
1

15-744: Computer Networking

L-23 Privacy

2

Overview

•  Routing privacy

•  Web Privacy

•  Wireless Privacy

slide 3

Randomized Routing

•  Hide message source by routing it randomly
•  Popular technique: Crowds, Freenet, Onion routing

•  Routers don’t know for sure if the apparent
source of a message is the true sender or
another router

Onion Routing

•  Sender chooses a random sequence of routers
•  Some routers are honest, some controlled by attacker
•  Sender controls the length of the path

slide 4

R
R4

R1
R2

R

R
R3

Bob

R

R

R
Alice

2

slide 5

Route Establishment

R4

R1

R2 R3
Bob Alice

{R2,k1}pk(R1),{ }k1

{R3,k2}pk(R2),{ }k2

{R4,k3}pk(R3),{ }k3

{B,k4}pk(R4),{ }k4

{M}pk(B)

 Routing info for each link encrypted with router’s public key
 Each router learns only the identity of the next router

Tor
•  Second-generation onion routing network

•  http://tor.eff.org
•  Developed by Roger Dingledine, Nick Mathewson

and Paul Syverson
•  Specifically designed for low-latency anonymous

Internet communications
•  Running since October 2003
•  100s nodes on four continents, thousands of

users
•  “Easy-to-use” client proxy

•  Freely available, can use it for anonymous
browsing

slide 6

How does Tor work? How does Tor work?

3

Tor Circuit Setup (1)

•  Client proxy establish a symmetric session
key and circuit with Onion Router #1

slide 9

Tor Circuit Setup (2)

•  Client proxy extends the circuit by establishing
a symmetric session key with Onion Router #2
•  Tunnel through Onion Router #1 (don’t need)

slide 10

Tor Circuit Setup (3)

•  Client proxy extends the circuit by
establishing a symmetric session key with
Onion Router #3
•  Tunnel through Onion Routers #1 and #2

slide 11

Using a Tor Circuit

•  Client applications connect and communicate
over the established Tor circuit
•  Datagrams are decrypted and re-encrypted at each

link

slide 12

4

Location Hidden Servers

•  Goal: deploy a server on the Internet that
anyone can connect to without knowing
where it is or who runs it

•  Accessible from anywhere
•  Resistant to censorship
•  Can survive full-blown DoS attack
•  Resistant to physical attack

•  Can’t find the physical server!

slide 13

Creating a Location Hidden Server

slide 14

Server creates onion routes
to “introduction points”

Server gives intro points’
descriptors and addresses
to service lookup directory

Client obtains service
descriptor and intro point
address from directory

Using a Location Hidden Server

slide 15

Client creates onion route
to a “rendezvous point”

Client sends address of the
rendezvous point and any
authorization, if needed, to
server through intro point

If server chooses to talk to client,
connect to rendezvous point

Rendezvous point
mates the circuits
from client & server

16

Overview

•  Routing privacy

•  Web Privacy

•  Wireless Privacy

5

17

An “Old” Problem

•  Many governments/companies trying to limit
their citizens’ access to information
•  Censorship (prevent access)
•  Punishment (deter access)
•  China, Saudi Arabia, HP

•  How can we defeat such attempts?
•  Circumvent censorship
•  Undetectably

Proxy-Based Web Censorship

•  Government manages national web firewall
•  Not optional---catches ALL web traffic

•  Block certain requests
•  Possibly based on content
•  More commonly on IP address/publisher
•  China: Western news sites, Taiwan material

•  Log requests to detect troublemakers
•  Even without blocking, may just watch traffic

•  But they don’t turn off the whole net
•  Creates a crack in their barrier

18

Goal

•  Circumvent censor via innocent web activity
•  Normal web server and client cooperate to

create covert channel
•  Without consequence for client
•  And without consequence for server

•  Broad participation increases system
robustness

•  Ensure offering service doesn’t lead to trouble
•  e.g., loss of business through being blocked
•  Also, “law knows no boundaries”

