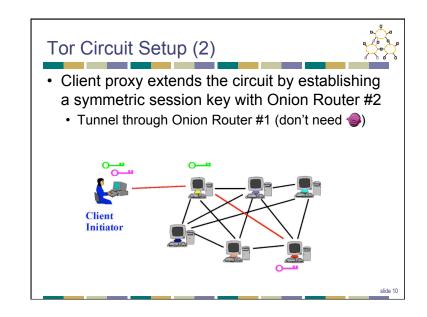
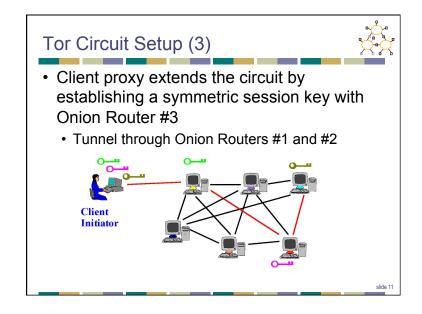
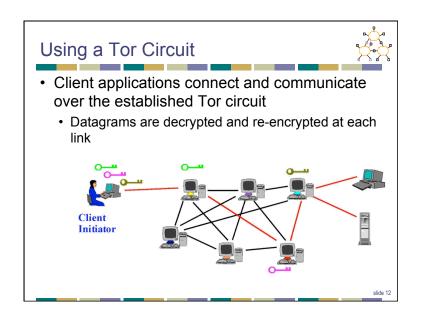
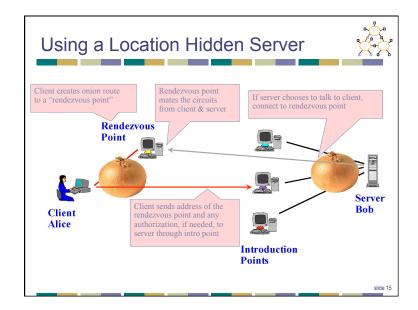

Tor Se




- Second-generation onion routing network
 - http://tor.eff.org
 - Developed by Roger Dingledine, Nick Mathewson and Paul Syverson
 - Specifically designed for low-latency anonymous Internet communications
- Running since October 2003
- 100s nodes on four continents, thousands of users
- "Easy-to-use" client proxy
 - Freely available, can use it for anonymous browsing


slide



Location Hidden Servers

- Goal: deploy a server on the Internet that anyone can connect to without knowing where it is or who runs it
- · Accessible from anywhere
- · Resistant to censorship
- Can survive full-blown DoS attack
- Resistant to physical attack
 - · Can't find the physical server!

Creating a Location Hidden Server Server creates onion routes to "introduction points" Client obtains service address from directory Client Server Alice Bob Server gives intro points' Introduction descriptors and addresses **Points** to service lookup directory Lookup Server

An "Old" Problem

- Many governments/companies trying to limit their citizens' access to information
 - Censorship (prevent access)
 - Punishment (deter access)
 - · China, Saudi Arabia, HP
- How can we defeat such attempts?
 - · Circumvent censorship
 - Undetectably

17

Proxy-Based Web Censorship

- Government manages national web firewall
 - · Not optional---catches ALL web traffic
- Block certain requests
 - · Possibly based on content
 - More commonly on IP address/publisher
 - · China: Western news sites, Taiwan material
- Log requests to detect troublemakers
 - Even without blocking, may just watch traffic
- But they don't turn off the whole net
 - · Creates a crack in their barrier

Goal

- Circumvent censor via innocent web activity
 - Normal web server and client cooperate to create covert channel
- Without consequence for client
- And without consequence for server
 - Broad participation increases system robustness
 - Ensure offering service doesn't lead to trouble
 - e.g., loss of business through being blocked
 - · Also, "law knows no boundaries"

19

The Big Picture Internet http://nms.lcs.mit.edun.com (http://www.cnn.com) nms.lcs.mit.edun.com

Requirements

- Client deniability
 - Detection could be embarrassing or worse
- Client statistical deniability
 - Even suspicion could be a problem
- Server covertness/statistical deniability
 - · If server detected, can be blocked
- Communication robustness
 - Even without detecting, censor could scramble covert channel
- Performance (bandwidth, latency)

(Un)related Work

- SSL
 - Encrypted connection---can't tell content
 - · Suspicious!
 - Doesn't help reach blocked servers
 - Govt. can require revealing SSL keys
- Anonymizing Proxies
 - Prevent servers from knowing identity of client
 - But proxy inside censor can't reach content
 - · And proxy outside censor can be blocked
 - · And use of proxy is suspicious

