
1

15-744: Computer Networking

L-4 TCP

2

This Lecture: Congestion Control

•  Congestion Control

•  Assigned Reading
•  [Chiu & Jain] Analysis of Increase and

Decrease Algorithms for Congestion Avoidance
in Computer Networks

•  [Jacobson and Karels] Congestion Avoidance
and Control

3

Introduction to TCP
•  Communication abstraction:

•  Reliable
•  Ordered
•  Point-to-point
•  Byte-stream
•  Full duplex
•  Flow and congestion controlled

•  Protocol implemented entirely at the ends
•  Fate sharing

•  Sliding window with cumulative acks
•  Ack field contains last in-order packet received
•  Duplicate acks sent when out-of-order packet received

Key Things You Should Know Already

•  Port numbers
•  TCP/UDP checksum
•  Sliding window flow control

•  Sequence numbers
•  TCP connection setup
•  TCP reliability

•  Timeout
•  Data-driven

4

2

5

Overview

•  Congestion sources and collapse

•  Congestion control basics

•  TCP congestion control

•  TCP modeling

6

Internet Pipes?

•  How should you
control the faucet?

7

Internet Pipes?

•  How should you
control the faucet?
•  Too fast – sink

overflows!

8

Internet Pipes?

•  How should you
control the faucet?
•  Too fast – sink

overflows!
•  Too slow – what

happens?

3

9

Internet Pipes?

•  How should you control the
faucet?
•  Too fast – sink overflows
•  Too slow – what happens?

•  Goals
•  Fill the bucket as quickly as

possible
•  Avoid overflowing the sink

•  Solution – watch the sink

10

Plumbers Gone Wild!

•  How do we prevent
water loss?

•  Know the size of the
pipes?

11

Plumbers Gone Wild 2!

•  Now what?
•  Feedback from the bucket or

the funnels?

12

Congestion

•  Different sources compete for resources
inside network

•  Why is it a problem?
•  Sources are unaware of current state of resource
•  Sources are unaware of each other
•  In many situations will result in < 1.5 Mbps of

throughput (congestion collapse)

10 Mbps

100 Mbps

1.5 Mbps

4

13

Causes & Costs of Congestion

•  Four senders – multihop paths
•  Timeout/retransmit

Q: What happens as rate
increases?

14

Causes & Costs of Congestion

•  When packet dropped, any “upstream
transmission capacity used for that packet
was wasted!

15

Congestion Collapse
•  Definition: Increase in network load results in

decrease of useful work done
•  Many possible causes

•  Spurious retransmissions of packets still in flight
•  Classical congestion collapse
•  How can this happen with packet conservation
•  Solution: better timers and TCP congestion control

•  Undelivered packets
•  Packets consume resources and are dropped elsewhere in

network
•  Solution: congestion control for ALL traffic

16

Other Congestion Collapse Causes
•  Fragments

•  Mismatch of transmission and retransmission units
•  Solutions

•  Make network drop all fragments of a packet (early packet
discard in ATM)

•  Do path MTU discovery

•  Control traffic
•  Large percentage of traffic is for control

•  Headers, routing messages, DNS, etc.

•  Stale or unwanted packets
•  Packets that are delayed on long queues
•  “Push” data that is never used

5

17

Where to Prevent Collapse?

•  Can end hosts prevent problem?
•  Yes, but must trust end hosts to do right thing
•  E.g., sending host must adjust amount of data it

puts in the network based on detected
congestion

•  Can routers prevent collapse?
•  No, not all forms of collapse
•  Doesn’t mean they can’t help

•  Sending accurate congestion signals
•  Isolating well-behaved from ill-behaved sources

18

Congestion Control and Avoidance

•  A mechanism which:
•  Uses network resources efficiently
•  Preserves fair network resource allocation
•  Prevents or avoids collapse

•  Congestion collapse is not just a theory
•  Has been frequently observed in many

networks

Approaches Towards Congestion
Control

•  End-end congestion
control:
•  No explicit feedback from

network
•  Congestion inferred from

end-system observed loss,
delay

•  Approach taken by TCP

•  Network-assisted
congestion control:
•  Routers provide feedback to

end systems
•  Single bit indicating

congestion (SNA, DECbit,
TCP/IP ECN, ATM)

•  Explicit rate sender should
send at

•  Problem: makes routers
complicated

19

•  Two broad approaches towards congestion control:

20

Example: TCP Congestion Control

•  Very simple mechanisms in network
•  FIFO scheduling with shared buffer pool
•  Feedback through packet drops

•  TCP interprets packet drops as signs of congestion and
slows down

•  This is an assumption: packet drops are not a sign of congestion in
all networks

•  E.g. wireless networks

•  Periodically probes the network to check whether more
bandwidth has become available.

