
3/2/2009

1

Midterm Review

Topics Covered

 Networking (Lecture 1~3)
 Naming
 RPC
 Time
 Replication
 Security

2

Internet Design

3

 Packet-switched
datagram network

 IP is the
“compatibility layer”
 Hourglass

architecture
 All hosts and routers

run IP

 Stateless
architecture
 No per flow state

inside network

IP

TCP UDP

ATM

Satellite

Ethernet

Layering

Host Host

Application

Transport

Network

Link

User A
User B

Layering: technique to simplify complex systems

•Each layer relies on services from layer below and
exports services to layer above
•Interface defines interaction
•Hides implementation

3/2/2009

2

5

End-to-End Argument

 Deals with where to place functionality
 Inside the network (in switching elements)
 At the edges

 Argument:
 There are functions that can only be correctly

implemented by the endpoints – do not try to
completely implement these elsewhere

 File transfer example

OS

Appl.

OS

Appl.

Host A Host B

OK

6

E2E Example: File Transfer

 If network guaranteed reliable delivery
 The receiver has to do the check anyway!
 E.g., network card may malfunction

 Full functionality can only be entirely
implemented at application layer; no need
for reliability from lower layers

 Is there any need to implement reliability at
lower layers?
 Yes, but only to improve performance
 If network is highly unreliable
 Adding some level of reliability helps performance, not

correctness

Transport Layer

7

UDP
• Single socket to receive

messages

• No guarantee of delivery

• Not necessarily in-order
delivery

• Datagram – independent
packets

TCP
 Reliable – guarantee

delivery
 Byte stream – in-order

delivery
 Connection-oriented –

single socket per
connection

 Setup connection
followed by data transfer

8

Link Layer
Ethernet MAC (CSMA/CD)

Packet?

Sense

Carrier

Discard

Packet

Send Detect

Collision

Jam channel

b=CalcBackoff();

wait(b);

attempts++;

No

Yes

attempts < 16

attempts == 16

 Carrier Sense Multiple Access/Collision Detection

3/2/2009

3

Routing

 Distance Vector
 Have cost/next hop of best known path to each

destination
 Advertise cost/next hop of best known path to

each destination

 Link State
 Every node gets complete copy of graph
 Every node “floods” network with data about its

outgoing links
Message complexity
 LS: with n nodes, E links, O(nE) messages
 DV: exchange between neighbors only O(E)

9

TCP

 Establishment – 3-way handshake
 Tear down – 4-way handshake
 Sliding window protocol
 AIMD
 Reaches steady state quickly
 ACK clocking
 TCP timeout based on RTT estimation

10

Wireless Network
Breaking assumptions

 CSMA/CD does not work
 Relevant contention at the receiver, not sender

 Hard to build a radio that can transmit and receive at same

time

 802.11-CSMA/CA
 Bluetooth-TDMA, Frequency hopping

 Wireless devices are mobile
 Support for mobile addressing/routing
 Layer of indirection (Home agent, foreign agent)

 Higher bit error rate
 TCP performance degrades when link loss rate is high
 TCP assumes packet loss is due to congestion

11 12

IEEE 802.11 MAC Protocol:
CSMA/CA

802.11 CSMA: sender
- If sense channel idle for

DISF
(Distributed Inter
Frame Space)
then transmit entire
frame
(no collision detection)

- If sense channel busy
then binary backoff

802.11 CSMA receiver:
- If received OK

return ACK after SIFS
(Short IFS)
(ACK is needed due to
lack of collision detection)

3/2/2009

4

13

Hidden and Exposed terminals

A

B

C

A

B

C

D

Hidden Exposed

CSMA/CA is used

Naming

 Names are mapped to values within some
context  binding

 Naming is a powerful tool in system design
 A layer of indirection can solve many problems (e.g.,

server selection)

 How to determine context?
 Implicit  from environment
 Explicit  e.g., recursive names

 Search paths

 How DNS works

14

15

DNS Resolution

Client
Local

DNS server

root & edu

DNS server

ns1.cmu.edu

DNS server

www.cs.cmu.edu

ns1.cs.cmu.edu

DNS

server

Recursive query
Non-recursive query

Cache the result (TTL)

