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Midterm Review

Topics Covered

 Networking (Lecture 1~3)
 Naming
 RPC
 Time
 Replication
 Security
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Internet Design
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 Packet-switched 
datagram network

 IP is the 
“compatibility layer” 
 Hourglass 

architecture
 All hosts and routers 

run IP

 Stateless 
architecture
 No per flow state 

inside network

IP

TCP UDP

ATM

Satellite

Ethernet

Layering

Host Host

Application

Transport

Network

Link

User A
User B

Layering: technique to simplify complex systems

•Each layer relies on services from layer below and 
exports services to layer above
•Interface defines interaction
•Hides implementation 
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End-to-End Argument

 Deals with where to place functionality
 Inside the network (in switching elements)
 At the edges

 Argument:
 There are functions that can only be correctly 

implemented by the endpoints – do not try to 
completely implement these elsewhere

 File transfer example

OS

Appl.

OS

Appl.

Host A Host B

OK
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E2E Example: File Transfer

 If network guaranteed reliable delivery
 The receiver has to do the check anyway!
 E.g., network card may malfunction

 Full functionality can only be entirely 
implemented at application layer; no need 
for reliability from lower layers

 Is there any need to implement reliability at 
lower layers?
 Yes, but only to improve performance
 If network is highly unreliable
 Adding some level of reliability helps performance, not 

correctness

Transport Layer
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UDP
• Single socket to receive 

messages

• No guarantee of delivery

• Not necessarily in-order 
delivery

• Datagram – independent 
packets

TCP
 Reliable – guarantee 

delivery
 Byte stream – in-order 

delivery
 Connection-oriented –

single socket per 
connection

 Setup connection 
followed by data transfer
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Link Layer 
Ethernet MAC (CSMA/CD)

Packet?

Sense 

Carrier

Discard 

Packet

Send Detect 

Collision

Jam channel 

b=CalcBackoff(); 

wait(b);

attempts++;

No

Yes

attempts < 16

attempts == 16

 Carrier Sense Multiple Access/Collision Detection
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Routing

 Distance Vector
 Have cost/next hop of best known path to each 

destination
 Advertise cost/next hop of best known path to 

each destination

 Link State
 Every node gets complete copy of graph
 Every node “floods” network with data about its 

outgoing links
Message complexity
 LS: with n nodes, E links, O(nE) messages
 DV: exchange between neighbors only O(E)
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TCP

 Establishment – 3-way handshake
 Tear down – 4-way handshake
 Sliding window protocol
 AIMD
 Reaches steady state quickly
 ACK clocking 
 TCP timeout based on RTT estimation
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Wireless Network
Breaking assumptions

 CSMA/CD does not work
 Relevant contention at the receiver, not sender

 Hard to build a radio that can transmit and receive at same 

time

 802.11-CSMA/CA
 Bluetooth-TDMA, Frequency hopping

 Wireless devices are mobile
 Support for mobile addressing/routing
 Layer of indirection (Home agent, foreign agent)

 Higher bit error rate
 TCP performance degrades when link loss rate is high
 TCP assumes packet loss is due to congestion
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IEEE 802.11 MAC Protocol: 
CSMA/CA

802.11 CSMA: sender
- If sense channel idle for 

DISF
(Distributed Inter 
Frame Space)
then transmit entire 
frame
(no collision detection)

- If sense channel busy
then binary backoff

802.11 CSMA receiver:
- If received OK

return ACK after SIFS
(Short IFS)
(ACK is needed due to
lack of collision detection)
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Hidden and Exposed terminals

A

B

C

A

B

C

D

Hidden Exposed

CSMA/CA is used

Naming

 Names are mapped to values within some 
context  binding

 Naming is a powerful tool in system design
 A layer of indirection can solve many problems (e.g., 

server selection)

 How to determine context?
 Implicit  from environment
 Explicit  e.g., recursive names

 Search paths

 How DNS works

14
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DNS Resolution

Client
Local 

DNS server

root & edu 

DNS server

ns1.cmu.edu 

DNS server

www.cs.cmu.edu

ns1.cs.cmu.edu

DNS

server

Recursive query
Non-recursive query

Cache the result (TTL)
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Subsequent Lookup Example

