
1

15-744: Computer Networking

L-17 DNS and the Web

2

DNS and the Web

•  DNS
•  CDNs
•  Readings

•  DNS Performance and the Effectiveness of
Caching

•  Development of the Domain Name System

3

Naming

•  How do we efficiently locate resources?
•  DNS: name  IP address
•  Service location: description  host

•  Other issues
•  How do we scale these to the wide area?
•  How to choose among similar services?

4

Overview

•  DNS

•  Server Selection and CDNs

2

5

Obvious Solutions (1)

Why not centralize DNS?
•  Single point of failure
•  Traffic volume
•  Distant centralized database
•  Single point of update

•  Doesn’t scale!

6

Obvious Solutions (2)

Why not use /etc/hosts?
•  Original Name to Address Mapping

•  Flat namespace
•  /etc/hosts
•  SRI kept main copy
•  Downloaded regularly

•  Count of hosts was increasing: machine per
domain  machine per user
•  Many more downloads
•  Many more updates

7

Domain Name System Goals
•  Basically building a wide area distributed

database
•  Scalability
•  Decentralized maintenance
•  Robustness
•  Global scope

•  Names mean the same thing everywhere

•  Don’t need
•  Atomicity
•  Strong consistency

8

DNS Records

RR format: (class, name, value, type, ttl)

•  DB contains tuples called resource records (RRs)
•  Classes = Internet (IN), Chaosnet (CH), etc.
•  Each class defines value associated with type

FOR IN class:

•  Type=A
•  name is hostname
•  value is IP address

•  Type=NS
•  name is domain (e.g. foo.com)
•  value is name of authoritative

name server for this domain

•  Type=CNAME
•  name is an alias name for

some “canonical” (the real)
name

•  value is canonical name
•  Type=MX

•  value is hostname of
mailserver associated with
name

3

9

DNS Design: Hierarchy Definitions

root

edu net
org

uk com

gwu ucb cmu bu mit

cs ece

cmcl

•  Each node in hierarchy
stores a list of names that
end with same suffix

•  Suffix = path up tree
•  E.g., given this tree, where

would following be stored:
•  Fred.com
•  Fred.edu
•  Fred.cmu.edu
•  Fred.cmcl.cs.cmu.edu
•  Fred.cs.mit.edu

10

DNS Design: Zone Definitions

root

edu net
org

uk com
ca

gwu ucb cmu bu mit

cs ece

cmcl Single node

Subtree

Complete
Tree

•  Zone = contiguous
section of name space

•  E.g., Complete tree,
single node or subtree

•  A zone has an associated
set of name servers

11

DNS Design: Cont.
•  Zones are created by convincing owner node to

create/delegate a subzone
•  Records within zone stored multiple redundant name

servers
•  Primary/master name server updated manually
•  Secondary/redundant servers updated by zone transfer

of name space
•  Zone transfer is a bulk transfer of the “configuration” of a DNS

server – uses TCP to ensure reliability

•  Example:
•  CS.CMU.EDU created by CMU.EDU administrators

12

Servers/Resolvers

•  Each host has a resolver
•  Typically a library that applications can link to
•  Local name servers hand-configured (e.g. /etc/

resolv.conf)
•  Name servers

•  Either responsible for some zone or…
•  Local servers

•  Do lookup of distant host names for local hosts
•  Typically answer queries about local zone

4

13

DNS: Root Name Servers
•  Responsible for

“root” zone
•  Approx. dozen root

name servers
worldwide
•  Currently {a-m}.root-

servers.net

•  Local name servers
contact root servers
when they cannot
resolve a name
•  Configured with well-

known root servers

14

DNS Message Format

Identification

No. of Questions

No. of Authority RRs

Questions (variable number of answers)

Answers (variable number of resource records)

Authority (variable number of resource records)

Additional Info (variable number of resource records)

Flags

No. of Answer RRs

No. of Additional RRs
Name, type fields
for a query

RRs in response
to query

Records for
authoritative
servers

Additional
“helpful info that
may be used

12 bytes

15

DNS Header Fields

•  Identification
•  Used to match up request/response

•  Flags
•  1-bit to mark query or response
•  1-bit to mark authoritative or not
•  1-bit to request recursive resolution
•  1-bit to indicate support for recursive resolution

16

Typical Resolution

Client Local
DNS server

root & edu
DNS server

ns1.cmu.edu
DNS server

www.cs.cmu.edu

NS ns1.cmu.edu www.cs.cmu.edu

NS ns1.cs.cmu.edu

A www=IPaddr

ns1.cs.cmu.edu
DNS

server

5

17

Typical Resolution

•  Steps for resolving www.cmu.edu
•  Application calls gethostbyname() (RESOLVER)
•  Resolver contacts local name server (S1)
•  S1 queries root server (S2) for (www.cmu.edu)
•  S2 returns NS record for cmu.edu (S3)
•  What about A record for S3?

