15-744: Computer Networking I

I——

L-17 DNS and the Web

Ll

DNS and the Web

* DNS
* CDNs
* Readings

¢ DNS Performance and the Effectiveness of
Caching

* Development of the Domain Name System

%
o

s

o bR
N
D\F/ﬂ
. P
9]
Naming Y03
. I I I L

» How do we efficiently locate resources?
* DNS: name - IP address
+ Service location: description = host
» Other issues
* How do we scale these to the wide area?
» How to choose among similar services?

Overview

* DNS

» Server Selection and CDNs

Y
L]

§e

Obvious Solutions (1) }%&

Why not centralize DNS?

+ Single point of failure
Traffic volume

Distant centralized database
Single point of update

Doesn’t scale!

Obvious Solutions (2) %{

| I I I L]
Why not use /etc/hosts?
* Original Name to Address Mapping
* Flat namespace
* /etc/hosts
* SRI kept main copy
» Downloaded regularly
» Count of hosts was increasing: machine per
domain - machine per user
* Many more downloads
* Many more updates

gt
Domain Name System Goals jﬁ:&

| I I I L
» Basically building a wide area distributed
database

» Scalability
« Decentralized maintenance
« Robustness

» Global scope

* Names mean the same thing everywhere
* Don’'t need

* Atomicity

» Strong consistency

DNS Records %{

RR format: (class, name, value, type, ttl)

» DB contains tuples called resource records (RRs)
+ Classes = Internet (IN), Chaosnet (CH), etc.
» Each class defines value associated with type

Type=CNAME
name is an alias name for
some “canonical” (the real)
name

Type=NS value is canonical name

Type=A
name is hostname
value is IP address

name is domain (e.g. foo.com) Type=MX

value is name of authoritative
name server for this domain

value is hostname of
mailserver associated with
name

l[?/" {:;
DNS Design: Hlerarchy Definitions %57
I I |
» Each node in hierarchy
stores a list of names that
root end wﬂh same suffix
org » Suffix = path up tree
net edu com uk » E.g., given this tree, where
would following be stored:
gwu ucbh cmu bu mit * Fred.com
* Fred.edu
cs ece « Fred.cmu.edu
cmcl * Fred.cmcl.cs.cmu.edu
* Fred.cs.mit.edu
9
N 2 A
//n \“l =
DNS Design: Cont. £33
- - - _—

. Zones are created by convincing owner node to
create/delegate a subzone
* Records within zone stored multiple redundant name
servers
* Primary/master name server updated manually
» Secondary/redundant servers updated by zone transfer

of name space
« Zone transfer is a bulk transfer of the “configuration” of a DNS

server — uses TCP to ensure reliability

* Example:
* CS.CMU.EDU created by CMU.EDU administrators

DNS Design: Zone Definitions

» Zone = contiguous
section of name space

* E.g., Complete tree,
single node or subtree

* A zone has an associated
set of name servers

root

org ca
net edu com uk

Subtree
Single node
Complete
Tree
N 2 A
o /5 R g
Servers/Resolvers (33
. .]

| I
« Each host has a resolver
+ Typically a library that applications can link to
* Local name servers hand-configured (e.g. /etc/
resolv.conf)
* Name servers
* Either responsible for some zone or...

* Local servers
* Do lookup of distant host names for local hosts

* Typically answer queries about local zone

EX
DNS: Root Name Servers o5
| I S I |
* Responsible for
root” zone DNS Root Servers s

» Approx. dozen root
name servers
worldwide

* Currently {a-m}.root-
servers.net

* Local name servers
contact root servers
when they cannot
resolve a name

E-NASA Moffet Field CA
F-ISC Woodside CA

M-WIDE Keio

B-DISA-USC Marina delRey CA
L-DISA-USC Marina delRey CA

Designation, Responsibility, and Locations
1-NORDU Stockholm

= A-NSF-NS| Herndon VA
} C-PSI Herndon VA
D-UMD College Pk MD
G-DISA-Boeing Vienna VA
H-USArmy Aberdeen MD
J-NSF-NSI Herndon VA