22

Safeweb/Triangle boy

- Operation
 - · Client contacts triangle-boy "reflector"
 - Reflector forwards requests to blocked server
 - Server returns content to client (IP spoof)
- Circumvents censorship
- · But still easily detected
 - "Local monitoring of the user only reveals an encrypted conversation between User and Triangle Boy machine." (Safeweb manual)

Summary

- · Easy to hide what you are getting
 - Just use SSL
- And easy to circumvent censors
 - Safeweb
- But hard to hide that you are doing it

__ 24

Circumventing Censors

- Censors allow certain traffic
- Use to construct a covert channel
 - Talk to normal servers
 - Embed requests for censored content in normal-seeming requests
 - Receive censored content hidden in normalseeming responses
- Requester: client asking for hidden content
- Responder: server covertly providing it

25

System Architecture User Machine User Web Browser Visible HTTP Requirement Visible HTTP Requirement Visible HTTP Resport Visible HTTP Resport Responder Visible HTTP Visible HTTP Visible HTTP Visible HTTP Visible HTTP Visible HTT

Receiving Content is Easier Half

- Responder is a normal web server, serving images (among other things)
- Encrypt data using requestor key
- Embed in "unimportant, random" bits of images
 - E.g., high order color bits
 - Watermarking
- Encrypted data looks random---only requestor can tell it isn't (and decrypt)

Example

- One image has embedded content
- You can't tell which (shows it's working)

Goals Analysis

- Client looks innocent (receives images)
 - · Infranet users & nonusers indistinguishable
- Server less so
 - Any one image seems innocent
 - But same image with different "random bits" in each copy is suspicious
 - Evasion: never use same image-URL twice
 - · Justify: per-individual customized web site
 - · Human inspection might detect odd URL usage
 - Evasion: use time-varying image (webcam)
- Performance: 1/3 of image bits

29

Upstream (Requests) is Harder

- No "random content bits" that can be fiddled to send messages to responder
- Solution: let browsing pattern itself be the message
- Suppose web page has *k* links.
 - GET on *i*th link signifies symbol "*i*" to requestor
 - Result: $\log_2(k)$ message bits from link click
- Can be automated
- To prevent censor from seeing message, encrypt with responder key

30

Goals Analysis

- Deniability: requestor generates standard http GETs to allowed web sites
 - · Fact of GETs isn't itself proof of wrongdoing
 - Known rule for translating GETs to message, but message is encrypted, so not evidence
- Statistical deniability
 - Encrypting message produces "random" string
 - Sent via series of "random" GETs
 - Problem: normal user browsing not random
 - · Some links rare
 - · Conditional dependence of browsing on past browsing

Middling deniability, poor performance
 Request URL may be (say) 50 characters

Performance vs. Deniability

- 16 Links/Page (say) means 4 bits
- So need 100 GETs to request one URL!
- And still poor statistical deniability
- Can we enhance deniability?
 - Yes, by decreasing performance further
- Can we enhance performance?
 - Yes, and enhance deniability at same time

Paranoid Alternative

- Settle for one message bit per GET
 - · Odd/even links on page
 - Or generalize to "mod k" for some small k
- User has many link choices for each bit
 - Can choose one that is reasonable
 - Incorporate error correcting code in case no reasonable next link sends correct bit
- Drawback: user must be directly involved in sending each message bit
 - Very low bandwidth vs time spent

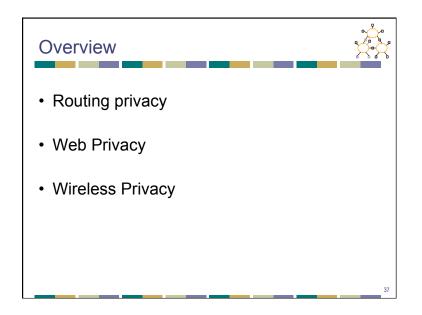
33

Higher Performance

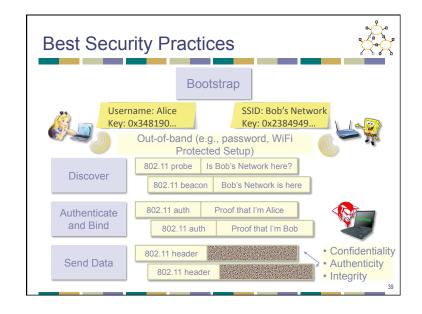
- · Idea: arithmetic coding of requests
 - If request i has probability p_i , then entropy of request distribution is $-\sum p_i \log p_i$
 - Arithmetic coding encodes request i using $\log p_i$ bits
 - Result: expected request size equals entropy
 - Optimal
- Problem: requestor doesn't know probability distribution of requests
 - · Doesn't have info needed for encoding

