
1

15-744: Computer Networking

L-5 TCP & Routers

2

Fair Queuing

•  Fair Queuing
•  Core-stateless Fair queuing
•  Assigned reading

•  [DKS90] Analysis and Simulation of a Fair
Queueing Algorithm, Internetworking: Research
and Experience

•  [SSZ98] Core-Stateless Fair Queueing:
Achieving Approximately Fair Allocations in
High Speed Networks

3

Overview

•  TCP modeling

•  Fairness

•  Fair-queuing

•  Core-stateless FQ

4

TCP Modeling
•  Given the congestion behavior of TCP can we

predict what type of performance we should get?
•  What are the important factors

•  Loss rate
•  Affects how often window is reduced

•  RTT
•  Affects increase rate and relates BW to window

•  RTO
•  Affects performance during loss recovery

•  MSS
•  Affects increase rate

2

5

Overall TCP Behavior

Time

Window

•  Let’s concentrate on steady state behavior
with no timeouts and perfect loss recovery

6

Simple TCP Model
•  Some additional assumptions

•  Fixed RTT
•  No delayed ACKs

•  In steady state, TCP losses packet each time
window reaches W packets
•  Window drops to W/2 packets
•  Each RTT window increases by 1 packetW/2 * RTT

before next loss
•  BW = MSS * avg window/RTT =

•  MSS * (W + W/2)/(2 * RTT)
•  .75 * MSS * W / RTT

7

Simple Loss Model

•  What was the loss rate?
•  Packets transferred between losses =

•  Avg BW * time =
•  (.75 W/RTT) * (W/2 * RTT) = 3W2/8

•  1 packet lost  loss rate = p = 8/3W2
•  W = sqrt(8 / (3 * loss rate))

•  BW = .75 * MSS * W / RTT
•  BW = MSS / (RTT * sqrt (2/3p))

8

TCP Friendliness
•  What does it mean to be TCP friendly?

•  TCP is not going away
•  Any new congestion control must compete with TCP

flows
•  Should not clobber TCP flows and grab bulk of link
•  Should also be able to hold its own, i.e. grab its fair share, or it

will never become popular

•  How is this quantified/shown?
•  Has evolved into evaluating loss/throughput behavior
•  If it shows 1/sqrt(p) behavior it is ok
•  But is this really true?

3

9

TCP Performance

•  Can TCP saturate a link?
•  Congestion control

•  Increase utilization until… link becomes
congested

•  React by decreasing window by 50%
•  Window is proportional to rate * RTT

•  Doesn’t this mean that the network
oscillates between 50 and 100% utilization?
•  Average utilization = 75%??
•  No…this is *not* right!

10

TCP Congestion Control

Only W packets
may be outstanding

Rule for adjusting W
•  If an ACK is received: W ← W+1/W
•  If a packet is lost: W ← W/2

Source Dest

t

Window size

11

Single TCP Flow
Router without buffers

12

Summary Unbuffered Link

t

W Minimum window
for full utilization

•  The router can’t fully utilize the link
•  If the window is too small, link is not full
•  If the link is full, next window increase causes drop
•  With no buffer it still achieves 75% utilization

4

13

TCP Performance

•  In the real world, router queues play
important role
•  Window is proportional to rate * RTT

•  But, RTT changes as well the window

•  Window to fill links = propagation RTT *
bottleneck bandwidth
•  If window is larger, packets sit in queue on

bottleneck link

14

TCP Performance
•  If we have a large router queue  can get

100% utilization
•  But, router queues can cause large delays

•  How big does the queue need to be?
•  Windows vary from W  W/2

•  Must make sure that link is always full
•  W/2 > RTT * BW
•  W = RTT * BW + Qsize
•  Therefore, Qsize > RTT * BW

•  Ensures 100% utilization
•  Delay?

•  Varies between RTT and 2 * RTT

15

Single TCP Flow
Router with large enough buffers for full link utilization

16

Summary Buffered Link

t

W

Minimum window
for full utilization

•  With sufficient buffering we achieve full link utilization
•  The window is always above the critical threshold
•  Buffer absorbs changes in window size

•  Buffer Size = Height of TCP Sawtooth
•  Minimum buffer size needed is 2T*C

•  This is the origin of the rule-of-thumb

Buffer

5

17

Example

•  10Gb/s linecard
•  Requires 300Mbytes of buffering.
•  Read and write 40 byte packet every 32ns.

•  Memory technologies
•  DRAM: require 4 devices, but too slow.
•  SRAM: require 80 devices, 1kW, $2000.

•  Problem gets harder at 40Gb/s
•  Hence RLDRAM, FCRAM, etc.

18

Rule-of-thumb
•  Rule-of-thumb makes sense for one flow
•  Typical backbone link has > 20,000 flows
•  Does the rule-of-thumb still hold?