K-LINXIRIPE London

» Configured with well-
known root servers

DNS Message Format

IaYe"
I - - -
| Identification Flags
12 bytes No. of Questions No. of Answer RRs

No. of Authority RRs

No. of Additional RRs

Name, type fields
for a query

— Questions (variable number of answers)

RRs in response
to query

. Answers (variable number of resource records)

Records for
authoritative

— Authority (variable number of resource records)

servers

Additional ——Additional Info (variable number of resource records)

“helpful info that

may be used

DNS Header Fields

N . I
. Identlflcatlon

» Used to match up request/response

» Flags

* 1-bit to mark query or response
* 1-bit to mark authoritative or not
* 1-bit to request recursive resolution
+ 1-bit to indicate support for recursive resolution

Typical Resolution

&9
o OV
www.cs.cmu.edu \N‘N‘fIL//////
T AsW™

NS n
. Local \ e
Client DNS server \\
4
Y,

1 DNS

root & edu
DNS server

ns1.cmu.edu
DNS server

ns1.cs.cmu.edu

server

Typlcal Resolution e
I I I L
Steps for resolving www.cmu.edu
 Application calls gethostbyname() (RESOLVER)
* Resolver contacts local name server (S,)
+ S, queries root server (S,) for ()
* S, returns NS record for cmu.edu (S;)

* What about A record for S;?

« This is what the additional information section is for
(PREFETCHING)

* S, queries S; for
» S, returns A record for

Can return multiple A records - what does this
mean?

Lookup Methods

Recursive query:

« Server goes out and
searches for more info
(recursive)

. OnIy returns flnal answer
or “not found”

lterative query:

« Server responds with as
much as it knows
(iterative)

* “l don’t know this name,

but ask this server’ dns.eurecom.fr

1 8
Workload impact on choice?
« Local server typically does @
recursive
* Root/distant server does .
iterative requesting host

surf.eurecom.fr

local name server intermediate name server

dns.umass.edu

5 4 eauthorltat\ve name
server
dns.cs.umass.edu

gaia.cs.umass.edu

a

Workload and Caching S
I N I |
. What workload do you expect for different servers/names?
* Why might this be a problem? How can we solve this problem?
* DNS responses are cached
» Quick response for repeated translations
* Other queries may reuse some parts of lookup
* NS records for domains
* DNS negative queries are cached
* Don't have to repeat past mistakes
* E.g. misspellings, search strings in resolv.conf
» Cached data periodically times out
« Lifetime (TTL) of data controlled by owner of data
* TTL passed with every record

S,

oy A
H H /bR
Typical Resolution JRCY
| I I I]
w0 root & edu
e
www.cs.cmu.edu \N\N'oe-c‘“\'\ DNS server
W 5080
et
‘;:::::;\‘;S:ﬁsz%:t:: — ns1.cmu.edu
. Local S-Cmu.edu DNS server
Client ~
DNS server PR
My, ns1.cs.cmu.edu
R DNS
adO’r 4
server

Ll
oy e

Reliability o te

S I I L
* DNS servers are replicated
» Name service available if = one replica is up
* Queries can be load balanced between replicas
» UDP used for queries
* Need reliability > must implement this on top of UDP!
* Why not just use TCP?
» Try alternate servers on timeout
» Exponential backoff when retrying same server
» Same identifier for all queries
» Don’t care which server responds

Si R
Subsequent Lookup Example jeeg
[- - - -
root & edu
DNS server
ftp.cs.cmu.edu
5 cmu.edu
. Local ©.cs DNS server
Client DNS server ‘C/h“@o'
sy v cs.cmu.edu
eO'Q//. DNS
server
21
[N 2 A
s
Reverse Name Lookup jose}
[I - - I - -

» 128.2.206.1387
» Lookup 138.206.2.128.in-addr.arpa
* Why is the address reversed?

* Happens to be www.intel-iris.net and
mammoth.cmcl.cs.cmu.edu - what will reverse
lookup return? Both?

» Should only return name that reflects address
allocation mechanism

Prefetching v
[N . N . N .]

« Name servers can add additional data to
any response

* Typically used for prefetching

+ CNAME/MX/NS typically point to another host
name

* Responses include address of host referred to
in “additional section”

Root Zone e
| I I I .