19

The Big Picture

20

6

Requirements

•  Client deniability
•  Detection could be embarrassing or worse

•  Client statistical deniability
•  Even suspicion could be a problem

•  Server covertness/statistical deniability
•  If server detected, can be blocked

•  Communication robustness
•  Even without detecting, censor could scramble

covert channel
•  Performance (bandwidth, latency)

21

(Un)related Work

•  SSL
•  Encrypted connection---can’t tell content
•  Suspicious!
•  Doesn’t help reach blocked servers
•  Govt. can require revealing SSL keys

•  Anonymizing Proxies
•  Prevent servers from knowing identity of client
•  But proxy inside censor can’t reach content
•  And proxy outside censor can be blocked
•  And use of proxy is suspicious

22

23

Safeweb/Triangle boy

•  Operation
•  Client contacts triangle-boy “reflector”
•  Reflector forwards requests to blocked server
•  Server returns content to client (IP spoof)

•  Circumvents censorship
•  But still easily detected

•  “Local monitoring of the user only reveals an
encrypted conversation between User and
Triangle Boy machine.” (Safeweb manual)

24

Summary

•  Easy to hide what you are getting
•  Just use SSL

•  And easy to circumvent censors
•  Safeweb

•  But hard to hide that you are doing it

7

25

Circumventing Censors

•  Censors allow certain traffic
•  Use to construct a covert channel

•  Talk to normal servers
•  Embed requests for censored content in

normal-seeming requests
•  Receive censored content hidden in normal-

seeming responses
•  Requester: client asking for hidden content
•  Responder: server covertly providing it

System Architecture

26

27

Receiving Content is Easier Half

•  Responder is a normal web server, serving
images (among other things)

•  Encrypt data using requestor key
•  Embed in “unimportant, random” bits of

images
•  E.g., high order color bits
•  Watermarking

•  Encrypted data looks random---only
requestor can tell it isn’t (and decrypt)

28

Example

•  One image has embedded content
•  You can’t tell which (shows it’s working)

8

Goals Analysis

•  Client looks innocent (receives images)
•  Infranet users & nonusers indistinguishable

•  Server less so
•  Any one image seems innocent
•  But same image with different “random bits” in

each copy is suspicious
•  Evasion: never use same image-URL twice

•  Justify: per-individual customized web site
•  Human inspection might detect odd URL usage

•  Evasion: use time-varying image (webcam)
•  Performance: 1/3 of image bits

29 30

Upstream (Requests) is Harder

•  No “random content bits” that can be fiddled to
send messages to responder

•  Solution: let browsing pattern itself be the
message

•  Suppose web page has k links.
•  GET on ith link signifies symbol “i” to requestor
•  Result: log2(k) message bits from link click

•  Can be automated
•  To prevent censor from seeing message,

encrypt with responder key

31

Goals Analysis

•  Deniability: requestor generates standard
http GETs to allowed web sites
•  Fact of GETs isn’t itself proof of wrongdoing
•  Known rule for translating GETs to message, but

message is encrypted, so not evidence
•  Statistical deniability

•  Encrypting message produces “random” string
•  Sent via series of “random” GETs
•  Problem: normal user browsing not random

•  Some links rare
•  Conditional dependence of browsing on past browsing

32

Performance vs. Deniability

•  Middling deniability, poor performance
•  Request URL may be (say) 50 characters
•  16 Links/Page (say) means 4 bits
•  So need 100 GETs to request one URL!
•  And still poor statistical deniability

•  Can we enhance deniability?
•  Yes, by decreasing performance further

•  Can we enhance performance?
•  Yes, and enhance deniability at same time

9

33

Paranoid Alternative

•  Settle for one message bit per GET
•  Odd/even links on page
•  Or generalize to “mod k” for some small k

