I 15-744: Comp

L-5 TCP & Routers

Ll

uter Networking I

%

o bR
N
B\F/ﬂ
. 5%
Overview joiey
. I I I L

* TCP modeling

* Fairness

» Fair-queuing

» Core-stateless FQ

Fair Queuing Vel
| I I I L]
+ Fair Queuing
+ Core-stateless Fair queuing
* Assigned reading
» [DKS90] Analysis and Simulation of a Fair
Queueing Algorithm, Internetworking: Research
and Experience
» [SSZ98] Core-Stateless Fair Queueing:
Achieving Approximately Fair Allocations in
High Speed Networks
TCP Modeling Vs
| I I I]

» Given the congestion behavior of TCP can we
predict what type of performance we should get?

* What are the important factors
* Loss rate
« Affects how often window is reduced
« RTT
« Affects increase rate and relates BW to window
« RTO
« Affects performance during loss recovery
« MSS

« Affects increase rate

OveraII TCP Behavior

. Let s concentrate on steady state behavior
with no timeouts and perfect loss recovery

oy A
AR
s
N L

Ll

»
b

Window
Time
Slmple Loss Model o
= - - = - -

. What was the loss rate?

» Packets transferred between losses =
* Avg BW * time =
« (75 W/RTT) * (W/2 * RTT) = 3W%/8
« 1 packet lost - loss rate = p = 8/3W?2
* W=sqrt(8/ (3 * loss rate))
s BW=75*MSS *W/RTT
* BW=MSS/(RTT * sqrt (2/3p))

* Fixed RTT
* No delayed ACKs
* In steady state, TCP losses packet each time
window reaches W packets
* Window drops to W/2 packets

» Each RTT window increases by 1 packet>W/2 * RTT
before next loss

*+ BW = MSS * avg window/RTT =
« MSS * (W + W/2)/(2 * RTT)
« 75*MSS*W/RTT

Simple TCP Model S
I I L]
. Some addltlonal assumptions

TCP Friendiiness Ny
I I I]

. What does it mean to be TCP friendly?
» TCP is not going away

* Any new congestion control must compete with TCP
flows

« Should not clobber TCP flows and grab bulk of link

» Should also be able to hold its own, i.e. grab its fair share, or it
will never become popular

* How is this quantified/shown?
* Has evolved into evaluating loss/throughput behavior

« If it shows 1/sqrt(p) behavior it is ok
* Butis this really true?

TCP Performance

 Can TCP saturate a link?

» Congestion control

* Increase utilization until... link becomes
congested

» React by decreasing window by 50%
* Window is proportional to rate * RTT
* Doesn’t this mean that the network
oscillates between 50 and 100% utilization?
* No...this is *not* right!

Single TCP Flow ay
mter Withowfm I N . {% *
— T
w=1
< |
util = 0%
W

time

w Minimum window
W\/\ & for full utilization

t

» The router can'’t fully utilize the link
« If the window is too small, link is not full
« If the link is full, next window increase causes drop
» With no buffer it still achieves 75% utilization

: P
TCP Congestion Control VE
- - - - -
Rule for adjusting W/
Only W packets » If an ACK is received: W «— W+1/W
may be outstanding + If a packet is lost: W — W/2
Source [TTTI111] Dest
Window size
W
2
t
10
By 2 A
1 /b Ra
Summary Unbuffered Link R
- - - - -

TCP Performance

I I I
. In the real world, router queues play
important role
» Window is proportional to rate * RTT
* But, RTT changes as well the window
» Window to fill links = propagation RTT *
bottleneck bandwidth

« If window is larger, packets sit in queue on
bottleneck link

TCP Performance

I I I
. If we have a large router queue - can get

» But, router queues can cause large delays

* How big does the queue need to be?

» Windows vary from W > W/2
» Must make sure that link is always full
« W/2>RTT *BW
« W=RTT * BW + Qsize
* Therefore, Qsize > RTT * BW

 Delay?
* Varies between RTT and 2 * RTT

Single TCP Flow

Router with large enough buffers for full link utilization
|| & I

time

Summary Buffered Link

I I I
w

!

Buffer Minimum window

& for full utilization

t

« With sufficient buffering we achieve full link utilization
* The window is always above the critical threshold
« Buffer absorbs changes in window size
« Buffer Size = Height of TCP Sawtooth
* Minimum buffer size needed is 2T*C
» This is the origin of the rule-of-thumb

Example el

* 10Gb/s linecard

* Requires 300Mbytes of buffering.

* Read and write 40 byte packet every 32ns.
* Memory technologies

» DRAM: require 4 devices, but too slow.

« SRAM: require 80 devices, 1kW, $2000.
* Problem gets harder at 40Gb/s

* Hence RLDRAM, FCRAM, etc.

%

If flows are synchronized josey

W
2

» Aggregate window has same dynamics
» Therefore buffer occupancy has same dynamics
* Rule-of-thumb still holds.