6

21

Overview

•  Congestion sources and collapse

•  Congestion control basics

•  TCP congestion control

•  TCP modeling

22

Objectives

•  Simple router behavior
•  Distributedness
•  Efficiency: Xknee = Σxi(t)
•  Fairness: (Σxi)2/n(Σxi

2)

•  Power: (throughputα/delay)
•  Convergence: control system must be

stable

23

Basic Control Model

•  Let’s assume window-based control
•  Reduce window when congestion is

perceived
•  How is congestion signaled?

•  Either mark or drop packets
•  When is a router congested?

•  Drop tail queues – when queue is full
•  Average queue length – at some threshold

•  Increase window otherwise
•  Probe for available bandwidth – how?

24

Linear Control

•  Many different possibilities for reaction to
congestion and probing
•  Examine simple linear controls
•  Window(t + 1) = a + b Window(t)
•  Different ai/bi for increase and ad/bd for

decrease
•  Supports various reaction to signals

•  Increase/decrease additively
•  Increased/decrease multiplicatively
•  Which of the four combinations is optimal?

7

25

Phase plots

•  Simple way to visualize behavior of
competing connections over time

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

26

Phase plots

•  What are desirable properties?
•  What if flows are not equal?

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2
Optimal point

Overload

Underutilization

27

Additive Increase/Decrease

T0

T1

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

•  Both X1 and X2 increase/decrease by the same
amount over time
•  Additive increase improves fairness and additive

decrease reduces fairness

28

Multiplicative Increase/Decrease

•  Both X1 and X2 increase by the same factor
over time
•  Extension from origin – constant fairness

T0

T1

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

8

29

Convergence to Efficiency

xH

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

30

Distributed Convergence to Efficiency

xH

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

a=0

b=1

31

Convergence to Fairness

xH

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

xH’

32

Convergence to Efficiency & Fairness

xH

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

xH’

9

33

Increase

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

xL

34

Constraints

•  Distributed efficiency
•  I.e., Σ Window(t+1) > Σ Window(t) during

increase
•  ai > 0 & bi ≥ 1
•  Similarly, ad < 0 & bd ≤ 1

•  Must never decrease fairness
•  a & b’s must be ≥ 0
•  ai/bi > 0 and ad/bd ≥ 0

•  Full constraints
•  ad = 0, 0 ≤ bd < 1, ai > 0 and bi ≥ 1

35

What is the Right Choice?
•  Constraints limit us to AIMD

•  Can have multiplicative term in increase (MAIMD)
•  AIMD moves towards optimal point

x0

x1

x2

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

36

Questions

•  Fairness – why not support skew  AIMD/GAIMD
analysis

•  Delayed feedback  ?
•  More bits of feedback  DECbit, XCP, Vegas
•  Guess # of users  hard in async system, look at

loss rate?
•  Stateless vs. stateful design
•  Wired vs. wireless
•  Non-linear controls  Bionomial

10

37

Overview

•  Congestion sources and collapse

•  Congestion control basics

•  TCP congestion control

•  TCP modeling

38

TCP Congestion Control
•  Motivated by ARPANET congestion collapse
•  Underlying design principle: packet conservation

•  At equilibrium, inject packet into network only when one
is removed

•  Basis for stability of physical systems

•  Why was this not working?
•  Connection doesn’t reach equilibrium
•  Spurious retransmissions
•  Resource limitations prevent equilibrium

39

TCP Congestion Control - Solutions

•  Reaching equilibrium
•  Slow start

•  Eliminates spurious retransmissions
•  Accurate RTO estimation
•  Fast retransmit

•  Adapting to resource availability
•  Congestion avoidance

40

TCP Congestion Control

•  Changes to TCP motivated by
ARPANET congestion collapse

•  Basic principles
•  AIMD
•  Packet conservation
• Reaching steady state quickly
•  ACK clocking

11

41

AIMD

•  Distributed, fair and efficient
•  Packet loss is seen as sign of congestion and

results in a multiplicative rate decrease
•  Factor of 2

•  TCP periodically probes for available bandwidth
by increasing its rate

Time

Rate

42

Implementation Issue
•  Operating system timers are very coarse – how to pace

packets out smoothly?
•  Implemented using a congestion window that limits how

much data can be in the network.
•  TCP also keeps track of how much data is in transit

•  Data can only be sent when the amount of outstanding
data is less than the congestion window.
•  The amount of outstanding data is increased on a “send” and

decreased on “ack”
•  (last sent – last acked) < congestion window

•  Window limited by both congestion and buffering
•  Sender’s maximum window = Min (advertised window, cwnd)