•  User has many link choices for each bit
•  Can choose one that is reasonable
•  Incorporate error correcting code in case no

reasonable next link sends correct bit
•  Drawback: user must be directly involved in

sending each message bit
•  Very low bandwidth vs time spent

34

Higher Performance

•  Idea: arithmetic coding of requests
•  If request i has probability pi, then entropy of

request distribution is –Σ pi log pi
•  Arithmetic coding encodes request i using log pi

bits
•  Result: expected request size equals entropy
•  Optimal

•  Problem: requestor doesn’t know probability
distribution of requests
•  Doesn’t have info needed for encoding

Solution: Range Mapping
•  Adler-Maggs
•  Exploit asymmetric bandwidth
•  Responder sends probability distribution to

requester using easy, downstream path
•  Requestor uses this “dictionary” to build

arithmetic code, send encoded result
•  Variation for non-binary

•  Our messages aren’t bits, they are clicks
•  And server knows different clicks should have

different probabilities

35

Toy Example
•  Suppose possible requests fewer than links on

page
•  Responder sends dictionary:

•  “link 1 means http://mit.edu”
•  “link 2 means http://stanford.edu”
•  Assigns common requests to common GETs

•  Requestor GETs link matching intended
request

•  One GET sends full (possibly huge) request
•  Problem: in general, ∞ possible requests

•  Can’t send a dictionary for all

36

10

37

Overview

•  Routing privacy

•  Web Privacy

•  Wireless Privacy

 Our Wireless World
tcpdump

PrivatePhoto1.jpg Link Layer
Header

Link Layer
Header

Home location=(47.28,
…

Link Layer
Header

Buddy list: Alice, Bob,
…

PrivateVideo1.avi Link Layer
Header

Link Layer
Header Blood pressure: high

38

Best Security Practices

SSID:	
 Bob’s	
 Network	

Key:	
 0x2384949…	

Discover
802.11 probe Is Bob’s Network here?

802.11 beacon Bob’s Network is here

Username:	
 Alice	

Key:	
 0x348190…	

802.11 auth Proof that I’m Alice

802.11 auth Proof that I’m Bob

Authenticate
and Bind

802.11 header

802.11 header
Send Data

Bootstrap

Out-of-band (e.g., password, WiFi
Protected Setup)

tcpdump

• Confidentiality
• Authenticity
•  Integrity

39

802.11 header
Send Data

MAC addr, seqno, …

Bootstrap

SSID:	
 Bob’s	
 Network	

Secret:	
 0x2384949…	

Username:	
 Alice	

Secret:	
 0x348190…	

Privacy Problems Remain

Discover
802.11 probe Is Bob’s Network here?

802.11 beacon Bob’s Network is here

tcpdump

802.11 auth Proof that I’m Alice

802.11 auth Proof that I’m Bob
Authenticate

and Bind

Is Bob’s Network here?

Proof that I’m Bob

Bob’s Network is here

MAC addr, seqno, …

Many exposed bits are (or can be used as)
identifiers that are linked over time

• Confidentiality
• Authenticity
•  Integrity

40

11

Problem: Long-Term Linking

41

Alice	
 Alice?	

MAC: 12:34:56:78:90:ab

Alice’s iPod is here 802.11 beacon Alice’s iPod is here 802.11 beacon

Easy	
 to	
 idenGfy	
 and	
 relate	
 devices	
 over	
 Gme	

Is Alice’s iPod here? 802.11 probe

tcpdump

MAC: 12:34:56:78:90:ab

Alice’s	
 friend?	

Problem: Long-Term Linking

42

www.bluetoothtracking.org

Linking enables location tracking, user profiling,
inventorying, relationship profiling, …
[Greenstein, HotOS ’07; Jiang, MobiSys ’07; Pang, MobiCom ’07, HotNets ’07]