Rule-of-thumb Ry
| S I I L
* Rule-of-thumb makes sense for one flow
» Typical backbone link has > 20,000 flows
* Does the rule-of-thumb still hold?
If flows are not synchronized iy
| N .. I .. I .. {% *
EW
S IVAVAVATVY SVVAVAVA VY S S
0 \V}
60 |- f » J N,
Lifffel izeL Probability
a0 Distribution
gyl
et i

. /RS
Central Limit Theorem e
[I . I . I . L]

« CLT tells us that the more variables (Congestion
Windows of Flows) we have, the narrower the Gaussian
(Fluctuation of sum of windows)

» Width of Gaussian decreases with % 1

« Buffer size should also decreases with vn

NG|
1 1 VIt
o
Required buffer size VST
LNy
| | Minimum Required Buffer to Achieve 95% Goodput |
Fi Minimum Required Buffer [Pkts] +
120 |5 2T*C/sqri(n) =======
100 % -
-
o %
g s % i
& o4
5
E S 2T xC
£ 60 _+++ *) 4
: £, n
e
40 T
e,
LY
T —
20 R I S e I
i . A R e
Simulation
0 . L
0 50 100 150 200 250 300

Number of TCP flows

B - B,, 2TxC
Jn
Overview oy
| I I I L
+ TCP modeling
» Fairness
» Fair-queuing

Core-stateless FQ

Fairness Goals

| I I
* Allocate resources fairly
* |solate ill-behaved users

* Router does not send explicit feedback to
source

+ Still needs e2e congestion control
+ Still achieve statistical muxing
* One flow can fill entire pipe if no contenders

» Work conserving - scheduler never idles link if
it has a packet

What is Fairness? P
[I . I . I . L]

+ At what granularity?
* Flows, connections, domains?
* What if users have different RTTs/links/etc.
+ Should it share a link fairly or be TCP fair?
* Maximize fairness index?
+ Fairness = (=x,)?/n(Ex?) 0<fairness<1
» Basically a tough question to answer — typically
design mechanisms instead of policy
« User = arbitrary granularity

Max-min Fairness Example vty
. N . N . N . L

» Assume sources 1..n, with resource
demands X1..Xn in ascending order

» Assume channel capacity C.

» Give C/n to X1; if this is more than X1 wants,
divide excess (C/n - X1) to other sources: each
gets C/n + (C/n - X1)/(n-1)

+ If this is larger than what X2 wants, repeat
process

o pa
Max-min Fairness v 33
| I I I L]
* Allocate user with “small” demand what it
wants, evenly divide unused resources to
“big” users
* Formally:
» Resources allocated in terms of increasing demand
* No source gets resource share larger than its
demand
+ Sources with unsatisfied demands get equal share
of resource
26
. : . Y.
Implementing max-min Fairness oL
-] . .]

* Generalized processor sharing

* Fluid fairness

* Bitwise round robin among all queues
* Why not simple round robin?

» Variable packet length > can get more service
by sending bigger packets
» Unfair instantaneous service rate
» What if arrive just before/after packet departs?

Bit-by-bit RR v

« Single flow: clock ticks when a bit is
transmitted. For packet i:
» P, =length, A, = arrival time, S; = begin transmit
time, F; = finish transmit time
* Fi=8+P;, =max (F.;, A) + P,
» Multiple flows: clock ticks when a bit from all
active flows is transmitted - round number

* Can calculate F, for each packet if number of
flows is know at all times
» This can be complicated

Bit-by-bit RR Illustration

I . I .
* Not feasible to

interleave bits on

real networks

* FQ simulates bit-by-
bit RR

= 'IE;D \:\ﬂ
Overview o
. I I I L

+ TCP modeling

* Fairness

» Fair-queuing

» Core-stateless FQ

Fair Queuing

|| I N . N .
» Mapping bit-by-bit schedule onto packet
transmission schedule

» Transmit packet with the lowest F, at any

* How do you compute F;?

given time

FQ lllustration

Ll
a

Delay Allocation Ve
|| I I I .

* Reduce delay for flows using less than fair share
» Advance finish times for sources whose queues drain
temporarily
+ Schedule based on B; instead of F;
* F,=P;+ max (F.q, A) > B; =P, + max (F.4, A - 9)
« If A; < F_,, conversation is active and & has no effect

 If A,> F_,, conversation is inactive and & determines
how much history to take into account
« Infrequent senders do better when history is used

: :)
Bit-by-bit RR Example Jueel
- I - - -
Flow 1 Flow 2 Output
F=10
F=8
F=5 Flow 1 Flow 2
(arriving) transmitting Output
Cannot preempt packet F=10
currently being transmitted
F=2
34
N 2 A
. . /o)
Fair Queuing Tradeoffs Vel
| I I I]

* FQ can control congestion by monitoring flows
» Non-adaptive flows can still be a problem — why?
+ Complex state
* Must keep queue per flow
* Hard in routers with many flows (e.g., backbone routers)
» Flow aggregation is a possibility (e.g. do fairness per domain)
» Complex computation
« Classification into flows may be hard
* Must keep queues sorted by finish times
 Finish times change whenever the flow count changes

: : Ay
Discussion Comments R
| I I I .