» Generic Top Level Domains (gTLD)
= .com, .net, .org, efc...

* Country Code Top Level Domain (ccTLD)
= .us, .ca, .fi, .uk, etc...

* Root server ({a-m}.root-servers.net) also
used to cover gTLD domains
* Load on root servers was growing quickly!

* Moving .com, .net, .org off root servers was
clearly necessary to reduce load > done Aug

New gTLDs Py
| I I
+ .info & general info

* .biz & businesses

» .aero - air-transport industry

» .coop = business cooperatives

* .name -» individuals

* .pro - accountants, lawyers, and physicians

* .museum - museums

* Only new one actives so far = .info, .biz, .name

2000
New Registrars vty
| I I I L

* Network Solutions (NSI) used to handle all
registrations, root servers, etc...
* Clearly not the democratic (Internet) way

» Large number of registrars that can create new
domains = However, NSI still handle root
servers

Do you trust the TLD operators? s
| I I I .
» Wildcard DNS record for all and

domain names not yet registered by others
» September 15 — October 4, 2003
* February 2004: Verisign sues ICANN

» Redirection for these domain names to
Verisign web portal (SiteFinder)

* What services might this break?

Protecting the Root Nameservers s

'S
| I S I L
Attack On Internet Called Largest Ever
| By David McGuire and Brian Krebs Sophisticated?

washingtonpost.com Staff Whiters
Tuesday, October 22, 2002; 5:40 PM

Why did nobody notice?

The heart of the Internet sustained its largest and most

. sophisticzted attack ever, starting late Monday, acrardin~ o
officials zt key online backbone organizations. Seshan.org. S WWW.SEShan.Ol‘g.

Around 5:00 p.m. EDT on Mondzy, a "distributed denial of service"
(DDOS) attack struck the 13 "roct servers" that provide the
primary roadmap for almost all Internet cornmunications. Despite
the scale of the attack, which lasted about an hour, Internet users
worldwide were largely unaffected, experts said.

Defense Mechanisms

* Redundancy: 13 root nameservers
« IP Anycast for root DNS servers {c,f,i,j,k}.root-servers.net
+ RFC 3258
* Most physical nameservers lie outside of the US

Defense: Replication and Caching

Letter Old name Operator Location
A |ns.internic.net |VeriSign Dulles, Virginia, USA
nsl.isi.edu ISI Marina Del Rey, California, USA
c.psi.net Cogent Communications | distributed using anycast
terp.umd.edu | University of Maryland College Park, Maryland, USA
ns.nasa.gov NASA Mountain View, California, USA
ns.isc.org IsC distributed using anycast
ns.nic.ddn.mil | U.S. DoD NIC Columbus, Ohio, USA
aos.arl.army.mil|U.S. Army Research Lab@ | Aberdeen Proving Ground, Maryland, USA
nic.nordu.net |Autonomica & distributed using anycast
VeriSign distributed using anycast
RIPE NCC distributed using anycast

ICANN Los Angeles, California, USA

TP AR~ =TT O0TmTmMmOON®

WIDE Project distributed using anycast

source: wikipedia

DNS Hack #1: Load Balance ;; f;’

» Server sends out multiple A records
 Order of these records changes per-client

DNS Hack #3: Blackhole Lists

I I I
Flrst: Mail Abuse Prevention System
(MAPS)

 Paul Vixie, 1997

» Today: Spamhaus, spamcop. dnsrbl.org,

etC Different addresses refer to
) different reasons for blocking

% dig 91.53.195.211.bl.spamcop.net /

;; ANSWER SECTION:
91.53.195.211.bl.spamcop.net. 2100 IN A 127.0.0.2

;; ANSWER SECTION:
91.53.195.211.bl.spamcop.net. 1799 IN TXT "Blocked - see http:/
www.spamcop.net/bl.shtm1?211.195.53.91"

DNS Experience X
I I
. 23% of lookups with no answer

» Retransmit aggressively - most packets in trace for
unanswered lookups!

« Correct answers tend to come back quickly/with few
retries

* 10 - 42% negative answers - most = no name
exists
* Inverse lookups and bogus NS records

* Worst 10% lookup latency got much worse
* Median 85->97, 90" percentile 447>1176

* Increasing share of low TTL records - what is
happening to caching?

