
Final Review 

2 

L-14 Security 
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Important Lessons - Security 

Internet design and growth  security 
challenges 
Symmetric (pre-shared key, fast) and 
asymmetric (key pairs, slow) primitives 
provide: 

Confidentiality 
Integrity 
Authentication 

“Hybrid Encryption” leverages strengths of 
both. 
Great complexity exists in securely acquiring 
keys. 
Crypto is hard to get right, so use tools from 
others, don’t design your own (e.g. TLS).   
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Two ways to cut a table (ACM) 

Order by columns (ACL) or rows (Capability 
Lists)? 

ACLs  

Capability 

File1 File2 File3 

Ann rx r rwx 

Bob rwxo r -- 

Charlie rx rwo w 
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ACL:Default Permission and 
Abbreviation 

Example: UNIX   
Three classes of users: owner, group, all others 
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Capabilities and Attribute Certificates 
(2) 

Generation of a restricted capability  
from an owner capability. 
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Delegation (2) 

Using a proxy to delegate and prove ownership 
of access rights. 
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Sybil Attack undermines assumed 
mapping between identity to entity 

and hence number of faulty 
entities 

A Sybil attack is the forging of multiple 
identities for malicious intent -- having a set of 
faulty entities represented through a larger set 
of identities.  
The purpose of such an attack is to 
compromise a disproportionate share of a 
system. 
Result is overthrowing of any assumption of 
designed reliably based on a limited proportion 
of faulty entities. 
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L-15 Fault Tolerance 
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Important Lessons 

Terminology & Background 
Failure models 

Byzantine Fault Tolerance 
Protocol design  with and without crypto 
How many servers do we need to tolerate 

Issues in client/server 
Where do all those RPC failure semantics come from? 

Reliable group communication 
How do we manage group membership changes as 
part of reliable multicast 
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Failure Models 

A system is said to fail if it cannot meet its 
promises.  An error on the part of a 
system’s state may lead to a failure.  The 
cause of an error is called a fault. 
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Failure Masking by Redundancy 

Triple modular redundancy. For each voter, if two or three of 
the inputs are the same, the output is equal to the input.  If all 
three inputs are different, the output is undefined. 
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Impossibility Results 

No solution for three processes can handle a single traitor. 

In a system with m faulty processes agreement can be 
achieved only if there are 2m+1  (more than 2/3) functioning 
correctly. 

Lamport, Shostak, Pease.  The Byzantine General’s Problem. ACM TOPLAS, 4,3, July 1982, 382-401. 

General 1 

General 2 General 3 

General 1 

General 2 General 3 

attack attack attack retreat 

retreat 
retreat 
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Byzantine General Problem 
Example - 1 

Phase 1: Generals announce their troop 
strengths to each other 

P1 P2 

P3 P4 

1 

1 
1 
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Byzantine General Problem 
 Example - 2 

Phase 1: Generals announce their troop 
strengths to each other 

P1 P2 

P3 P4 

2 

2 2 
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Byzantine General Problem 
Example - 3 

Phase 1: Generals announce their troop 
strengths to each other 

P1 P2 

P3 P4 

4 4 

4 
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Byzantine General Problem 
Example - 4 

Phase 2: Each general construct a vector with 
all troops 

P1 P2 P3 P4 

1 2 x 4 

P1 P2 

P3 P4 

y x 

z 

P1 P2 P3 P4 

1 2 y 4 

P1 P2 P3 P4 

1 2 z 4 
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Byzantine General Problem 
Example - 5 

Phase 3,4: Generals send their vectors to each 
other and compute majority voting 

P1 P2 P3 P4 

1 2 y 4 

a b c d 

1 2 z 4 

P1 P2 

P3 P4 

(e, f, g, h) 

(a, b, c, d) 

(h, i, j, k) 

P1 P2 P3 P4 

1 2 x 4 

e f g h 

1 2 z 4 

P1 P2 P3 P4 

1 2 x 4 

1 2 y 4 

h i j k 

P2 

P3 

P4 

P1 

P3 

P4 

P1 

P2 

P3 

(1,     2,     ?,     4) 

(1,     2,     ?,     4) 

(1,     2,     ?,     4) 20 



Signed messages 

Lamport, Shostak, Pease.  The Byzantine General’s Problem. ACM TOPLAS, 4,3, July 1982, 382-401. 

General 

Lieutenant 1 Lieutenant 2 

General 

Lieutenant 1 Lieutenant 2 

attack:0 attack:0 attack:0 retreat:0 

attack:0:1 

SM(1) with one traitor 

retreat:0:2 

attack:0:1 

??? 
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Server Crashes (3) 

Consider scenario where a client sends text 
to a print server. 
There are three events that can happen at 
the server:  

Send the completion message (M),  
Print the text (P),  
Crash (C) – at recovery, send ‘recovery’ message to 
clients.  

Server strategies: 
send completion message before printing 
send completion message after printing 
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Server Crashes (4) 

These events can occur in six different orderings: 

1. M P C: A crash occurs after sending the 
completion message and printing the text. 

2. M C ( P): A crash happens after sending the 
completion message, but before the text could be 
printed. 

3. P M C: A crash occurs after sending the 
completion message and printing the text. 

4. P C( M): The text printed, after which a crash 
occurs before the completion message could be sent. 

5. C ( P M): A crash happens before the server could 
do anything. 

6. C ( M P): A crash happens before the server could 
do anything. 
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Server Crashes (6) 

Different combinations of client and server  
strategies in the presence of server crashes. 
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Client Crashes 

Can create orphans (unwanted computations) 
that waste CPU, potentially lock up resources 
and create confusion when client re-boots. 
Nelson solutions: 
1. Orphan Extermination – keep a log of RPCs at client that 

is checked at re-boot time to remove orphans. 
2. Reincarnation – divide time into epochs.  After a client re-

boot, increment its epoch and kill off any of its requests 
belonging to an earlier epoch. 