19

If flows are synchronized

•  Aggregate window has same dynamics
•  Therefore buffer occupancy has same dynamics
•  Rule-of-thumb still holds.

t

20

If flows are not synchronized

Probability
Distribution

B

0

Buffer Size

6

21

Central Limit Theorem

•  CLT tells us that the more variables (Congestion
Windows of Flows) we have, the narrower the Gaussian
(Fluctuation of sum of windows)

•  Width of Gaussian decreases with
•  Buffer size should also decreases with

22

Required buffer size

Simulation

23

Overview

•  TCP modeling

•  Fairness

•  Fair-queuing

•  Core-stateless FQ

24

Fairness Goals

•  Allocate resources fairly
•  Isolate ill-behaved users

•  Router does not send explicit feedback to
source

•  Still needs e2e congestion control
•  Still achieve statistical muxing

•  One flow can fill entire pipe if no contenders
•  Work conserving  scheduler never idles link if

it has a packet

7

25

What is Fairness?
•  At what granularity?

•  Flows, connections, domains?
•  What if users have different RTTs/links/etc.

•  Should it share a link fairly or be TCP fair?

•  Maximize fairness index?
•  Fairness = (Σxi)2/n(Σxi

2) 0<fairness<1

•  Basically a tough question to answer – typically
design mechanisms instead of policy
•  User = arbitrary granularity

26

Max-min Fairness

•  Allocate user with “small” demand what it
wants, evenly divide unused resources to
“big” users

•  Formally:
•  Resources allocated in terms of increasing demand
•  No source gets resource share larger than its

demand
•  Sources with unsatisfied demands get equal share

of resource

27

Max-min Fairness Example

•  Assume sources 1..n, with resource
demands X1..Xn in ascending order

•  Assume channel capacity C.
•  Give C/n to X1; if this is more than X1 wants,

divide excess (C/n - X1) to other sources: each
gets C/n + (C/n - X1)/(n-1)

•  If this is larger than what X2 wants, repeat
process

28

Implementing max-min Fairness

•  Generalized processor sharing
•  Fluid fairness
•  Bitwise round robin among all queues

•  Why not simple round robin?
•  Variable packet length  can get more service

by sending bigger packets
•  Unfair instantaneous service rate

•  What if arrive just before/after packet departs?

8

29

Bit-by-bit RR

•  Single flow: clock ticks when a bit is
transmitted. For packet i:
•  Pi = length, Ai = arrival time, Si = begin transmit

time, Fi = finish transmit time
•  Fi = Si+Pi = max (Fi-1, Ai) + Pi

•  Multiple flows: clock ticks when a bit from all
active flows is transmitted  round number
•  Can calculate Fi for each packet if number of

flows is know at all times
•  This can be complicated

30

Bit-by-bit RR Illustration

•  Not feasible to
interleave bits on
real networks
•  FQ simulates bit-by-

bit RR

31

Overview

•  TCP modeling

•  Fairness

•  Fair-queuing

•  Core-stateless FQ

32

Fair Queuing

•  Mapping bit-by-bit schedule onto packet
transmission schedule

•  Transmit packet with the lowest Fi at any
given time
•  How do you compute Fi?

9

33

FQ Illustration

Flow 1

Flow 2

Flow n

I/P O/P

Variation: Weighted Fair Queuing (WFQ)

34

Bit-by-bit RR Example

F=10

Flow 1
(arriving)

Flow 2
transmitting Output

F=2

F=5
F=8

Flow 1 Flow 2 Output

F=10

Cannot preempt packet
currently being transmitted

35

Delay Allocation
•  Reduce delay for flows using less than fair share

•  Advance finish times for sources whose queues drain
temporarily

•  Schedule based on Bi instead of Fi
•  Fi = Pi + max (Fi-1, Ai)  Bi = Pi + max (Fi-1, Ai - δ)
•  If Ai < Fi-1, conversation is active and δ has no effect
•  If Ai > Fi-1, conversation is inactive and δ determines

how much history to take into account
•  Infrequent senders do better when history is used

36

Fair Queuing Tradeoffs
•  FQ can control congestion by monitoring flows

•  Non-adaptive flows can still be a problem – why?
•  Complex state

•  Must keep queue per flow
•  Hard in routers with many flows (e.g., backbone routers)
•  Flow aggregation is a possibility (e.g. do fairness per domain)

•  Complex computation
•  Classification into flows may be hard
•  Must keep queues sorted by finish times
•  Finish times change whenever the flow count changes

10

Discussion Comments

•  Granularity of fairness
•  Mechanism vs. policy  will see this in QoS

•  Hard to understand
•  Complexity – how bad is it?

