

Forwarding and Routers

- Forwarding
- IP lookup
- · High-speed router architecture
- Readings
 - [McK97] A Fast Switched Backplane for a Gigabit Switched Router
 - [KCY03] Scaling Internet Routers Using Optics
 - Know RIP/OSPF
- Optional
 - [D+97] Small Forwarding Tables for Fast Routing Lookups
 - [BV01] Scalable Packet Classification

2

Outline

- IP router design
- IP route lookup
- Variable prefix match algorithms
- Alternative methods for packet forwarding

IP Router Design

- Different architectures for different types of routers
- High speed routers incorporate large number of processors
- · Common case is optimized carefully

What Does a Router Look Like?

- Currently:
 - · Network controller
 - Line cards
 - · Switched backplane
- In the past?
 - Workstation
 - · Multiprocessor workstation
 - · Line cards + shared bus

Network Processor

Line Cards

- · Network interface cards
- · Provides parallel processing of packets
- · Fast path per-packet processing
 - Forwarding lookup (hardware/ASIC vs. software)

Switch Design Issues

- · Runs routing protocol and downloads forwarding table to line cards
 - Some line cards maintain two forwarding tables to allow easy switchover
- · Performs "slow" path processing
 - · Handles ICMP error messages
 - · Handles IP option processing

- · Have N inputs and M outputs
 - Multiple packets for same output output contention
 - Switch contention switch cannot support arbitrary set of transfers
 - Crossbar
 - Bus
 - High clock/transfer rate needed for bus
 - - Complex scheduling needed to avoid switch contention
- Solution buffer packets where needed

Switch Buffering

- Input buffering
 - · Which inputs are processed each slot schedule?
 - · Head of line packets destined for busy output blocks other packets
- · Output buffering
 - · Output may receive multiple packets per slot
 - · Need speedup proportional to # inputs
- Internal buffering
 - · Head of line blocking
 - · Amount of buffering needed

Line Card Interconnect

- · Virtual output buffering
 - Maintain per output buffer at input
 - · Solves head of line blocking problem
 - · Each of MxN input buffer places bid for output
- Crossbar connect
- Challenge: map of bids to schedule for crossbar

ISLIP 1 g=B 2 g=A 2 g=A 3 g=A 4 g=A REQUEST Round 1, Iteration 2 1 g=B 2 g=A 3 g=A 3 a=1 REQUEST Round2. Iteration 1 2 <u>g</u>=A 2 g=B 4 g=A 4 g=A a=1 REQUEST

Limits to Scaling

- Overall power is dominated by linecards
 - Sheer number
 - Optical WAN components
 - Per packet processing and buffering.
- But power *density* is dominated by switch fabric

- Instead, can we use an optical fabric at 100Tb/s with 100% throughput?
- · Conventional answer: No
 - Need to reconfigure switch too often
 - 100% throughput requires complex electronic scheduler.

Outline

- IP router design
- IP route lookup
- · Variable prefix match algorithms
- · Alternative methods for packet forwarding

26

Original IP Route Lookup

- Address classes
 - A: 0 | 7 bit network | 24 bit host (16M each)
 - B: 10 | 14 bit network | 16 bit host (64K)
 - C: 110 | 21 bit network | 8 bit host (255)
- Address would specify prefix for forwarding table
 - · Simple lookup

Original IP Route Lookup – Example

- www.cmu.edu address 128.2.11.43
 - Class B address class + network is 128.2
 - Lookup 128.2 in forwarding table
 - Prefix part of address that really matters for routing
- Forwarding table contains
 - · List of class+network entries
 - A few fixed prefix lengths (8/16/24)
- Large tables
 - · 2 Million class C networks
- 32 bits does not give enough space encode network location information inside address – i.e., create a structured hierarchy

CIDR Revisited

- Supernets
 - · Assign adjacent net addresses to same org
 - · Classless routing (CIDR)
- How does this help routing table?
 - Combine routing table entries whenever all nodes with same prefix share same hop
 - Routing protocols carry prefix with destination network address
 - · Longest prefix match for forwarding

CIDR Shortcomings

- Multi-homing
- Customer selecting a new provider

Outline

- IP router design
- IP route lookup
- · Variable prefix match algorithms
- · Alternative methods for packet forwarding

How To Do Variable Prefix Match Traditional method – Patricia Tree Arrange route entries into a series of bit tests Worst case = 32 bit tests Problem: memory speed is a bottleneck Bit to test – 0 = left child, 1 = right child default 0/0 128.32/16 128.32/16 128.32.130/240 128.32.150/24

Speeding up Prefix Match (P+98)

- Each 1 corresponds to either a route or a subtree
 - · Keep array of routes/pointers to subtree
 - Need index into array how to count # of 1s
 - Keep running count to 16bit word in base index + code word (6 bits)
 - · Need to count 1s in last 16bit word
 - · Clever tricks
- Subtrees are handled separately

Speeding up Prefix Match (P+98)

- Scaling issues
 - · How would it handle IPv6
- Update issues
- Other possibilities
 - Why were the cuts done at 16/24/32 bits?
 - Improve data structure by shuffling bits

Speeding up Prefix Match - Alternatives

- Route caches
 - Temporal locality
 - · Many packets to same destination
- Other algorithms
 - Waldvogel Sigcomm 97
 - · Binary search on prefixes
 - · Works well for larger addresses
 - Bremler-Barr Sigcomm 99
 - Clue = prefix length matched at previous hop
 - · Why is this useful?
 - Lampson Infocom 98
 - Binary search on ranges