3. Gentle Reincarnation – at reboot time, an epoch 
announcement causes all machines to locate the owners 
of any remote computations. 

4. Expiration – each RPC is given time T to complete (but a 
live client can ask for more time) 

Nelson.  Remote Procedure Call. Ph.D. Thesis, CMU, 1981. 
25 

View-synchronous group communication 

p

q

r

p crashes

view (q, r)view (p, q, r)

p

q

r

p crashes

view (q, r)view (p, q, r)

a (allowed). b (allowed).

p

q

r

view (p, q, r)

p

q

r

p crashes

view (q, r)view (p, q, r)

c (disallowed). d (disallowed).

p crashes

view (q, r)
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Virtual Synchrony (2) 
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Virtual Synchrony 
Implementation: Example 

Gi = {P1, P2, P3, P4, P5} 

P5 fails 

P1 detects that P5 has 
failed 

P1 send a “view change” 
message to every process 
in  Gi+1 = {P1, P2, P3, P4} 

P1 

P2 P3 

P4 

P5 

change view 
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Virtual Synchrony 
Implementation: Example 

Every process  
Send each unstable 
message m from Gi to 
members in Gi+1 

Marks m as being stable 
Send a flush message to 
mark that all unstable 
messages have been 
sent 

P1 

P2 P3 

P4 

P5 

unstable message 

flush  

message 
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Virtual Synchrony 
Implementation: Example 

Every process  
After receiving a flush 
message from any 
process in Gi+1 installs 
Gi+1  

P1 

P2 P3 

P4 

P5 
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L-16 Transactions 

32 



Transactions –  
The ACID Properties 

Are the four desirable properties for reliable handling of 
concurrent transactions. 
Atomicity 

The “All or Nothing” behavior. 
C: stands for either  

Concurrency: Transactions can be executed concurrently 
… or Consistency: Each transaction, if executed by itself, 
maintains the correctness of the database. 

Isolation (Serializability) 
Concurrent transaction execution should be equivalent 
(in effect) to a serialized execution. 

Durability 
Once a transaction is done, it stays done. 
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Transaction life histories 

openTransaction()   trans;
starts a new transaction and delivers a unique TID trans. This identifier will be 
used in the other operations in the transaction.

closeTransaction(trans)   (commit, abort);
ends a transaction: a commit return value indicates that the transaction has  
committed; an abort return value indicates that it has aborted.

abortTransaction(trans);
aborts the transaction.
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Successful Aborted by client Aborted by server

openTransaction openTransaction openTransaction

operation operation operation

operation operation operation

server aborts

transaction

operation operation operation ERROR

reported to client

closeTransaction abortTransaction

Need for serializable execution 

Data manager interleaves operations to improve concurrency 

 DB:     R1(X) R2(X) W2(X) R1(Y) W1(X) W2(Y) commit1 commit2 

 T
1
:     R1(X)  R1(Y)  W1(X) commit1 

 T
2
:     R2(X) W2(X) W2(Y)  commit2 
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Non serializable execution 

Problem: transactions may “interfere”.  Here, T2  changes x, hence T1 should have 

either run first (read and write) or after (reading the changed value).   

Unsafe!  Not serializable 

 DB:     R1(X) R2(X) W2(X) R1(Y) W1(X) W2(Y) commit2 commit1 

 T
1
:     R1(X)  R1(Y)  W1(X) commit1 

 T
2
:     R2(X) W2(X) W2(Y)  commit2 
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Serializable execution 

Data manager interleaves operations to improve concurrency but schedules them so that 

it looks as if one transaction ran at a time.  This schedule “looks” like T2 ran first. 

 DB:     R2(X) W2(X) R1(X) W1(X) W2(Y) R1(Y) commit2 commit1 

 T
1
:     R1(X)  R1(Y)  W1(X) commit1 

 T
2
:     R2(X) W2(X) W2(Y)  commit2 
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What about the locks? 

Unlike other kinds of distributed systems, 
transactional systems typically lock the data 
they access 
They obtain these locks as they run: 

Before accessing “x” get a lock on “x” 
Usually we assume that the application knows 
enough to get the right kind of lock.  It is not 
good to get a read lock if you’ll later need to 
update the object 

In clever applications, one lock will often 
cover many objects 

38 
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Strict Two-Phase Locking (2) 

Strict two-phase locking. 
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Lock compatibility 

For one object Lock requested
read write

Lock already set none OK OK

read OK wait

write wait wait

Operation Conflict rules: 
1.  If a transaction T has already performed a read operation on a  

particular object, then a concurrent transaction U must not write 
that object until T commits or aborts 

2.  If a transaction T has already performed a read operation on a  
particular object, then a concurrent transaction U must not read 
or write that object until T commits or aborts 
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The wait-for graph  

B

A

Waits for

Held by

Held by

T UU T

Waits for

Dealing with Deadlock in  
two-phase locking 

Deadlock prevention  
Acquire all needed locks in a single atomic operation 
Acquire locks in a particular order 

Deadlock detection 
Keep graph of locks held.  Check for cycles 
periodically or each time an edge is added 
Cycles can be eliminated by aborting transactions 