DNS Experlence yodes
I L]
. H|t rate for DNS 80% 9 1-(#DNS/#connections)
* Most Internet traffic is Web
» What does a typical page look like? - average of 4-5
imbedded objects > needs 4-5 transfers - accounts
for 80% hit rate!
* 70% hit rate for NS records - i.e. don’t go to root/
gTLD servers
* NS TTLs are much longer than A TTLs
* NS record caching is much more important to scalability
* Name distribution = Zipf-like = 1/x2
* Arecords & TTLs = 10 minutes similar to TTLs =
infinite
* 10 client hit rate = 1000+ client hit rate

Some Interesting Alternatives e

N .
. CoDNS
* Lookup failures
» Packet loss
» LDNS overloading
+ Cron jobs
* Maintenance problems
+ Cooperative name lookup scheme
* If local server OK, use local server
* When failing, ask peers to do lookup

* Push DNS
» Top of DNS hierarchy is relatively stable
» Why not replicate much more widely?

Overview Vit
| I I I]
* DNS

» Server selection and CDNs

Server Selection P
[I . I . I .]

+ Service is replicated in many places in network

* How to direct clients to a particular server?
» As part of routing = anycast, cluster load balancing
* As part of application > HTTP redirect
* As part of naming > DNS

* Which server?
* Lowest load - to balance load on servers

» Best performance - to improve client performance
» Based on Geography? RTT? Throughput? Load?

* Any alive node - to provide fault tolerance

CDN ey

| I I I L

» Replicate content on many servers

» Challenges
* How to replicate content
* Where to replicate content
* How to find replicated content
* How to choose among known replicas
» How to direct clients towards replica

* DNS, HTTP 304 response, anycast, etc.

* Akamai

Routing Based v

| I I I L

» Anycast
» Give service a single IP address

» Each node implementing service advertises
route to address
» Packets get routed from client to “closest”
service node
* Closest is defined by routing metrics
» May not mirror performance/application needs

* What about the stability of routes?

Routing Based v
|| I N . N . |

 Cluster load balancing

* Router in front of cluster of nodes directs packets to
server
« Can only look at global address (L3 switching)
« Often want to do this on a connection by connection
basis — why?
» Forces router to keep per connection state
» L4 switching — transport headers, port numbers
» How to choose server
 Easiest to decide based on arrival of first packet in exchange
* Primarily based on local load

» Can be based on later packets (e.g. HTTP Get request) but
makes system more complex (L7 switching)

L]

10

Ll
oy e

q //u }1
-
e

Application Based 3

| I I I L

* HTTP supports simple way to indicate that Web
page has moved

» Server gets Get request from client

» Decides which server is best suited for particular client
and object

* Returns HTTP redirect to that server

» Can make informed application specific decision

* May introduce additional overhead - multiple
connection setup, name lookups, etc.

» While good solution in general HTTP Redirect has
some design flaws — especially with current
browsers?

»
b

Naming Based P
| I I I .

+ Client does name lookup for service
» Name server chooses appropriate server address
* What information can it base decision on?
» Server load/location - must be collected
» Name service client
» Typically the local name server for client
* Round-robin
* Randomly choose replica
* Avoid hot-spots
* [Semi-]static metrics
» Geography
* Route metrics
* How well would these work?

Ll
oy e

How Akamai Works Yoy

| I I I L
* Clients fetch html document from primary server

« E.g. fetch index.html from cnn.com
» URLs for replicated content are replaced in html
» E.g. replaced with
<img src="http://a73.g.akamaitech.net/7/23/cnn.com/af/
x.gif">
» Client is forced to resolve aXYZ.g.akamaitech.net
hostname

=
b

How Akamai Works v
| N .. I .. I .. L

* How is content replicated?