Speeding up Prefix Match - Alternatives

- Content addressable memory (CAM)
 - · Hardware based route lookup
 - Input = tag, output = value associated with tag
 - · Requires exact match with tag
 - Multiple cycles (1 per prefix searched) with single CAM
 - Multiple CAMs (1 per prefix) searched in parallel
 - Ternary CAM
 - 0,1,don't care values in tag match
 - Priority (I.e. longest prefix) by order of entries in CAM

Outline

- IP router design
- IP route lookup
- · Variable prefix match algorithms
- Alternative methods for packet forwarding

41

Techniques for Forwarding Packets

- Source routing
 - · Packet carries path
- Table of virtual circuits
 - · Connection routed through network to setup state
 - · Packets forwarded using connection state
- Table of global addresses (IP)
 - · Routers keep next hop for destination
 - · Packets carry destination address

Source Routing

- · List entire path in packet
 - Driving directions (north 3 hops, east, etc..)
- Router processing
 - · Examine first step in directions
 - · Strip first step from packet
 - · Forward to step just stripped off

Source Routing

- Advantages
 - · Switches can be very simple and fast
- Disadvantages
 - Variable (unbounded) header size
 - Sources must know or discover topology (e.g., failures)
- Typical use
 - Ad-hoc networks (DSR)
 - Machine room networks (Myrinet)

Virtual Circuits/Tag Switching

- · Connection setup phase
 - · Use other means to route setup request
 - Each router allocates flow ID on local link
 - Creates mapping of inbound flow ID/port to outbound flow ID/port
- Each packet carries connection ID
 - Sent from source with 1st hop connection ID
- Router processing
 - Lookup flow ID simple table lookup
 - · Replace flow ID with outgoing flow ID
 - Forward to output port

Virtual Circuits Examples

Virtual Circuits

- Advantages
 - More efficient lookup (simple table lookup)
 - · More flexible (different path for each flow)
 - · Can reserve bandwidth at connection setup
 - · Easier for hardware implementations
- Disadvantages
 - · Still need to route connection setup request
 - More complex failure recovery must recreate connection state
- Typical uses
 - · ATM combined with fix sized cells
 - MPLS tag switching for IP networks

IP Datagrams on Virtual Circuits

- Challenge when to setup connections
 - At bootup time permanent virtual circuits (PVC)
 - Large number of circuits
 - · For every packet transmission
 - Connection setup is expensive
 - For every connection
 - · What is a connection?
 - · How to route connectionless traffic?

IP Datagrams on Virtual Circuits

- · Traffic pattern
 - · Few long lived flows
 - Flow set of data packets from source to destination
 - Large percentage of packet traffic
 - Improving forwarding performance by using virtual circuits for these flows
- Other traffic uses normal IP forwarding

49

Summary: Addressing/Classification

- Router architecture carefully optimized for IP forwarding
- Key challenges:
 - · Speed of forwarding lookup/classification
 - Power consumption
- Some good examples of common case optimization
 - · Routing with a clue
 - · Classification with few matching rules
 - · Not checksumming packets

Open Questions

- · Fanout vs. bandwidth
- · MPLS vs. longest prefix match
- · More vs. less functionality in routers
- · Hardware vs. software
 - · CAMs vs. software
- · Impact of router design on network design

Global Addresses (IP)

- · Each packet has destination address
- Each switch has forwarding table of destination → next hop
 - At v and x: destination → east
 - At w and y: destination → south
 - At z: destination → north
- Distributed routing algorithm for calculating forwarding tables

53

Router Table Size

- One entry for every host on the Internet
 - 100M entries, doubling every year
- One entry for every LAN
 - Every host on LAN shares prefix
 - Still too many, doubling every year
- · One entry for every organization
 - Every host in organization shares prefix
 - · Requires careful address allocation

Global Addresses

- Advantages
 - Stateless simple error recovery
- Disadvantages
 - Every switch knows about every destination
 - Potentially large tables
 - All packets to destination take same route

Complexity

- N rules and k header fields for k > 2
 - O(log N^{k-1}) time and O(N) space
 - O(log N) time and O(Nk) space
 - Special cases for k = 2 → source and destination
 - O(log N) time and O(N) space solutions exist
- How many rules?
 - Largest for firewalls & similar → 1700
 - Diffserv/QoS → much larger → 100k (?)

Observations [GM99]

- Common rule sets have important/useful characteristics
 - Packets rarely match more than a few rules (rule intersection)
 - E.g., max of 4 rules seen on common databases up to 1700 rules

Aggregating Rules [BV01]

- Common case: very few 1's in bit vector → aggregate bits
- OR together A bits at a time → N/A bit-long vector
 - A typically chosen to match word-size
 - Can be done hierarchically → aggregate the aggregates
- AND of aggregate bits indicates which groups of A rules have a possible match
 - Hopefully only a few 1's in AND'ed vector
 - AND of aggregated bit vectors may have false positives
- Fetch and AND just bit vectors associated with positive entries

Rearranging Rules [BV01]

- Problem: false positives may be common
- Solution: reorder rules to minimize false positives
 - What about the priority order of rules?
- How to rearrange?
 - Heuristic → sort rules based on single field's values
 - First sort by prefix length then by value
 - Moves similar rules close together → reduces false positives