•  This is what the additional information section is for
(PREFETCHING)

•  S1 queries S3 for www.cmu.edu
•  S3 returns A record for www.cmu.edu

•  Can return multiple A records  what does this
mean?

18

Lookup Methods

Recursive query:
•  Server goes out and

searches for more info
(recursive)

•  Only returns final answer
or “not found”

Iterative query:
•  Server responds with as

much as it knows
(iterative)

•  “I don’t know this name,
but ask this server”

Workload impact on choice?
•  Local server typically does

recursive
•  Root/distant server does

iterative requesting host
surf.eurecom.fr

gaia.cs.umass.edu

root name server

local name server
dns.eurecom.fr

1

2

3
4

5 6 authoritative name
server

dns.cs.umass.edu

intermediate name server
dns.umass.edu

7

8

iterated query

19

Workload and Caching
•  What workload do you expect for different servers/names?

•  Why might this be a problem? How can we solve this problem?
•  DNS responses are cached

•  Quick response for repeated translations
•  Other queries may reuse some parts of lookup

•  NS records for domains

•  DNS negative queries are cached
•  Don’t have to repeat past mistakes
•  E.g. misspellings, search strings in resolv.conf

•  Cached data periodically times out
•  Lifetime (TTL) of data controlled by owner of data
•  TTL passed with every record

20

Typical Resolution

Client Local
DNS server

root & edu
DNS server

ns1.cmu.edu
DNS server

www.cs.cmu.edu

NS ns1.cmu.edu www.cs.cmu.edu

NS ns1.cs.cmu.edu

A www=IPaddr

ns1.cs.cmu.edu
DNS

server

6

21

Subsequent Lookup Example

Client Local
DNS server

root & edu
DNS server

cmu.edu
DNS server

cs.cmu.edu
DNS

server

ftp.cs.cmu.edu

ftp=IPaddr

ftp.cs.cmu.edu

22

Reliability
•  DNS servers are replicated

•  Name service available if ≥ one replica is up
•  Queries can be load balanced between replicas

•  UDP used for queries
•  Need reliability  must implement this on top of UDP!
•  Why not just use TCP?

•  Try alternate servers on timeout
•  Exponential backoff when retrying same server

•  Same identifier for all queries
•  Don’t care which server responds

23

Reverse Name Lookup

•  128.2.206.138?
•  Lookup 138.206.2.128.in-addr.arpa
•  Why is the address reversed?
•  Happens to be www.intel-iris.net and

mammoth.cmcl.cs.cmu.edu  what will reverse
lookup return? Both?
•  Should only return name that reflects address

allocation mechanism

24

Prefetching

•  Name servers can add additional data to
any response

•  Typically used for prefetching
•  CNAME/MX/NS typically point to another host

name
•  Responses include address of host referred to

in “additional section”

7

25

Root Zone

•  Generic Top Level Domains (gTLD)
= .com, .net, .org, etc…

•  Country Code Top Level Domain (ccTLD)
= .us, .ca, .fi, .uk, etc…

•  Root server ({a-m}.root-servers.net) also
used to cover gTLD domains
•  Load on root servers was growing quickly!
•  Moving .com, .net, .org off root servers was

clearly necessary to reduce load  done Aug
2000

26

New gTLDs
•  .info  general info
•  .biz  businesses
•  .aero  air-transport industry
•  .coop  business cooperatives
•  .name  individuals
•  .pro  accountants, lawyers, and physicians
•  .museum  museums
•  Only new one actives so far = .info, .biz, .name

27

New Registrars

•  Network Solutions (NSI) used to handle all
registrations, root servers, etc…
•  Clearly not the democratic (Internet) way
•  Large number of registrars that can create new

domains  However, NSI still handle root
servers

28

Do you trust the TLD operators?

•  Wildcard DNS record for all .com and .net
domain names not yet registered by others
•  September 15 – October 4, 2003
•  February 2004: Verisign sues ICANN

•  Redirection for these domain names to
Verisign web portal (SiteFinder)

•  What services might this break?