Client
Local 

DNS server

root & edu 

DNS server

cmu.edu 

DNS server

cs.cmu.edu

DNS

server

ftp.cs.cmu.edu
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RPC

 A remote procedure call makes a call to a 
remote service look like a local call
 RPC makes transparent whether server is local or remote

 RPC allows applications to become distributed transparently

 RPC makes architecture of remote machine transparent

 Except. Hard to provide true transparency
 Failures
 Latency

 Memory access

 How to deal with hard problem  give up and 
let programmer deal with it
 “Worse is better”
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RPC's difference from LPC

 Failure semantics
Possible semantics for RPC:
 Exactly-once
 Impossible in practice

 At least once: 
 Only for idempotent operations

 At most once
 Zero, don’t know, or once

 Zero or once
 Transactional semantics

 At-most-once most practical But different from LPC

 Parameter passing
 Passing reference (copy and restore)
 Solves the problem only partially
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Physical Time

 Clocks on different systems will always 
behave differently
 Skew and drift between clocks

 Time Synchronization
 Cristian’s algorithm
 NTP 
 Berkeley algorithm (Synchronizes a group of servers)
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Logical Clock

 Lamport Clock
 Capture’s happens before relationship
 Totally ordered multicast

 Vector Clock
 Capture’s casual relationship
 Casually ordered multicast

20



3/2/2009

6

Lamport’s Logical Clocks

 The "happens-before" relation → can be observed directly 
in two situations: locally, by message

 Lamport’s algorithm corrects the clocks. 21

Lamport’s Logical Clocks

 e e’ implies L(e)<L(e’)

 The converse is not true, that is L(e)<L(e') does not imply e
e’
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Totally Ordered Multicast

 Use Lamport timestamps
 Algorithm
 Message is timestamped with sender’s logical time
 Message is multicast (including sender itself)
 When message is received
 It is put into local queue

 Ordered according to timestamp

 Multicast acknowledgement

 Message is delievered to applications only when
 It is at head of queue

 It has been acknowledged by all involved processes

 Lamport algorithm (extended) ensures total ordering 
of events
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Vector Clocks

 Vector clocks overcome the shortcoming of 

Lamport logical clocks
 L(e) < L(e’) does not imply e happened before e’

 Vector timestamps are used to timestamp local 

events

 They are applied in schemes  for replication of 

data

24
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Causually Ordered Multicast

 Enforcing causal communication

25

Replication

 Replication  good for 

performance/reliability
 Key challenge  keeping replicas up-to-date 

 Consistency
 Consistency Model is a contract between processes 

and a data store

26

Data Centric Consistency Models

a) Consistency models not using synchronization operations.
b) Models with synchronization operations.
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Consistency Description

Strict Absolute time ordering of all shared accesses matters.

Linearizability
All processes must see all shared accesses in the same order.  Accesses are furthermore ordered 

according to a (nonunique) global timestamp

Sequential All processes see all shared accesses in the same order.  Accesses are not ordered in time

Causal All processes see causally-related shared accesses in the same order.

FIFO
All processes see writes from each other in the order they were used.  Writes from different processes 

may not always be seen in that order

(a)

Consistency Description

Weak Shared data can be counted on to be consistent only after a synchronization is done

Release Shared data are made consistent when a critical region is exited

Entry Shared data pertaining to a critical region are made consistent when a critical region is entered.

(b)
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Causal Consistency

a) A violation of a causally-consistent store.  The two writes are 
NOT concurrent because of the R2(x)a.

b) A correct sequence of events in a causally-consistent store 
(W1(x)a and W2(x)b are concurrent).
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Implementing Sequential Consistency

 Primary-based
 Each data item has associated primary responsible for 

coordination
 Remote-write protocols (primary writes to replicas)
 Local-write protocols (primary migrates)

 Replica-based
 Active replication using multicast communication
 Quorum-based protocols
 ROWA: R=1, W=N
 Fast reads, slow writes (and easily blocked)

 RAWO: R=N, W=1
 Fast writes, slow reads (andeasily blocked)

 Majority: R=W=N/2+1
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Client-centric consistency models

 Consistency models for accessing databases 
by mobile users
 Clients access any (typically a nearby) copy of the 

data
 Only provide consistency guarantees of data 

accesses made for individual clients (not 
concerned with ensuring consistency across 
multiple clients

 Four different client-central consistency 
models
 Monotonic reads
 Monotonic writes
 Read your writes
 Writes follow reads

30

ACID vs BASE

31

 Modern Internet systems: focused on BASE
 Basically Available
 Soft-state (or scalable)
 Eventually consistent

 What goals might you want from a system?
C, A, P (You can only have two out of these three properties)

Strong Consistency: all clients see the same view, even in the 

presence of updates

High Availability: all clients can find some replica of the data, even in 
the presence of failures

Partition-tolerance: the system properties hold even when the system 

is partitioned

Eventual consistency

 There are replica situations where updates 
(writes) are rare and where a fair amount of 
inconsistency can be tolerated.