43

Congestion Avoidance

•  If loss occurs when cwnd = W
•  Network can handle 0.5W ~ W segments
•  Set cwnd to 0.5W (multiplicative decrease)

•  Upon receiving ACK
•  Increase cwnd by (1 packet)/cwnd

•  What is 1 packet?  1 MSS worth of bytes
•  After cwnd packets have passed by 

approximately increase of 1 MSS

•  Implements AIMD

Congestion Avoidance Sequence Plot

44

Time

Sequence No

Packets

Acks

12

45

Congestion Avoidance Behavior

Time

Congestion
Window

Packet loss
+ Timeout

Grabbing
back

Bandwidth

Cut
Congestion

Window
and Rate

46

Packet Conservation

•  At equilibrium, inject packet into network
only when one is removed
•  Sliding window and not rate controlled
•  But still need to avoid sending burst of packets
 would overflow links
•  Need to carefully pace out packets
•  Helps provide stability

•  Need to eliminate spurious retransmissions
•  Accurate RTO estimation
•  Better loss recovery techniques (e.g. fast

retransmit)

47

TCP Packet Pacing
•  Congestion window helps to “pace” the

transmission of data packets
•  In steady state, a packet is sent when an ack is

received
•  Data transmission remains smooth, once it is smooth
•  Self-clocking behavior

Pr
Pb

Ar Ab

Receiver Sender

As

48

Reaching Steady State

•  Doing AIMD is fine in steady state but
slow…

•  How does TCP know what is a good initial
rate to start with?
•  Should work both for a CDPD (10s of Kbps or

less) and for supercomputer links (10 Gbps and
growing)

•  Quick initial phase to help get up to speed
(slow start)

13

49

Slow Start Packet Pacing

•  How do we get this
clocking behavior to
start?
•  Initialize cwnd = 1
•  Upon receipt of every

ack, cwnd = cwnd + 1
•  Implications

•  Window actually
increases to W in RTT *
log2(W)

•  Can overshoot window
and cause packet loss

50

Slow Start Example

1

One RTT

One pkt time

0R

2
1R

3

4
2R

5
6
7

8
3R

9
10
11

12
13

14
15

1

2 3

4 5 6 7

51

Slow Start Sequence Plot

Time

Sequence No

.

.

.

Packets

Acks

52

Return to Slow Start

•  If packet is lost we lose our self clocking as
well
•  Need to implement slow-start and congestion

avoidance together
•  When timeout occurs set ssthresh to 0.5w

•  If cwnd < ssthresh, use slow start
•  Else use congestion avoidance

14

53

TCP Saw Tooth Behavior

Time

Congestion
Window

Initial
Slowstart

Fast
Retransmit

and Recovery

Slowstart
to pace
packets

Timeouts
may still

occur

54

How to Change Window

•  When a loss occurs have W packets
outstanding

•  New cwnd = 0.5 * cwnd
•  How to get to new state?

55

Fast Recovery

•  Each duplicate ack notifies sender that
single packet has cleared network

•  When < cwnd packets are outstanding
•  Allow new packets out with each new duplicate

acknowledgement
•  Behavior

•  Sender is idle for some time – waiting for ½
cwnd worth of dupacks

•  Transmits at original rate after wait
•  Ack clocking rate is same as before loss

56

Fast Recovery

Time

Sequence No
Sent for each dupack after

W/2 dupacks arrive
X

15

57

Questions

•  Current loss rates – 10% in paper

•  Uniform reaction to congestion

Next Lecture

•  Fair-queueing
•  Assigned reading

•  [Demers, Keshav, Shenker] Analysis and
Simulation of a Fair Queueing Algorithm

•  [Stoica, Shenker, Zhang] Core-Stateless Fair
Queueing: Achieving Approximately Fair
Bandwidth Allocations in High Speed Networks*

58

Class Project

•  End goal  workshop quality paper
•  6-8 pages
•  Imagine early versions of the paper you have

read so far

•  Need not be experimental/system building
•  Must have some experimental/simulation/theoretical

results
•  Must be practical/network oriented in nature 

59

Class Project
•  Group size  preferably 2

•  Project meetings (2 during semester)
•  15 min meetings to discuss project ideas and get feedback
•  Project idea list posted --- will be updated

•  Proposal (1-2pg)
•  Basic idea
•  Description of some related work
•  Rough timeline
•  Necessary/requested resources

•  Checkpoint (date TBD – roughly 1month away)
•  Should have preliminary experiments done

60

16

Project Ideas
•  Relation between RED and small buffers.