8

29

Protecting the Root Nameservers

•  Redundancy: 13 root nameservers
•  IP Anycast for root DNS servers {c,f,i,j,k}.root-servers.net

•  RFC 3258
•  Most physical nameservers lie outside of the US

Sophisticated?
Why did nobody notice?

seshan.org. 13759 NS www.seshan.org.

Defense Mechanisms

30

Defense: Replication and Caching

source: wikipedia

31

DNS Hack #1: Load Balance

•  Server sends out multiple A records
•  Order of these records changes per-client

DNS Hack #3: Blackhole Lists

•  First: Mail Abuse Prevention System
(MAPS)
•  Paul Vixie, 1997

•  Today: Spamhaus, spamcop, dnsrbl.org,
etc.

32

% dig 91.53.195.211.bl.spamcop.net

;; ANSWER SECTION:
91.53.195.211.bl.spamcop.net. 2100 IN A 127.0.0.2

;; ANSWER SECTION:
91.53.195.211.bl.spamcop.net. 1799 IN TXT "Blocked - see http://
www.spamcop.net/bl.shtml?211.195.53.91"

Different addresses refer to
different reasons for blocking

9

33

DNS Experience
•  23% of lookups with no answer

•  Retransmit aggressively  most packets in trace for
unanswered lookups!

•  Correct answers tend to come back quickly/with few
retries

•  10 - 42% negative answers  most = no name
exists
•  Inverse lookups and bogus NS records

•  Worst 10% lookup latency got much worse
•  Median 8597, 90th percentile 4471176

•  Increasing share of low TTL records  what is
happening to caching?

34

DNS Experience
•  Hit rate for DNS = 80%  1-(#DNS/#connections)

•  Most Internet traffic is Web
•  What does a typical page look like?  average of 4-5

imbedded objects  needs 4-5 transfers  accounts
for 80% hit rate!

•  70% hit rate for NS records  i.e. don’t go to root/
gTLD servers
•  NS TTLs are much longer than A TTLs
•  NS record caching is much more important to scalability

•  Name distribution = Zipf-like = 1/xa
•  A records  TTLs = 10 minutes similar to TTLs =

infinite
•  10 client hit rate = 1000+ client hit rate

Some Interesting Alternatives
•  CoDNS

•  Lookup failures
•  Packet loss
•  LDNS overloading
•  Cron jobs
•  Maintenance problems

•  Cooperative name lookup scheme
•  If local server OK, use local server
•  When failing, ask peers to do lookup

•  Push DNS
•  Top of DNS hierarchy is relatively stable
•  Why not replicate much more widely?

35 36

Overview

•  DNS

•  Server selection and CDNs

10

37

CDN

•  Replicate content on many servers
•  Challenges

•  How to replicate content
•  Where to replicate content
•  How to find replicated content
•  How to choose among known replicas
•  How to direct clients towards replica

•  DNS, HTTP 304 response, anycast, etc.

•  Akamai

38

Server Selection
•  Service is replicated in many places in network
•  How to direct clients to a particular server?

•  As part of routing  anycast, cluster load balancing
•  As part of application  HTTP redirect
•  As part of naming  DNS

•  Which server?
•  Lowest load  to balance load on servers
•  Best performance  to improve client performance

•  Based on Geography? RTT? Throughput? Load?

•  Any alive node  to provide fault tolerance

39

Routing Based

•  Anycast
•  Give service a single IP address
•  Each node implementing service advertises

route to address
•  Packets get routed from client to “closest”

service node
•  Closest is defined by routing metrics
•  May not mirror performance/application needs

•  What about the stability of routes?

40

Routing Based
•  Cluster load balancing

•  Router in front of cluster of nodes directs packets to
server

•  Can only look at global address (L3 switching)
•  Often want to do this on a connection by connection

basis – why?
•  Forces router to keep per connection state
•  L4 switching – transport headers, port numbers

•  How to choose server
•  Easiest to decide based on arrival of first packet in exchange
•  Primarily based on local load
•  Can be based on later packets (e.g. HTTP Get request) but

makes system more complex (L7 switching)

11

41

Application Based
•  HTTP supports simple way to indicate that Web

page has moved
•  Server gets Get request from client

•  Decides which server is best suited for particular client
and object

•  Returns HTTP redirect to that server
•  Can make informed application specific decision
•  May introduce additional overhead  multiple

connection setup, name lookups, etc.
•  While good solution in general HTTP Redirect has

some design flaws – especially with current
browsers?

42

Naming Based
•  Client does name lookup for service
•  Name server chooses appropriate server address
•  What information can it base decision on?

