Ti     
BA	
  

Ti     
BA	
  

SlyFi: Discovery/Binding 

• Discovery & binding messages: 
•  Infrequent: only sent when trying to associate 

•  Narrow interface: single application, few side-channels 
⇒ Linkability at short timescales is usually OK 
⇒ Use loosely synchronized time to synchronize i 

Ti	
  	
  	
  	
  =	
  	
  AESK	
  	
  	
  (i)	
  	
  	
  	
  	
  	
  	
  	
  where	
  i	
  =	
  ⎣current	
  Gme/5	
  min⎦	
  
AB	
  

AB	
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•  At the start of time interval i compute Ti 
•  Handling clock skew: 

–  Receiver B saves Ti-s, … , Ti+s  in table 

–  Tolerates clock skew of 5⋅s minutes 

AB	
  AB	
  

AB	
  

Solution Summary 
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65 

Overview 

•  P2P Privacy 

66 

Freenet 
•  Addition goals to file location: 

•  Provide publisher anonymity, security  
•  Resistant to attacks – a third party shouldn’t be able to 

deny the access to a particular file (data item, object), 
even if it compromises a large fraction of machines 

•  Files are stored according to associated key 
•  Core idea: try to cluster information about similar keys 

•  Messages 
•  Random 64bit ID used for loop detection 
•  TTL 

•  TTL 1 are forwarded with finite probablity 
•  Helps anonymity 

•  Depth counter  
•  Opposite of TTL – incremented with each hop 
•  Depth counter initialized to small random value 
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Data Structure 

•  Each node maintains a common stack 
•  id – file identifier 
•  next_hop – another node that store the file id 
•  file – file identified by id being stored on the local 

node  
•  Forwarding:  

•  Each message contains the file id it is referring to 
•  If file id stored locally, then stop 

•  Forwards data back to upstream requestor 
•  Requestor adds file to cache, adds entry in routing 

table 
•  If not, search for the “closest” id in the stack, and 

forward the message to the corresponding 
next_hop 

id   next_hop     file 

…
 

…
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Query Example 

Note: doesn’t show file caching on the 
reverse path  

  4  n1  f4 
12  n2  f12 
  5  n3 

  9  n3  f9 

  3  n1  f3 
14  n4  f14 
  5  n3 

14  n5  f14 
13  n2  f13 
  3  n6 

n1 n2 

n3 

n4 

  4  n1  f4 
10  n5  f10 
  8  n6 

n5 

query(10) 

1 

2 

3 

4 

4’ 

5 
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Freenet Requests 
•  Any node forwarding reply may change the source of the 

reply (to itself or any other node) 
•  Helps anonymity 

•  Each query is associated a TTL that is decremented each 
time the query message is forwarded; to obscure distance 
to originator: 
•  TTL can be initiated to a random value within some bounds 
•  When TTL=1, the query is forwarded with a finite probability 

•  Each node maintains the state for all outstanding queries 
that have traversed it  help to avoid cycles 

•  If data is not found, failure is reported back 
•  Requestor then tries next closest match in routing table 
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Freenet Request 

1 

A B 

C 

D 

E 
F 

Data Request 
Data Reply 
Request Failed 

2 
3 

12 

6 
7 

4 
11 10 

9 
5 

8 
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Freenet Search Features 

•  Nodes tend to specialize in searching for 
similar keys over time 
•  Gets queries from other nodes for similar keys 

•  Nodes store similar keys over time 
•  Caching of files as a result of successful 

queries 
•  Similarity of keys does not reflect similarity 

of files 
•  Routing does not reflect network topology 
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Freenet File Creation 
•  Key for file generated and searched  helps 

identify collision 
•  Not found (“All clear”) result indicates success 
•  Source of insert message can be change by any 

forwarding node 
•  Creation mechanism adds files/info to locations 

with similar keys 
•  New nodes are discovered through file creation 
•  Erroneous/malicious inserts propagate original file 

further 
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Cache Management 

•  LRU Cache of files 
•  Files are not guaranteed to live forever 

•  Files “fade away” as fewer requests are made 
for them 

•  File contents can be encrypted with original 
text names as key 
•  Cache owners do not know either original name 

or contents  cannot be held responsible 
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Freenet Naming 

•  Freenet deals with keys 
•  But humans need names 
•  Keys are flat  would like structure as well 

•  Could have files that store keys for other 
files 
•  File /text/philiosophy could store keys for files in 

that directory  how to update this file though? 
•  Search engine  undesirable centralized 

solution 
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Freenet Naming - Indirect files 
•  Normal files stored using content-hash key 

•  Prevents tampering, enables versioning, etc. 
•  Indirect files stored using name-based key 

•  Indirect files store keys for normal files 
•  Inserted at same time as normal file 

•  Has same update problems as directory files 
•  Updates handled by signing indirect file with public/

private key 
•  Collisions for insert of new indirect file handled specially 
 check to ensure same key used for signing 

•  Allows for files to be split into multiple smaller 
parts 
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How does Tor work? How does Tor work? 

How does Tor work? Building a circuit 

Create c1, 
E(gx1) 

Created c1, 
gy1, H(K1) 

Relay c1 
(Extend, OR2, 
E(gx1)) 

Create c2 E
(gx2) 

Created c2, 
gy2, H(K2) 

Relay c1
(Extended, gy2, 
H(K2) 
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Fetching a web page 

Last onion router should get the IP address of Bob’s 
website to protect Alice’s anonymity. 

Relay c1 (Begin 
<Bob>) 

Relay c2 (Begin 
<Bob>) 

TCP Handshake 

Relay c2 
(Connected) Relay c1 

(Connected) 
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