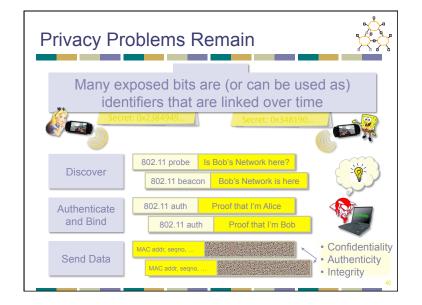
34

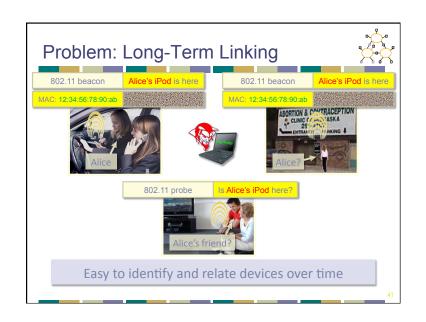
Solution: Range Mapping

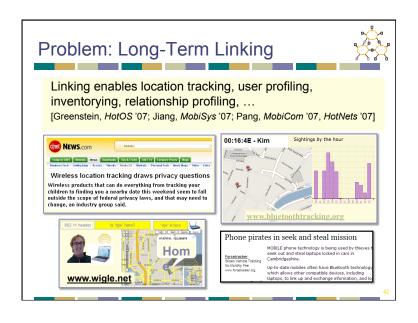


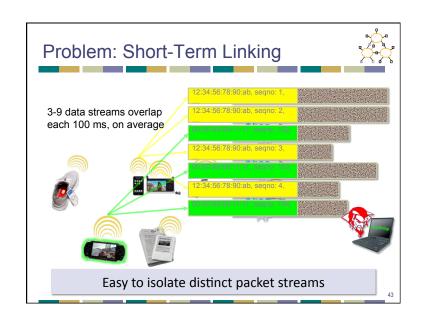
- Adler-Maggs
- · Exploit asymmetric bandwidth
- Responder sends probability distribution to requester using easy, downstream path
- Requestor uses this "dictionary" to build arithmetic code, send encoded result
- Variation for non-binary
 - Our messages aren't bits, they are clicks
 - And server knows different clicks should have different probabilities

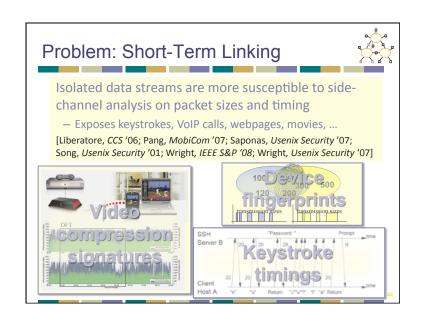

Toy Example

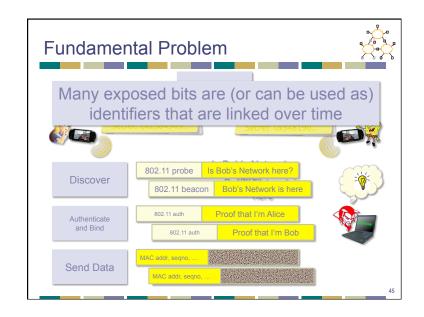


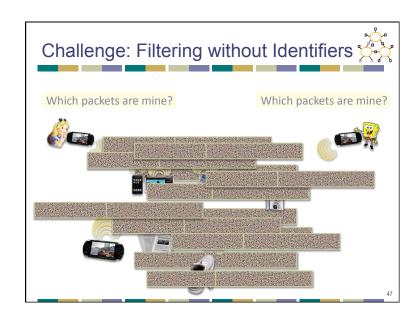

- Suppose possible requests fewer than links on page
- Responder sends dictionary:
 - "link 1 means http://mit.edu"
 - "link 2 means http://stanford.edu"
 - Assigns common requests to common GETs
- Requestor GETs link matching intended request
- One GET sends full (possibly huge) request
- Problem: in general, ∞ possible requests
 - Can't send a dictionary for all