16

Subsequent Lookup Example

Client
Local

DNS server

root & edu

DNS server

cmu.edu

DNS server

cs.cmu.edu

DNS

server

ftp.cs.cmu.edu

3/2/2009

5

RPC

 A remote procedure call makes a call to a
remote service look like a local call
 RPC makes transparent whether server is local or remote

 RPC allows applications to become distributed transparently

 RPC makes architecture of remote machine transparent

 Except. Hard to provide true transparency
 Failures
 Latency

 Memory access

 How to deal with hard problem  give up and
let programmer deal with it
 “Worse is better”

17

RPC's difference from LPC

 Failure semantics
Possible semantics for RPC:
 Exactly-once
 Impossible in practice

 At least once:
 Only for idempotent operations

 At most once
 Zero, don’t know, or once

 Zero or once
 Transactional semantics

 At-most-once most practical But different from LPC

 Parameter passing
 Passing reference (copy and restore)
 Solves the problem only partially

18

Physical Time

 Clocks on different systems will always
behave differently
 Skew and drift between clocks

 Time Synchronization
 Cristian’s algorithm
 NTP
 Berkeley algorithm (Synchronizes a group of servers)

19

Logical Clock

 Lamport Clock
 Capture’s happens before relationship
 Totally ordered multicast

 Vector Clock
 Capture’s casual relationship
 Casually ordered multicast

20

3/2/2009

6

Lamport’s Logical Clocks

 The "happens-before" relation → can be observed directly
in two situations: locally, by message

 Lamport’s algorithm corrects the clocks. 21

Lamport’s Logical Clocks

 e e’ implies L(e)<L(e’)

 The converse is not true, that is L(e)<L(e') does not imply e
e’

22

Totally Ordered Multicast

 Use Lamport timestamps
 Algorithm
 Message is timestamped with sender’s logical time
 Message is multicast (including sender itself)
 When message is received
 It is put into local queue

 Ordered according to timestamp

 Multicast acknowledgement

 Message is delievered to applications only when
 It is at head of queue

 It has been acknowledged by all involved processes

 Lamport algorithm (extended) ensures total ordering
of events

23

Vector Clocks

 Vector clocks overcome the shortcoming of

Lamport logical clocks
 L(e) < L(e’) does not imply e happened before e’

 Vector timestamps are used to timestamp local

events

 They are applied in schemes for replication of

data

24

3/2/2009

7

Causually Ordered Multicast

 Enforcing causal communication

25

Replication

 Replication  good for

performance/reliability
 Key challenge  keeping replicas up-to-date

 Consistency
 Consistency Model is a contract between processes

and a data store

26

Data Centric Consistency Models

a) Consistency models not using synchronization operations.
b) Models with synchronization operations.

27

Consistency Description

Strict Absolute time ordering of all shared accesses matters.

Linearizability
All processes must see all shared accesses in the same order. Accesses are furthermore ordered

according to a (nonunique) global timestamp

Sequential All processes see all shared accesses in the same order. Accesses are not ordered in time

Causal All processes see causally-related shared accesses in the same order.

FIFO
All processes see writes from each other in the order they were used. Writes from different processes

may not always be seen in that order

(a)

Consistency Description

Weak Shared data can be counted on to be consistent only after a synchronization is done

Release Shared data are made consistent when a critical region is exited

Entry Shared data pertaining to a critical region are made consistent when a critical region is entered.

(b)

28

Causal Consistency

a) A violation of a causally-consistent store. The two writes are
NOT concurrent because of the R2(x)a.

b) A correct sequence of events in a causally-consistent store
(W1(x)a and W2(x)b are concurrent).

3/2/2009

8

Implementing Sequential Consistency

 Primary-based
 Each data item has associated primary responsible for

coordination
 Remote-write protocols (primary writes to replicas)
 Local-write protocols (primary migrates)

 Replica-based
 Active replication using multicast communication
 Quorum-based protocols
 ROWA: R=1, W=N
 Fast reads, slow writes (and easily blocked)

 RAWO: R=N, W=1
 Fast writes, slow reads (andeasily blocked)

 Majority: R=W=N/2+1

29

Client-centric consistency models

 Consistency models for accessing databases
by mobile users
 Clients access any (typically a nearby) copy of the

data
 Only provide consistency guarantees of data

accesses made for individual clients (not
concerned with ensuring consistency across
multiple clients

 Four different client-central consistency
models
 Monotonic reads
 Monotonic writes
 Read your writes
 Writes follow reads

30

ACID vs BASE

31

 Modern Internet systems: focused on BASE
 Basically Available
 Soft-state (or scalable)
 Eventually consistent

 What goals might you want from a system?
C, A, P (You can only have two out of these three properties)

Strong Consistency: all clients see the same view, even in the

presence of updates

High Availability: all clients can find some replica of the data, even in
the presence of failures

Partition-tolerance: the system properties hold even when the system

is partitioned

Eventual consistency

 There are replica situations where updates
(writes) are rare and where a fair amount of
inconsistency can be tolerated.