Timeouts 
Aborting transactions when time expires 
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Contrast: Timestamped approach 

Using a fine-grained clock, assign a “time” 
to each transaction, uniquely.  E.g. T1 is at 
time 1, T2 is at time 2 
Now data manager tracks temporal history 
of each data item, responds to requests as 
if they had occured at time given by 
timestamp 
At commit stage, make sure that commit is 
consistent with serializability and, if not, 
abort 
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Contrast: Timestamped approach 

Using a fine-grained clock, assign a “time” 
to each transaction, uniquely.  E.g. T1 is at 
time 1, T2 is at time 2 
Now data manager tracks temporal history 
of each data item, responds to requests as 
if they had occured at time given by 
timestamp 
At commit stage, make sure that commit is 
consistent with serializability and, if not, 
abort 
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Two Phase Commit Protocol - 6 

Recovery 
‘Wait’ in Coordinator – use a time-out mechanism to detect 
participant crashes.  Send GLOBAL_ABORT 
‘Init’ in Participant – Can also use a time-out and send 
VOTE_ABORT 
‘Ready’ in Participant P – abort is not an option (since already 
voted to COMMIT and so coordinator might eventually send 
GLOBAL_COMMIT).  Can contact another participant Q and 
choose an action based on its state. 
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State of Q Action by P 

COMMIT Transition to COMMIT 

ABORT Transition to ABORT 

INIT Both P and Q transition to ABORT  

(Q sends VOTE_ABORT) 

READY Contact more participants.  If all participants are ‘READY’, must wait 

for coordinator to recover 
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Three Phase Commit protocol - 1 

Problem with 2PC 
If coordinator crashes, participants cannot reach a 
decision, stay blocked until coordinator recovers 

Three Phase Commit3PC 
There is no single state from which it is possible to 
make a transition directly to either COMMIT or ABORT 
states 
There is no state in which it is not possible to make a 
final decision, and from which a transition to COMMIT 
can be made 
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Three-Phase Commit protocol - 2 

a) Finite state machine for the coordinator in 3PC 
b) Finite state machine for a participant 

Three Phase Commit Protocol - 3 

Recovery 
‘Wait’ in Coordinator – same 
‘Init’ in Participant – same 
‘PreCommit’ in Coordinator – Some participant has crashed but 
we know it wanted to commit.  GLOBAL_COMMIT the application 
knowing that once the participant recovers, it will commit. 
‘Ready’ or ‘PreCommit’ in Participant P – (i.e. P has voted to 
COMMIT) 
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State of Q Action by P 

PRECOMMIT Transition to PRECOMMIT.  If all participants 

in PRECOMMIT, if majority in PRECOMMIT 

can COMMIT the transaction 

ABORT Transition to ABORT 

INIT Both P (in READY) and Q transition to ABORT  

(Q sends VOTE_ABORT) 

READY Contact more participants.  If can contact a 

majority and they are in ‘Ready’, then ABORT 

the transaction. 

If the participants contacted in ‘PreCommit’ it 

is safe to COMMIT the transaction 

Note: if any participant  
is in state PRECOMMIT,  
it is impossible for any  
other participant to be in  
any state other than READY 
or PRECOMMIT. 
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L-17 Distributed File Systems 
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Wrap up: Design Issues 

Name space 
Authentication 
Caching 
Consistency 
Locking 
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NFS V2 Design 

“Dumb”, “Stateless” servers 
Smart clients 
Portable across different OSs 
Immediate commitment and idempotency of 
operations 
Low implementation cost 
Small number of clients 
Single administrative domain 
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Stateless File Server? 

Statelessness 
Files are state, but... 
Server exports files without creating extra state 

No list of “who has this file open” (permission check on 
each operation on open file!) 
No “pending transactions” across crash 

Results 
Crash recovery is “fast” 

Reboot, let clients figure out what happened 

Protocol is “simple” 

State stashed elsewhere 
Separate MOUNT protocol 
Separate NLM locking protocol 
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NFS V2 Operations 

V2:  
NULL, GETATTR, SETATTR 
LOOKUP, READLINK, READ 
CREATE, WRITE, REMOVE, RENAME 
LINK, SYMLINK 
READIR, MKDIR, RMDIR 
STATFS (get file system attributes) 
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AFS Assumptions 

Client machines are un-trusted 
Must prove they act for a specific user 

Secure RPC layer 

Anonymous “system:anyuser” 

Client machines have disks(!!) 
Can cache whole files over long periods 

Write/write and write/read sharing are rare 
Most files updated by one user, on one machine 
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Topic 1: Name-Space 
Construction and Organization 

NFS: per-client linkage 
Server: export /root/fs1/ 
Client: mount server:/root/fs1 /fs1  fhandle 

AFS: global name space 
Name space is organized into Volumes 

Global directory /afs;  
/afs/cs.wisc.edu/vol1/…; /afs/cs.stanford.edu/vol1/… 

Each file is identified as fid = <vol_id, vnode #, 
uniquifier> 
All AFS servers keep a copy of “volume location 
database”, which is a table of vol_id  server_ip 
mappings 
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Topic 2: User Authentication and 
Access Control 

User X logs onto workstation A, wants to 
access files on server B 

How does A tell B who X is? 
Should B believe A? 