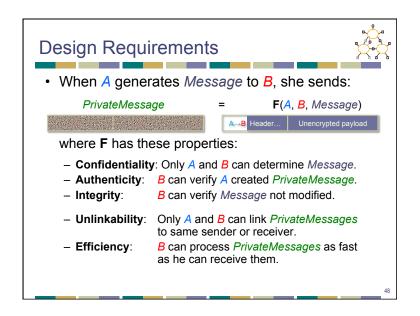


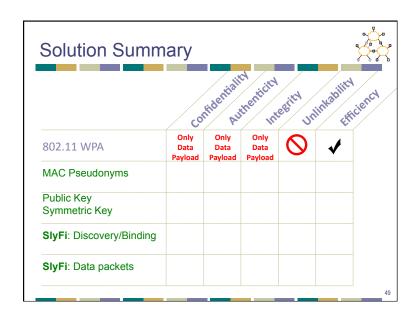


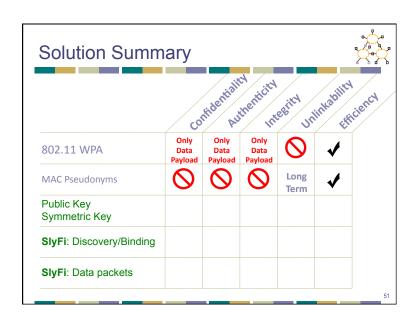


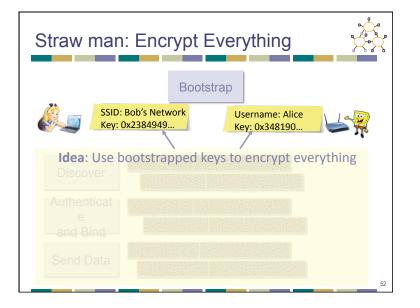


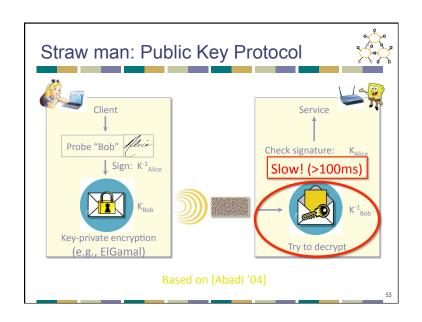


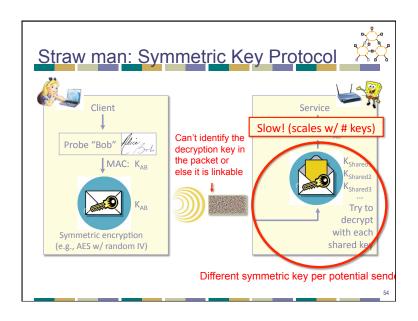


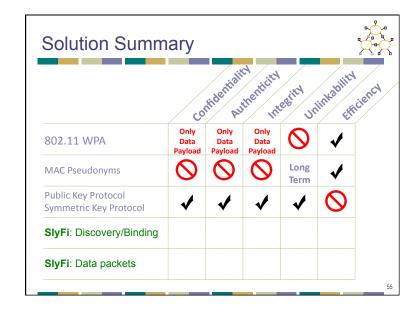




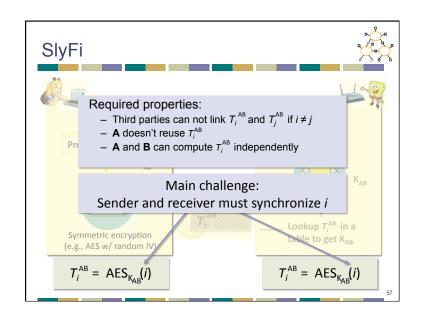

Straw man: MAC Pseudonyms Idea: change MAC address periodically Per session or when idle [Gruteser '05, Jiang '07] Other fields remain (e.g., in discovery/binding) No mechanism for data authentication/encryption Doesn't hide network names during discovery or