Hom
e

www.wigle.net

802.11 header Is “djw” here? “djw” is here

Alice ->
AP

00:00:99:99:11:11

12:34:56:78:90:a
b

12:34:56:78:90:a
b

Alice ->
AP

00:00:99:99:11:11

Alice ->
AP

00:00:99:99:11:11

12:34:56:78:90:a
b

12:34:56:78:90:a
b

Problem: Short-Term Linking

43

12:34:56:78:90:ab, seqno: 1,
…
12:34:56:78:90:ab, seqno: 2,
…

12:34:56:78:90:ab, seqno: 3,
…

12:34:56:78:90:ab, seqno: 4,
…

00:00:99:99:11:11, seqno: 103,
…

00:00:99:99:11:11, seqno: 104,
…

00:00:99:99:11:11, seqno: 102,
…

Easy	
 to	
 isolate	
 disGnct	
 packet	
 streams	

3-9 data streams overlap
each 100 ms, on average

tcpdump

Problem: Short-Term Linking

44

Isolated	
 data	
 streams	
 are	
 more	
 suscepGble	
 to	
 side-­‐
channel	
 analysis	
 on	
 packet	
 sizes	
 and	
 Gming	

–  Exposes	
 keystrokes,	
 VoIP	
 calls,	
 webpages,	
 movies,	
 …	

[Liberatore,	
 CCS	
 ‘06;	
 Pang,	
 MobiCom	
 ’07;	
 Saponas,	
 Usenix	
 Security	
 ’07;	
 	

Song,	
 Usenix	
 Security	
 ‘01;	
 Wright,	
 IEEE	
 S&P	
 ‘08;	
 Wright,	
 Usenix	
 Security	
 ‘07]	

≈
DFT

transmission sizes transmission sizes

300
250
200

100
500

120

12

Bootstrap

SSID:	
 Bob’s	
 Network	

Secret:	
 0x2384949…	

Username:	
 Alice	

Secret:	
 0x348190…	

Fundamental Problem

45

Discover
802.11 probe Is Bob’s Network

here?
802.11 beacon Bob’s Network is

here

tcpdump

802.11 auth Proof that I’m Alice

802.11 auth Proof that I’m Bob

Authenticate
and Bind

Send Data

Many exposed bits are (or can be used as)
identifiers that are linked over time

Is Bob’s Network here?

Proof that I’m Bob

Bob’s Network is here

MAC addr, seqno, …

MAC addr, seqno, …

Discover

Goal: Make All Bits Appear Random

46

Authenticate
and Bind

Send Data

Bootstrap

SSID:	
 Bob’s	
 Network	

Key:	
 0x2384949…	

Username:	
 Alice	

Key:	
 0x348190…	

tcpdump

?

Challenge: Filtering without Identifiers

47

Which	
 packets	
 are	
 mine?	
 Which	
 packets	
 are	
 mine?	

Design Requirements

•  When A generates Message to B, she sends:
 PrivateMessage = F(A, B, Message)

where F has these properties:
–  Confidentiality: Only A and B can determine Message.
–  Authenticity: B can verify A created PrivateMessage.
–  Integrity: B can verify Message not modified.

–  Unlinkability: Only A and B can link PrivateMessages
 to same sender or receiver.

–  Efficiency: B can process PrivateMessages as fast
 as he can receive them.

48

A→B Header… Unencrypted payload

13

Solution Summary

Un
lin
ka
bil
ity
	

Int
eg
rit
y	

Au
th
en
1c
ity
	

Effi
cie
nc
y	

Co
nfi
de
n1
ali
ty
	

802.11	
 WPA	

MAC Pseudonyms

Public Key
Symmetric Key

SlyFi: Discovery/Binding

SlyFi: Data packets

49

Only	

Data	

Payload	

Only	

Data	

Payload	

Only	

Data	

Payload	

Straw man: MAC Pseudonyms

•  Idea: change MAC address periodically
•  Per session or when idle [Gruteser ’05, Jiang ‘07]

•  Other fields remain (e.g., in discovery/
binding)
•  No mechanism for data authentication/encryption
•  Doesn’t hide network names during discovery or

credentials during authentication

•  Pseudonyms are linkable in the short-term
•  Same MAC must be used for each association
•  Data streams still vulnerable to side-channel leaks

