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15-744: Computer Networking 

L-5 TCP & Routers 
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Fair Queuing 

•  Fair Queuing 
•  Core-stateless Fair queuing 
•  Assigned reading 

•  [DKS90] Analysis and Simulation of a Fair 
Queueing Algorithm, Internetworking: Research 
and Experience 

•  [SSZ98] Core-Stateless Fair Queueing: 
Achieving Approximately Fair Allocations in 
High Speed Networks 
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Overview 

•  TCP modeling 

•  Fairness 

•  Fair-queuing 

•  Core-stateless FQ 
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TCP Modeling 
•  Given the congestion behavior of TCP can we 

predict what type of performance we should get? 
•  What are the important factors 

•  Loss rate 
•  Affects how often window is reduced 

•  RTT 
•  Affects increase rate and relates BW to window 

•  RTO 
•  Affects performance during loss recovery 

•  MSS  
•  Affects increase rate 
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Overall TCP Behavior 

Time 

Window 

•  Let’s concentrate on steady state behavior 
with no timeouts and perfect loss recovery 
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Simple TCP Model 
•  Some additional assumptions 

•  Fixed RTT 
•  No delayed ACKs 

•  In steady state, TCP losses packet each time 
window reaches W packets 
•  Window drops to W/2 packets 
•  Each RTT window increases by 1 packetW/2 * RTT 

before next loss 
•  BW = MSS * avg window/RTT =  

•  MSS * (W + W/2)/(2 * RTT) 
•  .75 * MSS * W / RTT 
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Simple Loss Model 

•  What was the loss rate? 
•  Packets transferred between losses =  

•  Avg BW * time =  
•  (.75 W/RTT) * (W/2 * RTT) = 3W2/8 

•  1 packet lost  loss rate = p = 8/3W2 
•  W = sqrt( 8 / (3 * loss rate)) 

•  BW = .75 * MSS * W / RTT 
•  BW = MSS / (RTT * sqrt (2/3p)) 
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TCP Friendliness 
•  What does it mean to be TCP friendly? 

•  TCP is not going away 
•  Any new congestion control must compete with TCP 

flows 
•  Should not clobber TCP flows and grab bulk of link 
•  Should also be able to hold its own, i.e. grab its fair share, or it 

will never become popular 

•  How is this quantified/shown? 
•  Has evolved into evaluating loss/throughput behavior 
•  If it shows 1/sqrt(p) behavior it is ok 
•  But is this really true? 
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TCP Performance 

•  Can TCP saturate a link? 
•  Congestion control 

•  Increase utilization until… link becomes 
congested 

•  React by decreasing window by 50% 
•  Window is proportional to rate * RTT 

•  Doesn’t this mean that the network 
oscillates between 50 and 100% utilization? 
•  Average utilization = 75%?? 
•  No…this is *not* right! 
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TCP Congestion Control 

Only W packets  
may be outstanding 

Rule for adjusting W 
•  If an ACK is received:  W ← W+1/W 
•  If a packet is lost:  W ← W/2 

Source Dest 

t 

Window size 
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Single TCP Flow 
Router without buffers 
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Summary Unbuffered Link 

t 

W Minimum window 
for full utilization 

•  The router can’t fully utilize the link 
•  If the window is too small, link is not full 
•  If the link is full, next window increase causes drop 
•  With no buffer it still achieves 75% utilization 
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TCP Performance 

•  In the real world, router queues play 
important role 
•  Window is proportional to rate * RTT 

•  But, RTT changes as well the window 

•  Window to fill links = propagation RTT * 
bottleneck bandwidth 
•  If window is larger, packets sit in queue on 

bottleneck link 
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TCP Performance 
•  If we have a large router queue  can get 

100% utilization 
•  But, router queues can cause large delays 

•  How big does the queue need to be? 
•  Windows vary from W  W/2 

•  Must make sure that link is always full 
•  W/2 > RTT * BW 
•  W = RTT * BW + Qsize 
•  Therefore, Qsize > RTT * BW 

•  Ensures 100% utilization 
•  Delay? 

•  Varies between RTT and 2 * RTT 
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Single TCP Flow 
Router with large enough buffers for full link utilization 
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Summary Buffered Link 

t 

W 

Minimum window 
for full utilization 

•  With sufficient buffering we achieve full link utilization 
•  The window is always above the critical threshold 
•  Buffer absorbs changes in window size 

•  Buffer Size = Height of TCP Sawtooth 
•  Minimum buffer size needed is 2T*C 

•  This is the origin of the rule-of-thumb 

Buffer 
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Example 

•  10Gb/s linecard 
•  Requires 300Mbytes of buffering. 
•  Read and write 40 byte packet every 32ns. 

•  Memory technologies 
•  DRAM: require 4 devices, but too slow.  
•  SRAM: require 80 devices, 1kW, $2000. 

•  Problem gets harder at 40Gb/s 
•  Hence RLDRAM, FCRAM, etc. 
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Rule-of-thumb 
•  Rule-of-thumb makes sense for one flow 
•  Typical backbone link has > 20,000 flows 
•  Does the rule-of-thumb still hold? 