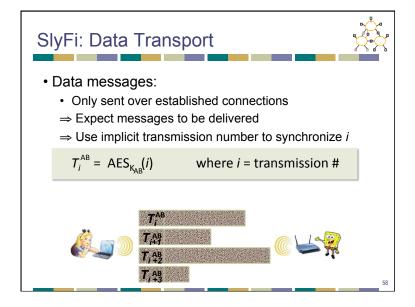


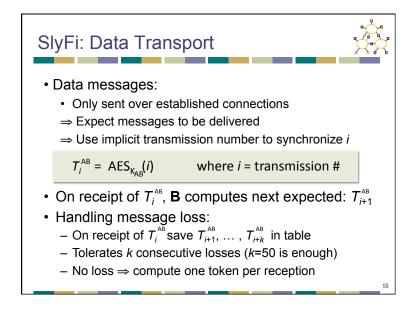

· Same MAC must be used for each association

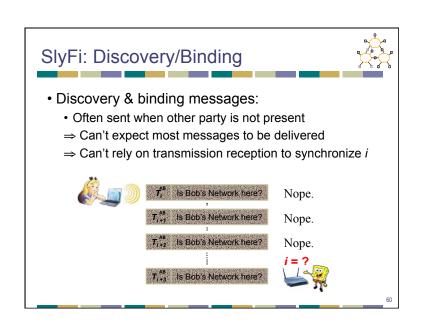

credentials during authentication

• Data streams still vulnerable to side-channel leaks



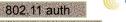



SlyFi



- · Symmetric key almost works, but tension between:
 - · Unlinkability: can't expose the identity of the key
 - Efficiency: need to identify the key to avoid trying all keys
- Idea: Identify the key in an unlinkable way
- Approach:
 - Sender **A** and receiver **B** agree on tokens: T_1^{AB} , T_2^{AB} , T_3^{AB} , ...
 - **A** attaches T_i^{AB} to encrypted packet for **B**

SlyFi: Discovery/Binding


- · Discovery & binding messages:
 - Infrequent: only sent when trying to associate
 - Narrow interface: single application, few side-channels
 - ⇒ Linkability at short timescales is usually OK
 - \Rightarrow Use loosely synchronized time to synchronize i

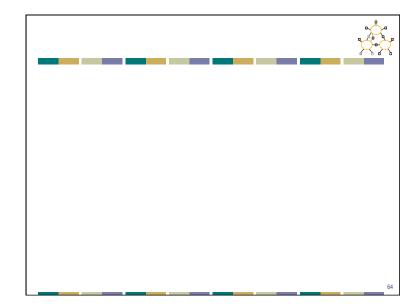
$$T_i^{AB} = AES_{K_{AR}}(i)$$
 where $i = [current time/5 min]$

T_i 802.11 probe

T_i^{BA} 802.11 beacon

T_i 802.11 auth

SlyFi: Discovery/Binding



- · Discovery & binding messages:
 - Infrequent: only sent when trying to associate
 - Narrow interface: single application, few side-channels
 - ⇒ Linkability at short timescales is usually OK
 - \Rightarrow Use loosely synchronized time to synchronize i

$$T_i^{AB} = AES_{K_{AB}}(i)$$
 where $i = [current time/5 min]$

- At the start of time interval i compute T_i^{AB}
- · Handling clock skew:
 - Receiver **B** saves T_{i-s}^{AB} , ..., T_{i+s}^{AB} in table
 - Tolerates clock skew of 5⋅s minutes

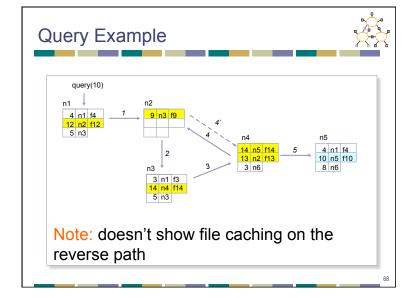
Solution Summary Integrity Only 802.11 WPA Data Data Data Long **MAC Pseudonyms** Term Public Key Symmetric Key Long SlyFi: Discovery/Binding Term SlyFi: Data packets

Overview

P2P Privacy

65

Freenet


- · Addition goals to file location:
 - · Provide publisher anonymity, security
 - Resistant to attacks a third party shouldn't be able to deny the access to a particular file (data item, object), even if it compromises a large fraction of machines
- Files are stored according to associated key
 - · Core idea: try to cluster information about similar keys
- Messages
 - Random 64bit ID used for loop detection
 - TTL
 - TTL 1 are forwarded with finite probablity
 - Helps anonymity
 - Depth counter
 - Opposite of TTL incremented with each hop
 - · Depth counter initialized to small random value