50

Solution Summary

Un
lin
ka
bil
ity
	

Int
eg
rit
y	

Au
th
en
1c
ity
	

Effi
cie
nc
y	

Co
nfi
de
n1
ali
ty
	

802.11	
 WPA	

MAC	
 Pseudonyms	

Public Key
Symmetric Key

SlyFi: Discovery/Binding

SlyFi: Data packets

Only	

Data	

Payload	

Long	

Term	

51

Only	

Data	

Payload	

Only	

Data	

Payload	

Straw man: Encrypt Everything

52

Bootstrap

SSID:	
 Bob’s	
 Network	

Key:	
 0x2384949…	

Username:	
 Alice	

Key:	
 0x348190…	

Discover

Authenticat
e

and Bind

Send Data

Idea:	
 Use	
 bootstrapped	
 keys	
 to	
 encrypt	
 everything	

14

Straw man: Public Key Protocol

Probe	
 “Bob”	

Key-­‐private	
 encrypGon	

(e.g.,	
 ElGamal)	

KBob	

Check	
 signature:	

Try	
 to	
 decrypt	

K-­‐1Bob	

KAlice	

Based	
 on	
 [Abadi	
 ’04]	

K-­‐1Alice	
 Sign:	
 Slow!	
 (>100ms)	

Client	
 Service	

53

Straw man: Symmetric Key Protocol

Probe	
 “Bob”	

Client	
 Service	

Symmetric	
 encrypGon	

(e.g.,	
 AES	
 w/	
 random	
 IV)	

Check	
 MAC:	

MAC:	
 KAB	

KAB	

KAB	

Try	
 to	

decrypt	

with	
 each	
 	

shared	
 key	

KShared1	

KShared2	

KShared3	

…	

Slow!	
 (scales	
 w/	
 #	
 keys)	

54

Different symmetric key per potential sender

Can’t identify the
decryption key in
the packet or
else it is linkable

Solution Summary

Un
lin
ka
bil
ity
	

Int
eg
rit
y	

Au
th
en
1c
ity
	

Effi
cie
nc
y	

Co
nfi
de
n1
ali
ty
	

802.11	
 WPA	

MAC	
 Pseudonyms	

Public	
 Key	
 Protocol	

Symmetric	
 Key	
 Protocol	

SlyFi: Discovery/Binding

SlyFi: Data packets

Long	

Term	

55

Only	

Data	

Payload	

Only	

Data	

Payload	

Only	

Data	

Payload	

SlyFi
•  Symmetric key almost works, but tension

between:
•  Unlinkability: can’t expose the identity of the key
•  Efficiency: need to identify the key to avoid trying all keys

•  Idea: Identify the key in an unlinkable way

•  Approach:
•  Sender A and receiver B agree on tokens: T1 , T2 , T3 , …

•  A attaches Ti to encrypted packet for B

56

AB	

AB	

AB	
 AB	

15

SlyFi

Probe	
 “Bob”	

Client	
 Service	

Symmetric	
 encrypGon	

(e.g.,	
 AES	
 w/	
 random	
 IV)	

Check	
 MAC:	

MAC:	
 KAB	

KAB	

KAB	

KAB	

Lookup	
 Ti	
 	
 	
 	
 	
 in	
 a	

table	
 to	
 get	
 KAB	

Ti
AB	

AB	

57

 Required properties:
–  Third parties can not link Ti and Tj if i ≠ j
–  A doesn’t reuse Ti	

–  A and B can compute Ti independently

AB	
 AB	

AB	

AB	

Ti	
 	
 	
 	
 =	
 	
 AESK	
 	
 	
 (i)	
 AB	

AB	
 Ti	
 	
 	
 	
 =	
 	
 AESK	
 	
 	
 (i)	
 AB	

AB	

Main	
 challenge:	

Sender	
 and	
 receiver	
 must	
 synchronize	
 i	

SlyFi: Data Transport

• Data messages:
•  Only sent over established connections
⇒ Expect messages to be delivered
⇒ Use implicit transmission number to synchronize i