 Granularity of fairness
* Mechanism vs. policy = will see this in QoS

» Hard to understand
» Complexity — how bad is it?

Overview PR
| I I I L]
+ TCP modeling

* Fairness

» Fair-queuing

» Core-stateless FQ

Core-Stateless Fair Queuing joy

[- -
» Key problem with FQ is core routers
* Must maintain state for 1000’s of flows
* Must update state at Gbps line speeds

+ CSFQ (Core-Stateless FQ) objectives

« Edge routers should do complex tasks since they have
fewer flows

» Core routers can do simple tasks
* No per-flow state/processing = this means that core routers
can only decide on dropping packets not on order of
processing
« Can only provide max-min bandwidth fairness not delay
allocation

Core-Stateless Fair Queuing) *:;’
|| I N . N . |

» Edge routers keep state about flows and do
computation when packet arrives

» DPS (Dynamic Packet State)
» Edge routers label packets with the result of

state lookup and computation

» Core routers use DPS and local
measurements to control processing of
packets

10

Edge Router Behavior

* Monitor each flow i to measure its arrival

rate (r;)
« EWMA of rate

» Non-constant EWMA constant
« e TKwhere T = current interarrival, K = constant
* Helps adapt to different packet sizes and arrival

patterns

» Rate is attached to each packet

Core Router Behavior PR

| I I I L]
» Keep track of fair share rate a

* Increasing a does not increase load (F) by N *
a

* F(a) = Z; min(r,, a) = what does this look like?

* Periodically update a

» Keep track of current arrival rate

* Only update a if entire period was congested or
uncongested

» Drop probability for packet = max(1- a/r, 0)

N A
//n \“l
9]
F vs. Alpha o
| I I I L
F
C [linked capacity]
— i l i alpha
1 r2 r3 | old alpha

New alpha

Y

Nl

Estimating Fair Share

[- . - . - —
* Need F(a) = capacity = C
« Can’t keep map of F(a) values - would require per
flow state
+ Since F(a) is concave, piecewise-linear
» F(0) =0 and F(a) = current accepted rate = F,
* F(a)=F,/a
* F(%hew) = C 2 Opeyy = 0gq * C/F,
* What if a mistake was made?
» Forced into dropping packets due to buffer capacity
* When queue overflows a is decreased slightly

/"
N
L]

11

Other Issues e

| I I

 Punishing fire-hoses — why?
» Easy to keep track of in a FQ scheme

» What are the real edges in such a scheme?
* Must trust edges to mark traffic accurately

+ Could do some statistical sampling to see if
edge was marking accurately

Discussion Comments PR

| I I I L]
» Exponential averaging

» Latency properties
* Hand-wavy numbers
* Trusting the edge

Important Lessons
I . I

. How does TCP implement AIMD?
+ Sliding window, slow start & ack clocking

» How to maintain ack clocking during loss recovery
-> fast recovery

* How does TCP fully utilize a link?
* Role of router buffers

* Fairness and isolation in routers
* Why is this hard?
* What does it achieve — e.g. do we still need
congestion control?

Next Lecture: TCP & Routers joy ey
- . - i

. RED

« XCP

* Assigned reading
» [FJ93] Random Early Detection Gateways for
Congestion Avoidance

» [KHRO02] Congestion Control for High
Bandwidth-Delay Product Networks

12

IEXTRA SLIDES I

The rest of the slides are FYI

?
o/ e

Overview P
[I . I . I .]
* Fairness

» Fair-queuing
» Core-stateless FQ
e Other FQ variants

o /5 R

<
Stochastic Fair Queuing v
[N . I N . L

* Compute a hash on each packet

* Instead of per-flow queue have a queue per
hash bin

* An aggressive flow steals traffic from other
flows in the same hash

* Queues serviced in round-robin fashion
» Has problems with packet size unfairness

* Memory allocation across all queues

* When no free buffers, drop packet from longest
queue

Deficit Round Robin v
| I I I]
» Each queue is allowed to send Q bytes per

round

* If Q bytes are not sent (because packet is
too large) deficit counter of queue keeps
track of unused portion

* If queue is empty, deficit counter is reset to
0

» Uses hash bins like Stochastic FQ

» Similar behavior as FQ but computationally
simpler

b

13

Self-clocked Fair Queuing R

| I I I L
+ Virtual time to make computation of finish
time easier

* Problem with basic FQ

* Need be able to know which flows are really
backlogged
» They may not have packet queued because they
were serviced earlier in mapping of bit-by-bit to
packet
» This is necessary to know how bits sent map onto
rounds

* Mapping of real time to round is piecewise linear >
however slope can change often

Self-clocked FQ Y33

S I I L
» Use the finish time of the packet being
serviced as the virtual time
» The difference in this virtual time and the real
round number can be unbounded
* Amount of service to backlogged flows is
bounded by factor of 2

Start-time Fair Queuing vty
|| N . I N . |

» Packets are scheduled in order of their start
not finish times

» Self-clocked - virtual time = start time of
packet in service

* Main advantage - can handle variable rate
service better than other schemes

14