Choices made in NFS V2 
All servers and all client workstations share the same 
<uid, gid> name space  B send X’s <uid,gid> to A 

Problem: root access on any client workstation can lead 
to creation of users of arbitrary <uid, gid> 

Server believes client workstation unconditionally 
Problem: if any client workstation is broken into, the 
protection of data on the server is lost; 
<uid, gid> sent in clear-text over wire  request packets 
can be faked easily 
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A Better AAA System: Kerberos 

Basic idea: shared secrets 
User proves to KDC who he is; KDC generates shared 
secret between client and file server 
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client 

ticket server 
generates S 

“N
ee

d to
 ac

ce
ss 

fs”
 

Kclie
nt
[S

] file server K
fs[S] 

S: specific to {client,fs} pair;  
“short-term session-key”; expiration time (e.g. 8 hours) 

KDC 

encrypt S with 
client’s key 

AFS ACLs 

Apply to directory, not to file 
Format: 

sseshan rlidwka 
srini@cs.cmu.edu rl 
sseshan:friends rl 

Default realm is typically the cell name 
(here andrew.cmu.edu) 
Negative rights 

Disallow “joe rl” even though joe is in sseshan:friends 
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Topic 3: Client-Side Caching 

Why is client-side caching necessary? 
What is cached 

Read-only file data and directory data  easy 
Data written by the client machine  when is data 
written to the server? What happens if the client 
machine goes down? 
Data that is written by other machines  how to 
know that the data has changed?  How to ensure data 
consistency? 
Is there any pre-fetching? 
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Client Caching in NFS v2 

Cache both clean and dirty file data and file 
attributes 
File attributes in the client cache expire after 
60 seconds (file data doesn’t expire) 
File data is checked against the modified-time 
in file attributes (which could be a cached copy) 

Changes made on one machine can take up to 60 seconds 
to be reflected on another machine 

Dirty data are buffered on the client machine 
until file close or up to 30 seconds 

If the machine crashes before then, the changes are lost 
Similar to UNIX FFS local file system behavior 

61 

Implication of NFS v2 Client 
Caching 

Data consistency guarantee is very poor 
Simply unacceptable for some distributed applications 
Productivity apps tend to tolerate such loose 
consistency 

Different client implementations implement 
the “prefetching” part differently 
Generally clients do not cache data on local 
disks 
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Client Caching in AFS v2 

Client caches both clean and dirty file data 
and attributes 

The client machine uses local disks to cache data 
When a file is opened for read, the whole file is 
fetched and cached on disk 

Why?  What’s the disadvantage of doing so? 

However, when a client caches file data, it 
obtains a “callback” on the file 
In case another client writes to the file, the 
server “breaks” the callback 

Similar to invalidations in distributed shared memory 
implementations 

Implication: file server must keep state! 

63 

Semantics of File Sharing 

Four ways of dealing with the shared files in 
a distributed system. 

64 



Session Semantics in AFS v2 

What it means: 
A file write is visible to processes on the same box 
immediately, but not visible to processes on other 
machines until the file is closed 
When a file is closed, changes are visible to new 
opens, but are not visible to “old” opens 
All other file operations are visible everywhere 
immediately 

Implementation 
Dirty data are buffered at the client machine until file 
close, then flushed back to server, which leads the 
server to send “break callback” to other clients 
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File Locking (3) 

The result of an open operation with share 
reservations in NFS  When the client requests a 
denial state given the current file access state. 
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Failure recovery 

What if server fails? 
Lock holders are expected to re-establish the locks 
during the “grace period”, during which no other locks 
are granted 

What if a client holding the lock fails? 
What if network partition occurs? 
NFS relies on “network status monitor” for 
server monitoring 
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L-18 More DFS 

Hardware Model 

CODA and AFS assume that client 
workstations are personal computers 
controlled by their user/owner 

Fully autonomous 
Cannot be trusted 

CODA allows owners of laptops  to operate 
them in disconnected mode 

Opposite of ubiquitous connectivity 
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Pessimistic Replica Control 

Would require client to acquire  exclusive 
(RW) or shared (R) control of cached 
objects before accessing them in 
disconnected mode: 

Acceptable solution for voluntary disconnections 
Does not work for involuntary disconnections 

What if the laptop remains disconnected for 
a long time? 
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Leases 

We could grant exclusive/shared control of 
the cached objects for a limited amount of 
time 
Works very well in connected mode  

Reduces server workload 
Server can keep leases in volatile storage as long as 
their duration is shorter than boot time 

Would only work for very short 
disconnection periods 
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Optimistic Replica Control (I) 

Optimistic replica control allows access 
in every disconnected mode 

Tolerates temporary inconsistencies 
Promises to detect them later 
Provides much higher data availability 
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Coda (Venus) States 

1. Hoarding: 
Normal operation mode 

2. Emulating: 
Disconnected operation mode 

3. Reintegrating: 
Propagates  changes and detects inconsistencies 

Hoarding 

Emulating Recovering 
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Reintegration 

When workstation gets reconnected, Coda 
initiates a reintegration process 

Performed one volume at a time 
Venus ships replay log to all volumes 
Each volume performs a log replay algorithm 

Only care write/write confliction 
Succeed? 