Ti	
 	
 	
 	
 =	
 	
 AESK	
 	
 	
 (i)	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 where	
 i	
 =	
 transmission	
 #	

AB	

AB	

58

Ti
AB	

Ti+1 AB	

Ti +2 AB	

Ti +3 AB	

SlyFi: Data Transport

• Data messages:
•  Only sent over established connections
⇒ Expect messages to be delivered
⇒ Use implicit transmission number to synchronize i

Ti	
 	
 	
 	
 =	
 	
 AESK	
 	
 	
 (i)	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 where	
 i	
 =	
 transmission	
 #	

AB	

59

•  On receipt of Ti , B computes next expected: Ti+1
•  Handling message loss:

–  On receipt of Ti save Ti+1, … , Ti+k in table

–  Tolerates k consecutive losses (k=50 is enough)
–  No loss ⇒ compute one token per reception

AB	

AB	
 AB	
 AB	

AB	
 AB	

SlyFi: Discovery/Binding

• Discovery & binding messages:
•  Often sent when other party is not present
⇒ Can’t expect most messages to be delivered
⇒ Can’t rely on transmission reception to synchronize i

60

Is Bob’s Network here? Ti
AB	

i = ?

Is Bob’s Network here? Ti +1
AB	

Is Bob’s Network here? Ti +3
AB	

Is Bob’s Network here? Ti +2
AB	

..
..

…
...

Nope.

Nope.

Nope.

16

SlyFi: Discovery/Binding

• Discovery & binding messages:
•  Infrequent: only sent when trying to associate

•  Narrow interface: single application, few side-channels
⇒ Linkability at short timescales is usually OK
⇒ Use loosely synchronized time to synchronize i

Ti	
 	
 	
 	
 =	
 	
 AESK	
 	
 	
 (i)	
 	
 	
 	
 	
 	
 	
 	
 where	
 i	
 =	
 ⎣current	
 Gme/5	
 min⎦	

AB	

AB	

61

802.11 probe
802.11 beacon

802.11 auth
802.11 auth

Ti
AB	

Ti
AB	

Ti
BA	

Ti
BA	

SlyFi: Discovery/Binding

• Discovery & binding messages:
•  Infrequent: only sent when trying to associate

•  Narrow interface: single application, few side-channels
⇒ Linkability at short timescales is usually OK
⇒ Use loosely synchronized time to synchronize i

Ti	
 	
 	
 	
 =	
 	
 AESK	
 	
 	
 (i)	
 	
 	
 	
 	
 	
 	
 	
 where	
 i	
 =	
 ⎣current	
 Gme/5	
 min⎦	

AB	

AB	

62

•  At the start of time interval i compute Ti
•  Handling clock skew:

–  Receiver B saves Ti-s, … , Ti+s in table

–  Tolerates clock skew of 5⋅s minutes

AB	
 AB	

AB	

Solution Summary

Un
lin
ka
bil
ity
	

Int
eg
rit
y	

Au
th
en
1c
ity
	

Effi
cie
nc
y	

Co
nfi
de
n1
ali
ty
	

802.11	
 WPA	

MAC	
 Pseudonyms	

Public	
 Key	

Symmetric	
 Key	

SlyFi:	
 Discovery/Binding	

SlyFi:	
 Data	
 packets	

Long	

Term	

Long	

Term	

63

Only	

Data	

Payload	

Only	

Data	

Payload	

Only	

Data	

Payload	

64

17

65

Overview

•  P2P Privacy

66

Freenet
•  Addition goals to file location:

•  Provide publisher anonymity, security
•  Resistant to attacks – a third party shouldn’t be able to

deny the access to a particular file (data item, object),
even if it compromises a large fraction of machines

•  Files are stored according to associated key
•  Core idea: try to cluster information about similar keys