 If no updates occur for a while, all replicas
should gradually become consistent.

32

3/2/2009

9

Content Distribution Networks (CDNs)

 The content providers
are the CDN customers.

 Content replication
 CDN company installs

hundreds of CDN
servers throughout
Internet
 Close to users

 CDN replicates its
customers’ content in
CDN servers. When
provider updates
content, CDN updates
servers

origin server

in North America

CDN distribution node

CDN server

in S. America CDN server

in Europe

CDN server

in Asia

33

Server Selection

 Service is replicated in many places in
network

 How do direct clients to a particular server?
 As part of routing  anycast, cluster load

balancing
 As part of application  HTTP redirect
 As part of naming  DNS

 Which server?
 Lowest load  to balance load on servers
 Best performance  to improve client

performance
 Based on Geography? RTT? Throughput? Load?

 Any alive node  to provide fault tolerance

34

How Akamai Works

 Root server gives NS record for akamai.net
 Akamai.net name server returns NS record

for g.akamaitech.net
 Name server chosen to be in region of client’s name

server
 TTL is large

 G.akamaitech.net nameserver chooses
server in region
 Uses consistent hashing from aXYZ
 Load balancing
 Performance
 Fault tolerance

 TTL is small  why?

35

Security

 Symmetric (pre-shared key, fast) and
asymmetric (key pairs, slow) primitives
provide:

 Confidentiality
 Integrity

 Authentication

(You should know how to use them)

 “Hybrid Encryption” leverages strengths of
both. (TLS)

 Great complexity exists in securely acquiring
keys. (Key distribution)
 Kerberos
 PKI

3/2/2009

10

BACKUPs

37

NTP Protocol

 All modes use UDP
 Each message bears timestamps of recent events:

 Local times of Send and Receive of previous message
 Local times of Send of current message

 Recipient notes the time of receipt Ti (we have Ti-3,
Ti-2, Ti-1, Ti)

 In symmetric mode there can be a non-negligible
delay between messages

38
Ti

Ti-1Ti-2

Ti- 3

Server B

Server A

Time

m m'

Time

39 40

Establishing Connection:
Three-Way handshake

 Each side notifies other
of starting sequence
number it will use for
sending
 Why not simply chose 0?
 Must avoid overlap with

earlier incarnation
 Security issues

 Each side acknowledges
other’s sequence
number
 SYN-ACK: Acknowledge

sequence number + 1
 Can combine second

SYN with first ACK

SYN: SeqC

ACK: SeqC+1

SYN: SeqS

ACK: SeqS+1

Client Server

3/2/2009

11

41

Tearing Down Connection

 Either side can initiate tear
down
 Send FIN signal

 “I’m not going to send any
more data”

 Other side can continue
sending data
 Half open connection

 Must continue to acknowledge

 Acknowledging FIN
 Acknowledge last sequence

number + 1

A B

FIN, SeqA

ACK, SeqA+1

ACK

Data

ACK, SeqB+1

FIN, SeqB

42

Distance-Vector Method

 Idea
 At any time, have cost/next hop of best known path to

destination
 Use cost  when no path known

 Initially
 Only have entries for directly connected nodes

A

E

F

C

D

B

2

3

6

4

1

1

1

3

Initial Table for A

Dest Cost Next

Hop

A 0 A

B 4 B

C  –

D  –

E 2 E

F 6 F

NTP Protocol

 All modes use UDP
 Each message bears timestamps of recent events:

 Local times of Send and Receive of previous message
 Local times of Send of current message

 Recipient notes the time of receipt Ti (we have Ti-3,
Ti-2, Ti-1, Ti)

 In symmetric mode there can be a non-negligible
delay between messages

43
Ti

Ti-1Ti-2

Ti- 3

Server B

Server A

Time

m m'

Time