•  Recent work (McKweon) has suggested that routers don’t need
large buffers to support good TCP performance. However, earlier
work on RED seems quite similar - are they really so different?
Nick McKweon seems to think so. However, they look the same to
me. Aren’t the correct tuning parameters for RED just the same as
the size of the right buffer for small buffer networks. Isn’t the
tradeoff of “fear of underutilization” vs. amount of buffer/delay the
same?

•  Relation between TCP and desync
•  All this small buffer stuff seems to rely on a collection of TCP flows

becoming desynchronized. Earlier work assumed that this never
happened. RED really made the assumption that this never
happened and, thus, introduced randomized losses. McKweon’s
measurements suggest that it does happen but there seems little
sound justification for when this happens.

61

Project Ideas

•  Why not duplicate/encode early packets in
a TCP connection?
•  Everyone seems to show how their TCP does

better. But results are often dominated by
timeouts on flows early on. Why not just
duplicate the early part of the transfer multiple
times or just be more aggressive early on?
What would be the overall impact on Internet
workload?

62

Project Ideas

•  Congestion control for sensors
•  Is the Sigcomm paper from USC right? Do we

really need to specialize congestion control for
tree topologies or can we get something like
TCP or XCP to work well in multihop wireless
environments?

63

EXTRA SLIDES

The rest of the slides are FYI

17

L -5; 10-15-04 © Srinivasan Seshan, 2004 65

TCP Vegas Slow Start

•  ssthresh estimation via packet pair
•  Only increase every other RTT

•  Tests new window size before increasing

L -5; 10-15-04 © Srinivasan Seshan, 2004 66

Packet Pair

•  What would happen if a source transmitted
a pair of packets back-to-back?

•  Spacing of these packets would be
determined by bottleneck link
•  Basis for ack clocking in TCP

•  What type of bottleneck router behavior
would affect this spacing
•  Queuing scheduling

L -5; 10-15-04 © Srinivasan Seshan, 2004 67

Packet Pair

•  FIFO scheduling
•  Unlikely that another flows packet will get

inserted in-between
•  Packets sent back-to-back are likely to be

queued/forwarded back-to-back
•  Spacing will reflect link bandwidth

•  Fair queuing
•  Router alternates between different flows
•  Bottleneck router will separate packet pair at

exactly fair share rate

L -5; 10-15-04 © Srinivasan Seshan, 2004 68

Packet Pair in Practice

•  Most Internet routers are FIFO/Drop-Tail
•  Easy to measure link bandwidths

•  Bprobe, pathchar, pchar, nettimer, etc.
•  How can this be used?

•  NewReno and Vegas use it to initialize ssthresh
•  Prevents large overshoot of available

bandwidth
•  Want a high estimate – otherwise will take a

long time in linear growth to reach desired
bandwidth

18

L -5; 10-15-04 © Srinivasan Seshan, 2004 69

TCP Vegas Congestion Avoidance

•  Only reduce cwnd if packet sent after last
such action
•  Reaction per congestion episode not per loss

•  Congestion avoidance vs. control
•  Use change in observed end-to-end delay to

detect onset of congestion
•  Compare expected to actual throughput
•  Expected = window size / round trip time
•  Actual = acks / round trip time

L -5; 10-15-04 © Srinivasan Seshan, 2004 70

TCP Vegas
•  If actual < expected < actual + 

•  Queues decreasing  increase rate
•  If actual +  < expected < actual + 

•  Don’t do anything

•  If expected > actual + 
•  Queues increasing  decrease rate before packet drop

•  Thresholds of  and  correspond to how many
packets Vegas is willing to have in queues

L -5; 10-15-04 © Srinivasan Seshan, 2004 71

TCP Vegas
•  Fine grain timers

•  Check RTO every time a dupack is received or for
“partial ack”

•  If RTO expired, then re-xmit packet
•  Standard Reno only checks at 500ms

•  Allows packets to be retransmitted earlier
•  Not the real source of performance gain

•  Allows retransmission of packet that would have
timed-out
•  Small windows/loss of most of window
•  Real source of performance gain
•  Shouldn’t comparison be against NewReno/SACK

L -5; 10-15-04 © Srinivasan Seshan, 2004 72

TCP Vegas

•  Flaws
•  Sensitivity to delay variation
•  Paper did not do great job of explaining where

performance gains came from
•  Some ideas have been incorporated into

more recent implementations
•  Overall

•  Some very intriguing ideas
•  Controversies killed it

19

L -5; 10-15-04 © Srinivasan Seshan, 2004 73

Changing Workloads
•  New applications are changing the way TCP is used
•  1980’s Internet

•  Telnet & FTP  long lived flows
•  Well behaved end hosts
•  Homogenous end host capabilities
•  Simple symmetric routing

•  2000’s Internet
•  Web & more Web  large number of short xfers
•  Wild west – everyone is playing games to get bandwidth
•  Cell phones and toasters on the Internet
•  Policy routing

•  How to accommodate new applications?