Yes. Free logs, reset priority 
No. Save logs to a tar. Ask for help 
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Performance 

Duration of Reintegration 
A few hours disconnection  1 min 
But sometimes much longer 

Cache size 
100MB at client is enough for a “typical” workday 

Conflicts 
No Conflict at all! Why? 
Over 99% modification by the same person 
Two users modify the same obj within a day: 
<0.75% 
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Working on slow networks 

Make local copies 
Must worry about update conflicts 

Use remote login 
Only for text-based applications 

Use instead a LBFS 
Better than remote login 
Must deal with issues like auto-saves blocking the 
editor for the duration of  transfer 

77 

LBFS design 

Provides close-to-open consistency 
Uses a large, persistent file cache at client 

Stores clients working set of files 

LBFS server divides file it stores into chunks 
and indexes the chunks by hash value 
Client similarly indexes its file cache 
Exploits similarities between files 

LBFS never transfers chunks that the recipient already 
has 
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Indexing 

Uses the SHA-1 algorithm for hashing 
It is collision resistant 

Central challenge in indexing file chunks is 
keeping the index at a reasonable size while 
dealing with shifting offsets 

Indexing the hashes of fixed size data blocks 
Indexing the hashes of all overlapping blocks at all 
offsets 
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Effects of edits on file chunks 

Chunks of file before/after edits 
Grey shading show edits 

Stripes show 48byte regions with magic hash 
values creating chunk boundaries 
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L-19 P2P 

What’s out there? 

Central Flood Super-
node flood

Route

Whole

File

Napster Gnutella Freenet

Chunk

Based

BitTorrent KaZaA 
(bytes, not 
chunks)

DHTs
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Napster: Publish 

I have X, Y, and Z! 

Publish 

insert(X, 

  123.2.21.23) 
... 

123.2.21.23 
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Napster: Search 

Where is file A? 

Query Reply 

search(A) 

--> 
123.2.0.18 Fetch 

123.2.0.18 
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I have file A. 

I have file A. 

Gnutella: Search 

Where is file A? 

Query 

Reply 
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KaZaA: File Insert 

I have X! 

Publish 

insert(X, 

  123.2.21.23) 
... 

123.2.21.23 
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KaZaA: File Search 

Where is file A? 

Query 

search(A) 

--> 
123.2.0.18 

search(A) 

--> 
123.2.22.50 

Replies 

123.2.0.18 

123.2.22.50 

88 



BitTorrent: Publish/Join 

Tracker 
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BitTorrent: Fetch 
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DHT: Consistent Hashing 

N32 

N90 

N105 

K80 

K20 

K5 

Circular ID space 

Key 5 
Node 105 

A key is stored at its successor: node with next higher ID 
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DHT: Chord “Finger Table” 

N80 

1/2 1/4 

1/8 

1/16 
1/32 
1/64 
1/128 

• Entry i in the finger table of node n is the first node that 
succeeds or equals n + 2i 

• In other words, the ith finger points 1/2n-i way around the 
ring 
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DHT: Chord Join 

Nodes n0, n6 join  

0 

1 

2 

3 
4 

5 

6 

7 

i  id+2
i  
succ 

0    2      2 

1    3      6 
2    5      6  

Succ. Table 

i  id+2
i  
succ 

0    3      6 

1    4      6 
2    6      6  

Succ. Table 

i  id+2
i  
succ 

0    1      1 

1    2      2 
2    4      0  

Succ. Table 

i  id+2
i  
succ 

0    7      0 

1    0      0 
2    2      2  

Succ. Table 
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DHT: Chord Join 

Nodes:  
n1, n2, n0, n6 

Items:  
f7, f2 

0 

1 

2 

3 
4 

5 

6 

7 i  id+2
i  
succ 

0    2      2 

1    3      6 
2    5      6  

Succ. Table 

i  id+2
i  
succ 

0    3      6 

1    4      6 
2    6      6  

Succ. Table 

i  id+2
i  
succ 

0    1      1 

1    2      2 
2    4      0  

Succ. Table 

7 

Items  

1 

Items  

i  id+2
i  
succ 

0    7      0 

1    0      0 
2    2      2  

Succ. Table 
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DHT: Chord Routing 
Upon receiving a query 
for item id, a node: 
Checks whether stores 
the item locally 
If not, forwards the 
query to the largest 
node in its successor 
table that does not 
exceed id 

0 

1 

2 

3 
4 

5 

6 

7 i  id+2
i  
succ 

0    2      2 

1    3      6 
2    5      6  

Succ. Table 

i  id+2
i  
succ 

0    3      6 

1    4      6 
2    6      6  

Succ. Table 

i  id+2
i  
succ 

0    1      1 

1    2      2 
2    4      0  

Succ. Table 

7 

Items  

1 

Items  

i  id+2
i  
succ 

0    7      0 

1    0      0 
2    2      2  

Succ. Table 

query(7) 
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Resolution 

Service 

Flat Names Example 

<A HREF= 

http://f012012/pub.pdf 

>here is a paper</A> 

HTTP GET: /docs/

pub.pd
f 

10.1.2.3 

/docs/

20.2.4.6 

HTTP GET: /~user/pubs/

pub.pdf 

(10.1.2.3,80, 
/docs/) 

(20.2.4.6,80, 
/~user/pubs/) 

/~user/pubs/

• SID abstracts all object reachability information 

• Objects: any granularity (files, directories) 

• Benefit: Links (referrers) don’t break 
Domain H 

Domain Y 



P2P-enabled Applications: 
Self-Certifying Names 

Name = Hash(pubkey, salt) 

Value = <pubkey, salt, data, signature> 
can verify name related to pubkey and pubkey signed 
data 

Can receive data from caches or other 3rd 
parties without worry 

much more opportunistic data transfer 
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CFS 

signature 

public key 

Root Block 

D 

Directory 

Block  

H(D) 

F 

H(F) 

File Block 

B1 B2 

Data Block Data Block 

H(B1) 
H(B2) 
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L-20 Multicast 
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IP Multicast Architecture 