19 

If flows are synchronized 

•  Aggregate window has same dynamics 
•  Therefore buffer occupancy has same dynamics 
•  Rule-of-thumb still holds. 

t 

20 

If flows are not synchronized 

Probability 
Distribution 

B 

0 

Buffer Size 
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Central Limit Theorem 

•  CLT tells us that the more variables (Congestion 
Windows of Flows) we have, the narrower the Gaussian 
(Fluctuation of sum of windows) 

•  Width of Gaussian decreases with  
•  Buffer size should also decreases with 
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Required buffer size 

Simulation 
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Overview 

•  TCP modeling 

•  Fairness 

•  Fair-queuing 

•  Core-stateless FQ 
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Fairness Goals 

•  Allocate resources fairly  
•  Isolate ill-behaved users 

•  Router does not send explicit feedback to 
source 

•  Still needs e2e congestion control 
•  Still achieve statistical muxing 

•  One flow can fill entire pipe if no contenders 
•  Work conserving  scheduler never idles link if 

it has a packet 
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What is Fairness? 
•  At what granularity? 

•  Flows, connections, domains? 
•  What if users have different RTTs/links/etc. 

•  Should it share a link fairly or be TCP fair? 

•  Maximize fairness index? 
•  Fairness = (Σxi)2/n(Σxi

2)   0<fairness<1 

•  Basically a tough question to answer – typically 
design mechanisms instead of policy 
•  User = arbitrary granularity 
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Max-min Fairness 

•  Allocate user with “small” demand what it 
wants, evenly divide unused resources to 
“big” users 

•  Formally: 
•  Resources allocated in terms of increasing demand 
•  No source gets resource share larger than its 

demand 
•  Sources with unsatisfied demands get equal share 

of resource 
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Max-min Fairness Example 

•  Assume sources 1..n, with resource 
demands X1..Xn in ascending order 

•  Assume channel capacity C. 
•  Give C/n to X1; if this is more than X1 wants, 

divide excess (C/n - X1) to other sources: each 
gets C/n + (C/n - X1)/(n-1) 

•  If this is larger than what X2 wants, repeat 
process 
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Implementing max-min Fairness 

•  Generalized processor sharing 
•  Fluid fairness 
•  Bitwise round robin among all queues 

•  Why not simple round robin? 
•  Variable packet length  can get more service 

by sending bigger packets 
•  Unfair instantaneous service rate 

•  What if arrive just before/after packet departs? 



8 

29 

Bit-by-bit RR 

•  Single flow: clock ticks when a bit is 
transmitted. For packet i: 
•  Pi = length, Ai = arrival time, Si = begin transmit 

time, Fi = finish transmit time 
•  Fi = Si+Pi  = max (Fi-1, Ai) + Pi 

•  Multiple flows: clock ticks when a bit from all 
active flows is transmitted  round number 
•  Can calculate Fi for each packet if number of 

flows is know at all times 
•  This can be complicated 
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Bit-by-bit RR Illustration 

•  Not feasible to 
interleave bits on 
real networks 
•  FQ simulates bit-by-

bit RR 
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Overview 

•  TCP modeling 

•  Fairness 

•  Fair-queuing 

•  Core-stateless FQ 
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Fair Queuing 

•  Mapping bit-by-bit schedule onto packet 
transmission schedule 

•  Transmit packet with the lowest Fi at any 
given time 
•  How do you compute Fi? 
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FQ Illustration 

Flow 1 

Flow 2 

Flow n 

I/P O/P 

Variation: Weighted Fair Queuing (WFQ) 
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Bit-by-bit RR Example 

F=10 

Flow 1 
(arriving) 

Flow 2 
transmitting Output 

F=2 

F=5 
F=8 

Flow 1 Flow 2 Output 

F=10 

Cannot preempt packet 
currently being transmitted 

35 

Delay Allocation 
•  Reduce delay for flows using less than fair share 

•  Advance finish times for sources whose queues drain 
temporarily 

•  Schedule based on Bi instead of Fi 
•  Fi = Pi + max (Fi-1, Ai)  Bi = Pi + max (Fi-1, Ai - δ) 
•  If Ai < Fi-1, conversation is active and δ has no effect 
•  If Ai > Fi-1, conversation is inactive and δ determines 

how much history to take into account 
•  Infrequent senders do better when history is used 
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Fair Queuing Tradeoffs 
•  FQ can control congestion by monitoring flows 

•  Non-adaptive flows can still be a problem – why? 
•  Complex state 

•  Must keep queue per flow 
•  Hard in routers with many flows (e.g., backbone routers) 
•  Flow aggregation is a possibility (e.g. do fairness per domain) 

•  Complex computation 
•  Classification into flows may be hard 
•  Must keep queues sorted by finish times 
•  Finish times change whenever the flow count changes 
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Discussion Comments 

•  Granularity of fairness 
•  Mechanism vs. policy  will see this in QoS 

•  Hard to understand 
•  Complexity – how bad is it? 
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Overview 