» Akamai only replicates static content

» Serves about 7% of the Internet traffic ! (in
2003)

* Modified name contains original file
« Akamai server is asked for content

* First checks local cache

* If not in cache, requests file from primary server
and caches file

L]

11

How Akamai Works jos ey

| I S I L
* Root server gives NS record for akamai.net
» Akamai.net name server returns NS record for
g.akamaitech.net
» Name server chosen to be in region of client’s name

How Akamai Works

cnn.com (content provider) DNS root server

. Akamai high-level DNS server
L

. Akamai low-level DNS server
it

server
* TTL is large
» G.akamaitech.net nameserver choses server in
region
» Should try to chose server that has file in cache - How
to choose?
* Uses aXYZ name and consistent hash
* TTL is small
45
N 2 A
: LS /o R 5
Akamai — Subsequent Requests Y03
[. - - . -]
cnn.com (content provider) DNS root server Akamai server

l Akamai high-level DNS server
1L

7 l Akamai low-level DNS server
t

n 8
= 2

End-user. P
Get /cnn.com/foo.jpg

Akamai server

g Akamai server
End‘-u;e} 12
Get /cnn.com/foo.jpg
4
®
R
Coral: An Open CDN joy ey
|

\\ Browser

Pool resources to dissipate flash crowds

* Implement an open CDN

+ Allow anybody to contribute

» Works with unmodified clients

+ CDN only fetches once from origin server "

12

%

. s,
Using CoralCDN o
| I S I L
* Rewrite URLs into “Coralized” URLs
*« www.x.com — www.x.com.nyud.net:8090
+ Directs clients to Coral, which absorbs load
* Who might “Coralize” URLs?
» Web server operators Coralize URLs
* Coralized URLs posted to portals, mailing lists
» Users explicitly Coralize URLs
N 2 A
. . R,
Functionality needed S
| I I I . L

m DNS: Given network location of resolver, return a
proxy near the client

put (network info, self)
get (resolver info) — {proxies}

m HTTP: Given URL, find proxy caching object,
preferably one nearby

put (URL, self)
get (URL) — {proxies}

CoralCDN components JRCg
[- - -]
Origin
:Server :
""""" N
?
Fetch data
httpprx from nearby
dnssrv
DNS Redirection .
Ret 1 l Cooperative
© o PRy, Web Caching
preferably one
near client Resolver
Browser
www.x.com.nyud.net .
By 2 A
2 o /5 R 5
Use a DHT™ V]
[- - -]

» Supports put/get interface using key-based routing
* Problems with using DHTs as given

NYC Japan

0.‘
® - Lookup latency
Germany

- Transfer latency
- Hotspots

13

Coral distributed index jos ey

| I I I L
+ Insight: Don’t need hash table semantics

» Just need one well-located proxy

* put (key, value, ttl)

* Avoid hotspots

get (key)

* Retrieves some subset of values put under key
 Prefer values put by nodes near requestor

+ Hierarchical clustering groups nearby nodes
« Expose hierarchy to applications
* Rate-limiting mechanism distributes puts

Key-based XOR routing v
— - - - -
000... Distance to key 111...
A Thresholds

o0 o0 oo 000 o None

* Minimizes lookup latency
» Prefer values stored by nodes within faster clusters

<60 ms

Prevent insertion hotspots 2y

m Store value once in each level cluster

Always storing at closest node causes hotspot

/.

v ®
v ®

s

o

|

N ad-

T

|

* Halt putroutingat and node
« Full — M vals/key with TTL > %z insertion TTL

+ Loaded — B puts traverse node in past minute
__* Store at furthest, non-full node seen

Coral Contributions ”;i?:;’
[I N . N .]

+ Self-organizing clusters of nodes
* NYU and Columbia prefer one another to Germany

* Rate-limiting mechanism
» Everybody caching and fetching same URL does not
overload any node in system
* Decentralized DNS Redirection
+ Works with unmodified clients

No centralized management or a priori knowledge of
proxies’ locations or network configurations

14

Overview (543
- - - - -

« DNS

» Service location

Service Descriptions Ve
- - - - -

 Typically done as hierarchical value-
attribute pairs
* Type = printer > memory = 32MB, lang = PCL
* Location = CMU - building = WeH

» Hierarchy based on attributes or attributes-
values?

» E.g. Country > state or country=USA >
state=PA and country=Canada >
province=BC?