Hosts 

Routers 

Service model 

Host-to-router protocol 

(IGMP) 

Multicast routing protocols 

(various) 
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Multicast – Efficient Data 
Distribution 

Src Src 
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Multicast Scope Control – Small 
TTLs 

TTL expanding-ring search to reach or find a 
nearby subset of a group 

s 

1 

2 

3 
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Prune 

G G 

S 

Prune (s,g) 

Prune (s,g) 

G 
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R1 

Implosion 

S 

R3 R4 

R2 

2 1 

R1 

S 

R3 R4 

R2 

Packet 1 is lost All 4 receivers request a resend 

Resend request 
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R1 

Exposure 

S 

R3 R4 

R2 

2 1 

R1 

S 

R3 R4 

R2 

Packet 1 does not reach R1; 

Receiver 1 requests a resend 
Packet 1 resent to all 4 receivers 

1 

1 

Resend request 
Resent packet 
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R1 

SRM Request Suppression 

S 

R3 

R2 

2 1 

R1 

S 

R3 

R2 

Packet 1 is lost; R1 requests 

resend to Source and Receivers 

Packet 1 is resent; R2 and R3 no 

longer have to request a resend 

1 

X 

X 
Delay varies 

by distance 

X

Resend request Resent packet 
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Deterministic Suppression 

d 

d 

d 

d 

3d 

Time 

data 

nack repair 

d 

4d 

d 

2d 

3d 

= Sender 

= Repairer 

= Requestor 

Delay = C1 dS,R  
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SRM: Stochastic Suppression 

data d 

d 

d 

d 

Time 

NACK 

repair 

2d 

session msg 

0 

1 

2 

3 

Delay = U[0,D2] dS,R 

= Sender 

= Repairer 

= Requestor 
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Multicast Congestion Control 

What if receivers 
have very 
different 
bandwidths? 
Send at max? 
Send at min? 
Send at avg? 

R 

R 

R 

S 

???Mb/s 

100Mb/s 

100Mb/s 

1Mb/s 

1Mb/s 

56Kb/s 

R 
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Layered Media Streams 

S R 

R1 
R2 

R3 

R 10Mbps 

10Mbps 

512Kbps 

128Kbps 

10Mbps 

R3 joins layer 1,  

fails at layer 2 

R2 join layer 1, 

join layer 2  

fails at layer 3 

R1 joins layer 1, 

joins layer 2  

joins layer 3 
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Join Experiments 

1 

2 

3 

4 

Time 

Layer 
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Supporting Multicast on the 
Internet 

IP 

Application 

Internet architecture 

Network 

? 

? 

At which layer should 
multicast be 
implemented? 
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IP Multicast 

CMU 

Berkeley 

MIT 

UCSD 

routers 

end systems 

multicast flow 

Highly efficient 
Good delay 
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End System Multicast 

MIT1 

MIT2 

CMU1 

CMU2 

UCSD 

MIT1 

MIT2 

CMU2 

Overlay  Tree 
Berkeley 

CMU1 

CMU 

Berkeley 

MIT 

UCSD 

Publish/Subscribe 

Publish/Subscribe   

Service 

Want 

champions 

league football 

news    

Want 

weather 

news for 
Lancaster 

REAL MADRID 

4-2 MARSEILLE  

Publication 

Weather Lancaster  : 

sunny intervals 

min 11°C max 20°C  

Publisher Want Traffic 
update for 

junction A6   

Subscriber 

Subscription 

Subscribe 

Publish 
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Key attributes of P/S communication 
model 

The publishing entities and subscribing 
entities are anonymous 
The publishing entities and subscribing 
entities are highly de-coupled 
Asynchronous communication model 
The number of publishing and subscribing 
entities can dynamically change without 
affecting the entire system 
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Subject based vs.  
Content based 

Subject based: 
Generally also  known as topic based, group based or 
channel based event filtering. 
Here each event is published to one of these channels  
by its publisher 
A subscriber subscribes to a particular channel and 
will receive all events published to the subscribed 
channel.  
Simple  process  for  matching an event to 
subscriptions 
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Subject based vs.  
Content based 

Content based: 
More flexibility and power to subscribers, by allowing 
to express as an arbitrary query over the contents of 
the event. 
E.g. Notify me of all stock quotes of IBM from New 
York stock exchange if the price is greater than 150 
Added complexity in matching an event to 
subscriptions 
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Event routing 

P 

P 

P 

P 

Event broker 

 system 

S1 

S2 

S3 

C1 

C2 

C3 

C1,C2,C3 are 

subscriptions of 
S1,S2,S3 respectively 

P- Event publisher  

S – Event subscriber 

Single broker 

Cluster of 
cooperating brokers 

OR 
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Basic elements of P/S model  

Event data model 
Structure 
Types 

Subscription model 
Filter language 
Scope (subject, content, context) 

General challenge  
Expressiveness  vs.  Scalability 
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L-22 Sensor Networks 

124 

Metric: Communication 

Lifetime from one 
pair of AA 
batteries  

2-3 days at full 
power 
6 months at 2% 
duty cycle 

Communication 
dominates cost 

< few mS to 
compute 
30mS to send 
message 
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Communication In Sensor Nets 

Radio 
communication has 
high link-level 
losses 

typically about 20% 
@ 5m 

Ad-hoc neighbor 
discovery 

Tree-based routing 

A 

B C 

D 

F 

E 

Illustrating Directed Diffusion 
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Sink 

Source 

Setting up gradients 

Sink 

Source 

Sending data 

Sink 

Source 

Recovering 
from node failure 

Sink 

Source 

Reinforcing 
stable path 

Summary 

Data Centric 
 Sensors net is queried for specific data 
 Source of data is irrelevant 
 No sensor-specific query  

Application Specific 
 In-sensor processing to reduce data transmitted 
 In-sensor caching 

Localized Algorithms 
 Maintain minimum local connectivity – save energy 
 Achieve global objective through local coordination 

Its gains due to aggregation and duplicate suppression 
may make it more viable than ad-hoc routing in sensor 
networks 
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Basic Aggregation 

In each epoch: 
Each node samples local sensors once 
Generates partial state record 
(PSR) 

local readings  
readings from children  

Outputs PSR during its comm. slot. 