•  TCP modeling 

•  Fairness 

•  Fair-queuing 

•  Core-stateless FQ 
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Core-Stateless Fair Queuing 
•  Key problem with FQ is core routers 

•  Must maintain state for 1000’s of flows 
•  Must update state at Gbps line speeds 

•  CSFQ (Core-Stateless FQ) objectives 
•  Edge routers should do complex tasks since they have 

fewer flows 
•  Core routers can do simple tasks 

•  No per-flow state/processing  this means that core routers 
can only decide on dropping packets not on order of 
processing 

•  Can only provide max-min bandwidth fairness not delay 
allocation 
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Core-Stateless Fair Queuing 

•  Edge routers keep state about flows and do 
computation when packet arrives 

•  DPS (Dynamic Packet State) 
•  Edge routers label packets with the result of 

state lookup and computation 
•  Core routers use DPS and local 

measurements to control processing of 
packets 
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Edge Router Behavior 

•  Monitor each flow i to measure its arrival 
rate (ri) 
•  EWMA of rate 
•  Non-constant EWMA constant  

•  e-T/K where T = current interarrival, K = constant 
•  Helps adapt to different packet sizes and arrival 

patterns 

•  Rate is attached to each packet 
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Core Router Behavior 

•  Keep track of fair share rate α 
•  Increasing α does not increase load (F) by N * 
α 

•  F(α) = Σi min(ri, α)  what does this look like? 
•  Periodically update α 
•  Keep track of current arrival rate 

•  Only update α if entire period was congested or 
uncongested 

•  Drop probability for packet = max(1- α/r, 0) 
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F vs. Alpha 

New alpha 

C [linked capacity] 

r1 r2 r3 old alpha 
alpha 

F
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Estimating Fair Share 
•  Need F(α) = capacity = C 

•  Can’t keep map of F(α) values  would require per 
flow state 

•  Since F(α) is concave, piecewise-linear 
•  F(0) = 0 and F(α) = current accepted rate = Fc 

•  F(α) = Fc/ α 
•  F(αnew) = C  αnew = αold * C/Fc 

•  What if a mistake was made? 
•  Forced into dropping packets due to buffer capacity 
•  When queue overflows α is decreased slightly 
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Other Issues 

•  Punishing fire-hoses – why? 
•  Easy to keep track of in a FQ scheme 

•  What are the real edges in such a scheme? 
•  Must trust edges to mark traffic accurately 
•  Could do some statistical sampling to see if 

edge was marking accurately 

Discussion Comments 

•  Exponential averaging 
•  Latency properties 
•  Hand-wavy numbers 
•  Trusting the edge 
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Important Lessons 
•  How does TCP implement AIMD? 

•  Sliding window, slow start & ack clocking 
•  How to maintain ack clocking during loss recovery 
 fast recovery 

•  How does TCP fully utilize a link? 
•  Role of router buffers 

•  Fairness and isolation in routers 
•  Why is this hard? 
•  What does it achieve – e.g. do we still need 

congestion control? 
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Next Lecture: TCP & Routers 

•  RED 
•  XCP 
•  Assigned reading 

•  [FJ93] Random Early Detection Gateways for 
Congestion Avoidance 

•  [KHR02] Congestion Control for High 
Bandwidth-Delay Product Networks 
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EXTRA SLIDES 

The rest of the slides are FYI 
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Overview 

•  Fairness 
•  Fair-queuing 
•  Core-stateless FQ 
•  Other FQ variants 

Stochastic Fair Queuing 
•  Compute a hash on each packet 
•  Instead of per-flow queue have a queue per 

hash bin 
•  An aggressive flow steals traffic from other 

flows in the same hash 
•  Queues serviced in round-robin fashion 

•  Has problems with packet size unfairness 
•  Memory allocation across all queues 

•  When no free buffers, drop packet from longest 
queue 
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Deficit Round Robin 

•  Each queue is allowed to send Q bytes per 
round 

•  If Q bytes are not sent (because packet is 
too large) deficit counter of queue keeps 
track of unused portion 

•  If queue is empty, deficit counter is reset to 
0 

•  Uses hash bins like Stochastic FQ 
•  Similar behavior as FQ but computationally 

simpler 
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Self-clocked Fair Queuing 

•  Virtual time to make computation of finish 
time easier 

•  Problem with basic FQ 
•  Need be able to know which flows are really 

backlogged 
•  They may not have packet queued because they 

were serviced earlier in mapping of bit-by-bit to 
packet 

•  This is necessary to know how bits sent map onto 
rounds 

•  Mapping of real time to round is piecewise linear  
however slope can change often 
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Self-clocked FQ 

•  Use the finish time of the packet being 
serviced as the virtual time 
•  The difference in this virtual time and the real 

round number can be unbounded 
•  Amount of service to backlogged flows is 

bounded by factor of 2 
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Start-time Fair Queuing 

•  Packets are scheduled in order of their start 
not finish times 

•  Self-clocked  virtual time = start time of 
packet in service 

•  Main advantage  can handle variable rate 
service better than other schemes 