* Can be done in something like XML

. . pa
Service Location R
| I I I L]
+ What if you want to lookup services with more
expressive descriptions than DNS names
» E.g. please find me printers in cs.cmu.edu instead of
laserjet1.cs.cmu.edu
* What do descriptions look like?
* How is the searching done?
* How will it be used?
» Search for particular service?
+ Browse available services?
« Composing multiple services into new service?
58
N 2 A
. . . AN,
Service Discovery (Multicast) o
[— - - - - - -

» Services listen on well known discovery group
address

+ Client multicasts query to discovery group

» Services unicast replies to client

» Tradeoffs
* Not very scalable > effectively broadcast search
* Requires no dedicated infrastructure or bootstrap
+ Easily adapts to availability/changes

« Can scope request by multicast scoping and by
information in request

15

Service Discovery (Directory Based)

| I I
» Services register with central directory agent
» Soft state - registrations must be refreshed or the
expire
 Clients send query to central directory - replies
with list of matches
» Tradeoffs

* How do you find the central directory service?
« Typically using multicast based discovery!
« SLP also allows directory to do periodic advertisements

* Need dedicated infrastructure
* How do directory agents interact with each other?

* Well suited for browsing and composition = knows full
list of services

Service Discovery (Routing Based) %'
| S I
+ Client issues query to overlay network
» Query can include both service description and actual request for
service
» Overlay network routes query to desired service[s]

+ If query only description, subsequent interactions can be
outside overlay (early-binding)
« If query includes request, client can send subsequent
queries via overlay (late-binding)
» Subsequent requests may go to different services agents
» Enables easy fail-over/mobility of service
» Tradeoffs
* Routing on complex parameters can be difficult/expensive
» Can work especially well in ad-hoc networks
» Can late-binding really be used in many applications?

Wide Area Scaling vty
[N . N . N . L

* How do we scale discovery to wide area?
* Hierarchy?
» Hierarchy must be based on attribute of services
« All services must have this attribute
« All queries must include (implicitly or explicitly) this
attribute
» Tradeoffs

* What attribute? Administrative (like DNS)?
Geographic? Network Topologic?
» Should we have multiple hierarchies?

* Do we really need hierarchy? Search engines seem to
work fine!

Other Issues v
| I I I]

* Dynamic attributes

* Many queries may be based on attributes such
as load, queue length

» E.g., print to the printer with shortest queue
» Security
» Don’t want others to serve/change queries

» Also, don’'t want others to know about existence
of services

« Srini’s home SLP server is advertising the $50,000
MP3 stereo system (come steal me!)

16

Hashing
| I
» Advantages

» Let the CDN nodes are numbered 1..m
» Client uses a good hash function to map a URL to 1..m
» Say hash (url) = x, so, client fetches content from node
X
» No duplication — not being fault tolerant.
* One hop access
* Any problems?
* What happens if a node goes down?
« What happens if a node comes back up?
« What if different nodes have different views?

2
oy

Robust hashing e

* Let 90 documents, node 1..9, node 10 which was
dead is alive again
* % of documents in the wrong node?

» 10, 19-20, 28-30, 37-40, 46-50, 55-60, 64-70, 73-80,
82-90

+ Disruption coefficient = 2
» Unacceptable, use consistent hashing — idea behind

La

Ll

oy e

/5%

Consistent Hash S

| N . I N . \-
 “view” = subset of all hash buckets that are
visible
* Desired features
» Balanced - in any one view, load is equal
across buckets
* Smoothness - little impact on hash bucket
contents when buckets are added/removed
» Spread — small set of hash buckets that may
hold an object regardless of views

* Load — across all views # of objects assigned to
hash bucket is small

=
b

Akamai!
66
N 2 A
. N,
Consistent Hash — Example o
[- . - . - —
+ Construction
* Assign each of C hash buckets to o L
random points on mod 2" circle, Ve .
where, hash key size = n. | Bucket)
* Map object to random position on \ J
circle . .
+ Hash of object = closest * ¢

clockwise bucket

* Smoothness - addition of bucket does not cause much
movement between existing buckets
» Spread & Load - small set of buckets that lie near object

» Balance - no bucket is responsible for large number of
objects

17