At end of epoch, PSR for whole 
network output at root 
(In paper: pipelining, grouping) 
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1

2 3

4

5
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Illustration: Aggregation 

1 2 3 4 5 

1 1 

2 2 

3 1 3 

4 

1 

1

2 3

4

5

3 1 

Sensor # 

S
lo

t 
#

 

Slot 3 
SELECT COUNT(*) FROM 
sensors 

Taxonomy of Aggregates 

TAG insight:  classify aggregates according 
to various functional properties 

Yields a general set of optimizations that can 
automatically be applied 
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Property Examples Affects 

Partial State MEDIAN : unbounded,  
MAX : 1 record 

Effectiveness of TAG 

Duplicate 
Sensitivity 

MIN : dup. insensitive, 
AVG : dup. sensitive 

Routing Redundancy 

Exemplary vs. 
Summary 

MAX : exemplary 
COUNT: summary 

Applicability of Sampling, 
Effect of Loss 

Monotonic COUNT : monotonic 
AVG : non-monotonic 

Hypothesis Testing, Snooping 
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A Naïve ODI Algorithm 

Goal: count the live sensors in the 
network 

0 1 0 0 0 0 0 0 0 0 1 0 

0 0 1 0 0 0 0 0 0 0 0 1 

id Bit vector 
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Synopsis Diffusion (SenSys’04) 

Goal: count the live sensors in the 
network 

0 1 0 0 0 0 0 0 0 0 1 0 

0 0 1 0 0 0 0 0 0 0 0 1 

id Bit vector 

0 1 0 0 0 0 Boolean 
OR 

0 1 0 0 1 0 

0 1 1 0 0 0 

0 1 0 0 0 0 0 1 0 0 1 0 

0 1 1 0 1 0 

0 1 0 0 1 0 

0 1 0 0 1 1 

0 1 1 0 1 1 Count 1 bits 

4 

Synopsis should be small 

Approximate COUNT algorithm: logarithmic size bit vector 

Challenge 



Synopsis Diffusion over Rings 

A node is in ring i if it 
is i hops away from 
the base-station 

Broadcasts by nodes 
in ring i are received 
by neighbors in ring 
i-1  

Each node transmits 
once = optimal energy 
cost (same as Tree) 
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Ring 2 
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Localization 

Positioning with synchronized 
clock  

distance = 
travel time  x 
The speed of 
light 

Trilateration 



Accounting for the clock offset 

Satellites’ clocks are well synchronized 
Receiver clock is not synchronized. 
Need to estimate 4 unknowns 

(x, y, z, t) 
t is the clock offset of the receiver 

R: real distance, PSR : estimated distance 
R = PSR - t c  

  

Need 4 satellites  

Wide Area Augmentation System 

Error correction system that uses 
reference ground stations 
25 reference stations in US 
Monitor GPS and send correction values to 
two geo-stationary satellites 
The two geo-stationary satellites 
broadcast back to Earth on GPS L1 
frequency (1575.42MHz) 
Only available in North America, WASS 
enabled GPS receiver needed 

How good is WAAS? 

+ - 

3 
meter

s 

+-15 

meters 

With Selective Availability 
set to zero, and under 
ideal conditions, a GPS 
receiver without WAAS 
can achieve fifteen meter 
accuracy most of the 
time.* 

Under ideal conditions a 
WAAS equipped GPS 
receiver can achieve 
three meter accuracy 
95% of the time.* 

* Precision depends on good satellite geometry, open sky view, and no 
user induced errors. 
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WiFi Positioning System 

Exploit wide-scale WiFi deployment 
WiFi density increasing to point of overlap 

WiFi base stations broadcast unique IDs 
Position WiFi devices using a map of AP’s 
MAC to location 



Indoor localization system 

Usually more fine grained localization 
needed 

Often 3D (2.5D) : x,y and floor 
Often want to locate users in an office 

RADAR 
Trilateration based on signal strength from APs 
Hard to predict distance based on signal strength 
because signal is blocked by walls and structures 
Use site-surveying  

Lots of research has been done 
MIT Cricket (RF + ultrasound) 
AeroScout (WiFi), Ekahau (WiFi) 
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IP-Geography Mapping 

Goal: Infer the geographic location of an 
Internet host given its IP address. 
Why is this interesting? 

enables location-aware applications 
example applications: 

Territorial Rights Management  
Targeted Advertising 
Network Diagnostics 

Why is this hard? 
IP address does not inherently indicate location 
proxies hide client identity, limit visibility into ISPs 

Desirable features of a solution 
easily deployable, accuracy, confidence indicator 

IP2Geo 

Infer geo-location of IP based on various 
“properties” 

DNS names of routers often indicate location 
Network delay correlates with geographic distance 
Subnets are clustered 