L -5; 10-15-04 © Srinivasan Seshan, 2004 74

Binomial Congestion Control

•  In AIMD
•  Increase: Wn+1 = Wn + 
•  Decrease: Wn+1 = (1- ) Wn

•  In Binomial
•  Increase: Wn+1 = Wn + /Wn

k
•  Decrease: Wn+1 = Wn -  Wn

l

•  k=0 & l=1  AIMD
•  l < 1 results in less than multiplicative decrease

•  Good for multimedia applications

L -5; 10-15-04 © Srinivasan Seshan, 2004 75

Binomial Congestion Control

•  Rate ~ 1/ (loss rate)1/(k+l+1)

•  If k+l=1  rate ~ 1/p0.5
•  TCP friendly if l ≤ 1

•  AIMD (k=0, l=1) is the most aggressive of
this class
•  Good for applications that want to probe quickly

and can use any available bandwidth

L -5; 10-15-04 © Srinivasan Seshan, 2004 76

TCP Friendly Rate Control (TFRC)

•  Equation 1 – real TCP response
•  1st term corresponds to simple derivation
•  2nd term corresponds to more complicated

timeout behavior
•  Is critical in situations with > 5% loss rates  where

timeouts occur frequently

•  Key parameters
•  RTO
•  RTT
•  Loss rate

20

L -5; 10-15-04 © Srinivasan Seshan, 2004 77

RTO/RTT Estimation
•  Not used to actually determine retransmissions

•  Used to model TCP’s extremely slow transmission rate
in this mode

•  Only important when loss rate is high
•  Accuracy is not as critical

•  Different TCP’s have different RTO calculation
•  Clock granularity critical 500ms typical, 100ms,

200ms, 1s also common
•  RTO = 4 * RTT is close enough for reasonable

operation
•  EWMA RTT

•  RTTn+1 = (1-)RTTn + RTTSAMP

L -5; 10-15-04 © Srinivasan Seshan, 2004 78

Loss Estimation
•  Loss event rate vs. loss rate
•  Characteristics

•  Should work well in steady loss rate
•  Should weight recent samples more
•  Should increase only with a new loss
•  Should decrease only with long period without loss

•  Possible choices
•  Dynamic window – loss rate over last X packets
•  EWMA of interval between losses
•  Weighted average of last n intervals

•  Last n/2 have equal weight

L -5; 10-15-04 © Srinivasan Seshan, 2004 79

Loss Estimation

•  Dynamic windows has many flaws
•  Difficult to chose weight for EWMA
•  Solution WMA

•  Choose simple linear decrease in weight for
last n/2 samples in weighted average

•  What about the last interval?
•  Include it when it actually increases WMA value
•  What if there is a long period of no losses?
•  Special case (history discounting) when current

interval > 2 * avg

L -5; 10-15-04 © Srinivasan Seshan, 2004 80

Slow Start

•  Used in TCP to get rough estimate of
network and establish ack clock
•  Don’t need it for ack clock
•  TCP ensures that overshoot is not > 2x
•  Rate based protocols have no such limitation –

why?
•  TFRC slow start

•  New rate set to min(2 * sent, 2 * recvd)
•  Ends with first loss report  rate set to ½

current rate

21

L -5; 10-15-04 © Srinivasan Seshan, 2004 81

Congestion Avoidance
•  Loss interval increases in order to increase rate

•  Primarily due to the transmission of new packets in
current interval

•  History discounting increases interval by removing old
intervals

•  .14 packets per RTT without history discounting
•  .22 packets per RTT with discounting

•  Much slower increase than TCP
•  Decrease is also slower

•  4 – 8 RTTs to halve speed

82

NewReno Changes

•  Send a new packet out for each pair of
dupacks
•  Adapt more gradually to new window

•  Will not halve congestion window again until
recovery is completed
•  Identifies congestion events vs. congestion

signals
•  Initial estimation for ssthresh

83

Rate Halving Recovery

Time

Sequence No

Sent after every
other dupack

X

Delayed Ack Impact

•  TCP congestion control triggered by acks
•  If receive half as many acks  window grows

half as fast
•  Slow start with window = 1

•  Will trigger delayed ack timer
•  First exchange will take at least 200ms
•  Start with > 1 initial window

•  Bug in BSD, now a “feature”/standard

84