•  Server load/location  must be collected
•  Name service client

•  Typically the local name server for client

•  Round-robin
•  Randomly choose replica
•  Avoid hot-spots

•  [Semi-]static metrics
•  Geography
•  Route metrics
•  How well would these work?

43

How Akamai Works
•  Clients fetch html document from primary server

•  E.g. fetch index.html from cnn.com
•  URLs for replicated content are replaced in html

•  E.g. replaced with
<img src=“http://a73.g.akamaitech.net/7/23/cnn.com/af/
x.gif”>

•  Client is forced to resolve aXYZ.g.akamaitech.net
hostname

44

How Akamai Works

•  How is content replicated?
•  Akamai only replicates static content

•  Serves about 7% of the Internet traffic ! (in
2003)

•  Modified name contains original file
•  Akamai server is asked for content

•  First checks local cache
•  If not in cache, requests file from primary server

and caches file

12

45

How Akamai Works
•  Root server gives NS record for akamai.net
•  Akamai.net name server returns NS record for

g.akamaitech.net
•  Name server chosen to be in region of client’s name

server
•  TTL is large

•  G.akamaitech.net nameserver choses server in
region
•  Should try to chose server that has file in cache - How

to choose?
•  Uses aXYZ name and consistent hash
•  TTL is small

46

How Akamai Works

End-user

cnn.com (content provider) DNS root server Akamai server

1 2 3

4

Akamai high-level DNS server

Akamai low-level DNS server

Akamai server

10

6
7

8

9

12

Get
index.
html

Get /cnn.com/foo.jpg

11

Get foo.jpg

5

47

Akamai – Subsequent Requests

End-user

cnn.com (content provider) DNS root server Akamai server

1 2 Akamai high-level DNS server

Akamai low-level DNS server

Akamai server

7

8

9

12

Get
index.
html

Get /cnn.com/foo.jpg

Coral: An Open CDN

•  Implement an open CDN
•  Allow anybody to contribute
•  Works with unmodified clients
•  CDN only fetches once from origin server

Origin
Server

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Browser

Browser

Browser

Browser

Pool resources to dissipate flash crowds

48

13

Using CoralCDN
•  Rewrite URLs into “Coralized” URLs

•  www.x.com → www.x.com.nyud.net:8090

•  Directs clients to Coral, which absorbs load

•  Who might “Coralize” URLs?
•  Web server operators Coralize URLs
•  Coralized URLs posted to portals, mailing lists
•  Users explicitly Coralize URLs

49

httpprx
dnssrv

Browser
Resolver

DNS Redirection
Return proxy,
preferably one
near client

Cooperative
Web Caching

CoralCDN components

httpprx

www.x.com.nyud.net
216.165.108.10

Fetch data
from nearby

?

?

Origin
Server



50

Functionality needed
  DNS: Given network location of resolver, return a

proxy near the client

 put (network info, self)
 get (resolver info) → {proxies}

  HTTP: Given URL, find proxy caching object,
preferably one nearby

 put (URL, self)
 get (URL) → {proxies}

51

Use a DHT?

•  Supports put/get interface using key-based routing

•  Problems with using DHTs as given

•  Lookup latency

•  Transfer latency

•  Hotspots

NYU Columbia

Germany

Japan NYC
NYC

52

14

Coral distributed index
•  Insight: Don’t need hash table semantics

•  Just need one well-located proxy

•  put (key, value, ttl)
•  Avoid hotspots

•  get (key)
•  Retrieves some subset of values put under key
•  Prefer values put by nodes near requestor

•  Hierarchical clustering groups nearby nodes
•  Expose hierarchy to applications

•  Rate-limiting mechanism distributes puts

Key-based XOR routing

000… 111… Distance to key

None

< 60 ms

< 20 ms

Thresholds

•  Minimizes lookup latency
•  Prefer values stored by nodes within faster clusters

Prevent insertion hotspots

NYU

•  Halt put routing at full and loaded node
•  Full → M vals/key with TTL > ½ insertion TTL
•  Loaded → β puts traverse node in past minute

•  Store at furthest, non-full node seen

  Store value once in each level cluster
  Always storing at closest node causes hotspot

…

(log n) β reqs / min

Coral Contributions

•  Self-organizing clusters of nodes
•  NYU and Columbia prefer one another to Germany

•  Rate-limiting mechanism
•  Everybody caching and fetching same URL does not

overload any node in system

•  Decentralized DNS Redirection
•  Works with unmodified clients

No centralized management or a priori knowledge of
proxies’ locations or network configurations

56

15

57

Overview

•  DNS

•  Service location

58

Service Location
•  What if you want to lookup services with more

expressive descriptions than DNS names
•  E.g. please find me printers in cs.cmu.edu instead of

laserjet1.cs.cmu.edu
•  What do descriptions look like?
•  How is the searching done?
•  How will it be used?