 If no updates occur for a while, all replicas 
should gradually become consistent.

32
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Content Distribution Networks (CDNs)

 The content providers 
are the CDN customers.

 Content replication
 CDN company installs 

hundreds of CDN 
servers throughout 
Internet
 Close to users

 CDN replicates its 
customers’ content in 
CDN servers. When 
provider updates 
content, CDN updates 
servers

origin server 

in North America

CDN distribution node

CDN server

in S. America CDN server

in Europe

CDN server

in Asia
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Server Selection

 Service is replicated in many places in 
network

 How do direct clients to a particular server?
 As part of routing  anycast, cluster load 

balancing
 As part of application  HTTP redirect
 As part of naming  DNS

 Which server?
 Lowest load  to balance load on servers
 Best performance  to improve client 

performance
 Based on Geography? RTT? Throughput? Load?

 Any alive node  to provide fault tolerance
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How Akamai Works

 Root server gives NS record for akamai.net
 Akamai.net name server returns NS record 

for g.akamaitech.net
 Name server chosen to be in region of client’s name 

server
 TTL is large

 G.akamaitech.net nameserver chooses 
server in region
 Uses consistent hashing from aXYZ
 Load balancing
 Performance
 Fault tolerance

 TTL is small  why?
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Security

 Symmetric (pre-shared key, fast) and 
asymmetric (key pairs, slow) primitives 
provide:

 Confidentiality
 Integrity

 Authentication

(You should know how to use them)

 “Hybrid Encryption” leverages strengths of 
both. (TLS)

 Great complexity exists in securely acquiring 
keys. (Key distribution)
 Kerberos
 PKI



3/2/2009

10

BACKUPs

37

NTP Protocol

 All modes use UDP
 Each message bears timestamps of recent events:

 Local times of Send and Receive of previous message
 Local times of Send of current message

 Recipient notes the time of receipt Ti (we have Ti-3, 
Ti-2, Ti-1, Ti)

 In symmetric mode there can be a non-negligible 
delay between messages

38
Ti

Ti-1Ti-2

Ti- 3

Server B

Server A

Time

m m'

Time
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Establishing Connection:
Three-Way handshake

 Each side notifies other 
of starting sequence 
number it will use for 
sending
 Why not simply chose 0?
 Must avoid overlap with 

earlier incarnation
 Security issues

 Each side acknowledges 
other’s sequence 
number
 SYN-ACK: Acknowledge 

sequence number + 1
 Can combine second 

SYN with first ACK

SYN: SeqC

ACK: SeqC+1

SYN: SeqS

ACK: SeqS+1

Client Server
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Tearing Down Connection

 Either side can initiate tear 
down
 Send FIN signal

 “I’m not going to send any 
more data”

 Other side can continue 
sending data
 Half open connection

 Must continue to acknowledge

 Acknowledging FIN
 Acknowledge last sequence 

number + 1

A B

FIN, SeqA

ACK, SeqA+1

ACK

Data

ACK, SeqB+1

FIN, SeqB
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Distance-Vector Method

 Idea
 At any time, have cost/next hop of best known path to 

destination
 Use cost  when no path known

 Initially
 Only have entries for directly connected nodes

A

E

F

C

D

B

2

3

6

4

1

1

1

3

Initial Table for A

Dest Cost Next 

Hop

A 0 A

B 4 B

C  –

D  –

E 2 E

F 6 F

NTP Protocol

 All modes use UDP
 Each message bears timestamps of recent events:

 Local times of Send and Receive of previous message
 Local times of Send of current message

 Recipient notes the time of receipt Ti (we have Ti-3, 
Ti-2, Ti-1, Ti)

 In symmetric mode there can be a non-negligible 
delay between messages
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