Data Structure

- Fach node maintains a common stack
 - id file identifier
 - next_hop another node that store the file id
 - file file identified by id being stored on the local node
- Forwarding:
 - Each message contains the file id it is referring to
 - If file id stored locally, then stop
 - · Forwards data back to upstream requestor
 - Requestor adds file to cache, adds entry in routing table
 - If not, search for the "closest" id in the stack, and forward the message to the corresponding next_hop

Freenet Requests

- Any node forwarding reply may change the source of the reply (to itself or any other node)
 - · Helps anonymity
- Each query is associated a TTL that is decremented each time the query message is forwarded; to obscure distance to originator:
 - TTL can be initiated to a random value within some bounds
 - When TTL=1, the query is forwarded with a finite probability
- Each node maintains the state for all outstanding queries that have traversed it → help to avoid cycles
- If data is not found, failure is reported back
 - · Requestor then tries next closest match in routing table

Data Request
Data Reply
Request Failed

A

1

B

6

7

4

11

10

D

7

70

Freenet Search Features

- Nodes tend to specialize in searching for similar keys over time
 - Gets queries from other nodes for similar keys
- · Nodes store similar keys over time
 - Caching of files as a result of successful queries
- Similarity of keys does not reflect similarity of files
- · Routing does not reflect network topology

Freenet File Creation

- Key for file generated and searched → helps identify collision
 - Not found ("All clear") result indicates success
 - Source of insert message can be change by any forwarding node
- Creation mechanism adds files/info to locations with similar keys
- New nodes are discovered through file creation
- Erroneous/malicious inserts propagate original file further

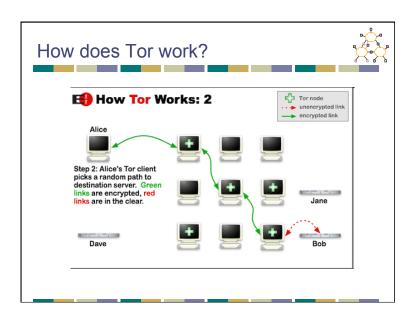
Cache Management

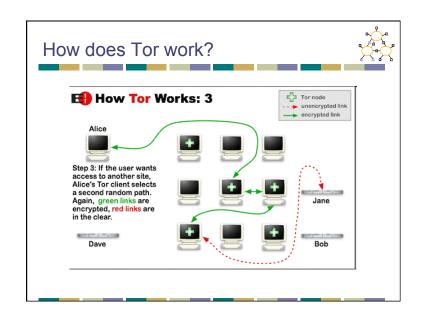
- · LRU Cache of files
- Files are not guaranteed to live forever
 - Files "fade away" as fewer requests are made for them
- File contents can be encrypted with original text names as key
 - Cache owners do not know either original name or contents → cannot be held responsible

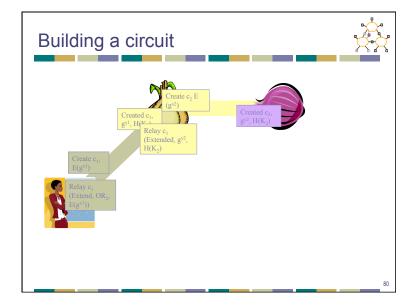
73

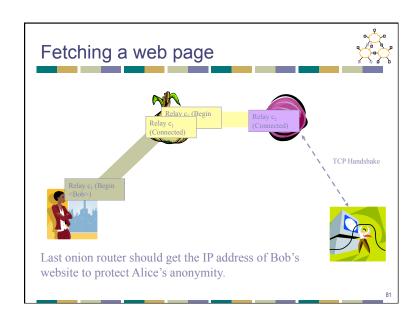
Freenet Naming




- Freenet deals with keys
 - · But humans need names
 - Keys are flat → would like structure as well
- Could have files that store keys for other files
 - File /text/philiosophy could store keys for files in that directory → how to update this file though?
- Search engine → undesirable centralized solution


Freenet Naming - Indirect files




- · Normal files stored using content-hash key
 - Prevents tampering, enables versioning, etc.
- · Indirect files stored using name-based key
 - Indirect files store keys for normal files
 - · Inserted at same time as normal file
- Has same update problems as directory files
 - Updates handled by signing indirect file with public/ private key
 - Collisions for insert of new indirect file handled specially
 check to ensure same key used for signing
- Allows for files to be split into multiple smaller parts