•  Search for particular service?
•  Browse available services?
•  Composing multiple services into new service?

59

Service Descriptions

•  Typically done as hierarchical value-
attribute pairs
•  Type = printer  memory = 32MB, lang = PCL
•  Location = CMU  building = WeH

•  Hierarchy based on attributes or attributes-
values?
•  E.g. Country  state or country=USA 

state=PA and country=Canada 
province=BC?

•  Can be done in something like XML

60

Service Discovery (Multicast)
•  Services listen on well known discovery group

address
•  Client multicasts query to discovery group
•  Services unicast replies to client
•  Tradeoffs

•  Not very scalable  effectively broadcast search
•  Requires no dedicated infrastructure or bootstrap
•  Easily adapts to availability/changes
•  Can scope request by multicast scoping and by

information in request

16

61

Service Discovery (Directory Based)
•  Services register with central directory agent

•  Soft state  registrations must be refreshed or the
expire

•  Clients send query to central directory  replies
with list of matches

•  Tradeoffs
•  How do you find the central directory service?

•  Typically using multicast based discovery!
•  SLP also allows directory to do periodic advertisements

•  Need dedicated infrastructure
•  How do directory agents interact with each other?
•  Well suited for browsing and composition  knows full

list of services
62

Service Discovery (Routing Based)
•  Client issues query to overlay network

•  Query can include both service description and actual request for
service

•  Overlay network routes query to desired service[s]
•  If query only description, subsequent interactions can be

outside overlay (early-binding)
•  If query includes request, client can send subsequent

queries via overlay (late-binding)
•  Subsequent requests may go to different services agents
•  Enables easy fail-over/mobility of service

•  Tradeoffs
•  Routing on complex parameters can be difficult/expensive
•  Can work especially well in ad-hoc networks
•  Can late-binding really be used in many applications?

63

Wide Area Scaling
•  How do we scale discovery to wide area?

•  Hierarchy?
•  Hierarchy must be based on attribute of services

•  All services must have this attribute
•  All queries must include (implicitly or explicitly) this

attribute
•  Tradeoffs

•  What attribute? Administrative (like DNS)?
Geographic? Network Topologic?

•  Should we have multiple hierarchies?
•  Do we really need hierarchy? Search engines seem to

work fine!

64

Other Issues

•  Dynamic attributes
•  Many queries may be based on attributes such

as load, queue length
•  E.g., print to the printer with shortest queue

•  Security
•  Don’t want others to serve/change queries
•  Also, don’t want others to know about existence

of services
•  Srini’s home SLP server is advertising the $50,000

MP3 stereo system (come steal me!)

17

65

Hashing
•  Advantages

•  Let the CDN nodes are numbered 1..m
•  Client uses a good hash function to map a URL to 1..m
•  Say hash (url) = x, so, client fetches content from node

x
•  No duplication – not being fault tolerant.
•  One hop access
•  Any problems?

•  What happens if a node goes down?
•  What happens if a node comes back up?
•  What if different nodes have different views?

66

Robust hashing
•  Let 90 documents, node 1..9, node 10 which was

dead is alive again
•  % of documents in the wrong node?

•  10, 19-20, 28-30, 37-40, 46-50, 55-60, 64-70, 73-80,
82-90

•  Disruption coefficient = ½
•  Unacceptable, use consistent hashing – idea behind

Akamai!

67

Consistent Hash

•  “view” = subset of all hash buckets that are
visible

•  Desired features
•  Balanced – in any one view, load is equal

across buckets
•  Smoothness – little impact on hash bucket

contents when buckets are added/removed
•  Spread – small set of hash buckets that may

hold an object regardless of views
•  Load – across all views # of objects assigned to

hash bucket is small
68

Consistent Hash – Example

•  Smoothness  addition of bucket does not cause much
movement between existing buckets

•  Spread & Load  small set of buckets that lie near object
•  Balance  no bucket is responsible for large number of

objects

•  Construction
•  Assign each of C hash buckets to

random points on mod 2n circle,
where, hash key size = n.

•  Map object to random position on
circle

•  Hash of object = closest
clockwise bucket

0

8

4 12
Bucket

14