37 38

Overview

•  TCP modeling

•  Fairness

•  Fair-queuing

•  Core-stateless FQ

39

Core-Stateless Fair Queuing
•  Key problem with FQ is core routers

•  Must maintain state for 1000’s of flows
•  Must update state at Gbps line speeds

•  CSFQ (Core-Stateless FQ) objectives
•  Edge routers should do complex tasks since they have

fewer flows
•  Core routers can do simple tasks

•  No per-flow state/processing  this means that core routers
can only decide on dropping packets not on order of
processing

•  Can only provide max-min bandwidth fairness not delay
allocation

40

Core-Stateless Fair Queuing

•  Edge routers keep state about flows and do
computation when packet arrives

•  DPS (Dynamic Packet State)
•  Edge routers label packets with the result of

state lookup and computation
•  Core routers use DPS and local

measurements to control processing of
packets

11

41

Edge Router Behavior

•  Monitor each flow i to measure its arrival
rate (ri)
•  EWMA of rate
•  Non-constant EWMA constant

•  e-T/K where T = current interarrival, K = constant
•  Helps adapt to different packet sizes and arrival

patterns

•  Rate is attached to each packet

42

Core Router Behavior

•  Keep track of fair share rate α
•  Increasing α does not increase load (F) by N *
α

•  F(α) = Σi min(ri, α)  what does this look like?
•  Periodically update α
•  Keep track of current arrival rate

•  Only update α if entire period was congested or
uncongested

•  Drop probability for packet = max(1- α/r, 0)

43

F vs. Alpha

New alpha

C [linked capacity]

r1 r2 r3 old alpha
alpha

F

44

Estimating Fair Share
•  Need F(α) = capacity = C

•  Can’t keep map of F(α) values  would require per
flow state

•  Since F(α) is concave, piecewise-linear
•  F(0) = 0 and F(α) = current accepted rate = Fc

•  F(α) = Fc/ α
•  F(αnew) = C  αnew = αold * C/Fc

•  What if a mistake was made?
•  Forced into dropping packets due to buffer capacity
•  When queue overflows α is decreased slightly

12

45

Other Issues

•  Punishing fire-hoses – why?
•  Easy to keep track of in a FQ scheme

•  What are the real edges in such a scheme?
•  Must trust edges to mark traffic accurately
•  Could do some statistical sampling to see if

edge was marking accurately

Discussion Comments

•  Exponential averaging
•  Latency properties
•  Hand-wavy numbers
•  Trusting the edge

46

47

Important Lessons
•  How does TCP implement AIMD?

•  Sliding window, slow start & ack clocking
•  How to maintain ack clocking during loss recovery
 fast recovery

•  How does TCP fully utilize a link?
•  Role of router buffers

•  Fairness and isolation in routers
•  Why is this hard?
•  What does it achieve – e.g. do we still need

congestion control?

48

Next Lecture: TCP & Routers

•  RED
•  XCP
•  Assigned reading

•  [FJ93] Random Early Detection Gateways for
Congestion Avoidance

•  [KHR02] Congestion Control for High
Bandwidth-Delay Product Networks

13

EXTRA SLIDES

The rest of the slides are FYI

50

Overview

•  Fairness
•  Fair-queuing
•  Core-stateless FQ
•  Other FQ variants

Stochastic Fair Queuing
•  Compute a hash on each packet
•  Instead of per-flow queue have a queue per

hash bin
•  An aggressive flow steals traffic from other

flows in the same hash
•  Queues serviced in round-robin fashion

•  Has problems with packet size unfairness
•  Memory allocation across all queues

•  When no free buffers, drop packet from longest
queue

51 52

Deficit Round Robin

•  Each queue is allowed to send Q bytes per
round

•  If Q bytes are not sent (because packet is
too large) deficit counter of queue keeps
track of unused portion

•  If queue is empty, deficit counter is reset to
0

•  Uses hash bins like Stochastic FQ
•  Similar behavior as FQ but computationally

simpler

14

53

Self-clocked Fair Queuing

•  Virtual time to make computation of finish
time easier

•  Problem with basic FQ
•  Need be able to know which flows are really

backlogged
•  They may not have packet queued because they

were serviced earlier in mapping of bit-by-bit to
packet

•  This is necessary to know how bits sent map onto
rounds

•  Mapping of real time to round is piecewise linear 
however slope can change often

54

Self-clocked FQ

•  Use the finish time of the packet being
serviced as the virtual time
•  The difference in this virtual time and the real

round number can be unbounded
•  Amount of service to backlogged flows is

bounded by factor of 2

55

Start-time Fair Queuing

•  Packets are scheduled in order of their start
not finish times

•  Self-clocked  virtual time = start time of
packet in service

•  Main advantage  can handle variable rate
service better than other schemes