•  Messages
•  Random 64bit ID used for loop detection
•  TTL

•  TTL 1 are forwarded with finite probablity
•  Helps anonymity

•  Depth counter
•  Opposite of TTL – incremented with each hop
•  Depth counter initialized to small random value

67

Data Structure

•  Each node maintains a common stack
•  id – file identifier
•  next_hop – another node that store the file id
•  file – file identified by id being stored on the local

node
•  Forwarding:

•  Each message contains the file id it is referring to
•  If file id stored locally, then stop

•  Forwards data back to upstream requestor
•  Requestor adds file to cache, adds entry in routing

table
•  If not, search for the “closest” id in the stack, and

forward the message to the corresponding
next_hop

id next_hop file

…

…

68

Query Example

Note: doesn’t show file caching on the
reverse path

 4 n1 f4
12 n2 f12
 5 n3

 9 n3 f9

 3 n1 f3
14 n4 f14
 5 n3

14 n5 f14
13 n2 f13
 3 n6

n1 n2

n3

n4

 4 n1 f4
10 n5 f10
 8 n6

n5

query(10)

1

2

3

4

4’

5

18

69

Freenet Requests
•  Any node forwarding reply may change the source of the

reply (to itself or any other node)
•  Helps anonymity

•  Each query is associated a TTL that is decremented each
time the query message is forwarded; to obscure distance
to originator:
•  TTL can be initiated to a random value within some bounds
•  When TTL=1, the query is forwarded with a finite probability

•  Each node maintains the state for all outstanding queries
that have traversed it  help to avoid cycles

•  If data is not found, failure is reported back
•  Requestor then tries next closest match in routing table

70

Freenet Request

1

A B

C

D

E
F

Data Request
Data Reply
Request Failed

2
3

12

6
7

4
11 10

9
5

8

71

Freenet Search Features

•  Nodes tend to specialize in searching for
similar keys over time
•  Gets queries from other nodes for similar keys

•  Nodes store similar keys over time
•  Caching of files as a result of successful

queries
•  Similarity of keys does not reflect similarity

of files
•  Routing does not reflect network topology

72

Freenet File Creation
•  Key for file generated and searched  helps

identify collision
•  Not found (“All clear”) result indicates success
•  Source of insert message can be change by any

forwarding node
•  Creation mechanism adds files/info to locations

with similar keys
•  New nodes are discovered through file creation
•  Erroneous/malicious inserts propagate original file

further

19

73

Cache Management

•  LRU Cache of files
•  Files are not guaranteed to live forever

•  Files “fade away” as fewer requests are made
for them

•  File contents can be encrypted with original
text names as key
•  Cache owners do not know either original name

or contents  cannot be held responsible

74

Freenet Naming

•  Freenet deals with keys
•  But humans need names
•  Keys are flat  would like structure as well

•  Could have files that store keys for other
files
•  File /text/philiosophy could store keys for files in

that directory  how to update this file though?
•  Search engine  undesirable centralized

solution

75

Freenet Naming - Indirect files
•  Normal files stored using content-hash key

•  Prevents tampering, enables versioning, etc.
•  Indirect files stored using name-based key

•  Indirect files store keys for normal files
•  Inserted at same time as normal file

•  Has same update problems as directory files
•  Updates handled by signing indirect file with public/

private key
•  Collisions for insert of new indirect file handled specially
 check to ensure same key used for signing

•  Allows for files to be split into multiple smaller
parts

76

20

How does Tor work? How does Tor work?

How does Tor work? Building a circuit

Create c1,
E(gx1)

Created c1,
gy1, H(K1)

Relay c1
(Extend, OR2,
E(gx1))

Create c2 E
(gx2)

Created c2,
gy2, H(K2)

Relay c1
(Extended, gy2,
H(K2)

80

21

Fetching a web page

Last onion router should get the IP address of Bob’s
website to protect Alice’s anonymity.

Relay c1 (Begin
<Bob>)

Relay c2 (Begin
<Bob>)

TCP Handshake

Relay c2
(Connected) Relay c1

(Connected)

81