Three techniques 
GeoTrack 
GeoPing 
GeoClusters 

IP2Geo Conclusions 

IP2Geo encompasses a diverse set of 
techniques 

GeoTrack: DNS names 
GeoPing: network delay 
GeoCluster: geographic clusters  

Median error 20-400 km 
GeoCluster also provides confidence indicator 

Each technique best suited for a different 
purpose 

GeoTrack: locating routers, tracing geographic path 
GeoPing: location determination for proximity-based 
routing (e.g., CoopNet) 
GeoCluster: best suited for location-based services 

Publications at SIGCOMM 2001 & USENIX 2002 
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GeoTrack 

Location info often embedded in router DNS 
names 

ngcore1-serial8-0-0-0.Seattle.cw.net, 
184.atm6-0.xr2.ewr1.alter.net 

GeoTrack operation 
do a traceroute to the target IP address 
determine location of last recognizable router along the path 

Key ideas in GeoTrack 
partitioned city code database to minimize chance of false 
match 
 ISP-specific parsing rules 
delay-based correction 

Limitations 
routers may not respond to traceroute 
 DNS name may not contain location information or lookup 
may fail 
 target host may be behind a proxy or a firewall 
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GeoPing 

Nearest Neighbor in Delay Space(NNDS) 
delay vector: delay measurements from a host to a 
fixed set of landmarks 
delay map: database of delay vectors and locations 
for a set of known hosts 
(50,45,20,35)  Indianapolis, IN 
(10,20,40,60)  Seattle, WA 
••• 
target location corresponds to best match in delay 
map  
optimal dimensionality of delay vector is 7-9 
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GeoCluster 

Basic Idea: identify geographic clusters 
partial IP-location database 

construct a database of the form (IPaddr, likely location) 
partial in coverage and potentially inaccurate   
sources: HotMail registration/login logs, TVGuide query logs 

cluster identification 
use prefix info. from BGP tables to identify topological 
clusters  
assign each cluster a location based on IP-location database 
do sub-clustering when no consensus on a cluster’s location 

location of target IP address is that of best matching 
cluster 

148 



L-24 Adaptive Applications 

149 

Revisit: Why is Automated 
Adaptation Hard? 

Must infer Internet performance 
Scalability 
Accuracy  
Tradeoff with timeliness 

Support for a variety of applications 
Different performance metrics 
API requirements 

Layered implementations hide information   
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State of the Art: IDMaps [Francis 
et al ‘99] 

A network distance prediction service 

Tracer 

Tracer 

Tracer 

HOPS Server 

A 

B 

50ms 

A/B 
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iPlane: Build a Structural Atlas of 
the Internet 

Use PlanetLab + public traceroute servers 
Over 700 geographically distributed vantage points 

Build an atlas of Internet routes 
Perform traceroutes to a random sample of BGP 
prefixes 
Cluster interfaces into PoPs 
Repeat daily from vantage points 
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Model for Path Prediction 

S 
D 

V2 (Rio) 

V1 (Seattle) 

(Portland) 
(Paris) 

V3 (Chicago) 

I Identify candidate paths 
by intersecting observed 

routes 

Choose candidate path 
that models Internet 

routing 

Actual path unknown 

V4 (Atlanta) 

I2 
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Multi-resolution Ring 
structure 

For the ith ring: 

 Inner Radius ri = si-1 

 Outer Radius Ri = si 

 is a constant 
s is multiplicative increase 

factor 
r0 = 0, R0 =  
Each node keeps track of finite 

rings 
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New Fundamental Concept: 
“Internet Position” 

Using GNP, every host can have an 
“Internet position” 

O(N) positions, as opposed to O(N2) distances 

Accurate network distance estimates can be 
rapidly computed from “Internet positions” 
“Internet position” is a local 
property that can be 
determined before  
applications need it 
Can be an interface  
for independent systems  
to interact 
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y 
(x2,y2,z2) 

x 

z 

(x1,y1,z1) 

(x3,y3,z3) 
(x4,y4,z4) 

Landmark Operations  
(Basic Design) 

Measure inter-Landmark distances 
Use minimum of several round-trip time (RTT) samples 

Compute coordinates by minimizing the 
discrepancy between measured distances and 
geometric distances 

Cast as a generic multi-dimensional minimization problem, 
solved by a central node 

156 

y 

x 

Internet 

(x2,y2) 

(x1,y1) 

(x3,y3) 

L1 

L2 

L3 

L1 

L2 

L3 



Ordinary Host Operations  
(Basic Design) 

Each host measures its distances to all the Landmarks 
Compute coordinates by minimizing the discrepancy 
between measured distances and geometric distances 

Cast as a generic multi-dimensional minimization problem, solved by 
each host 
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x 

Internet 

(x4,y4) 

L1 

L2 

L3 

y (x2,y2) 

(x1,y1) 

(x3,y3) 

L2 

L1 

L3 

Why the Difference? 

IDMaps overpredicts 

IDMaps 
GNP (1-dimensional model) 

158 

Multi-resolution Ring 
structure 

For the ith ring: 

 Inner Radius ri = si-1 

 Outer Radius Ri = si 

 is a constant 
s is multiplicative increase 

factor 
r0 = 0, R0 =  
Each node keeps track of finite 

rings 

159 
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L-25 Cluster Computing 

GFS: Architecture 

One master server (state replicated on 
backups) 
Many chunk servers (100s – 1000s) 

Spread across racks; intra-rack b/w greater than 
inter-rack 
Chunk: 64 MB portion of file, identified by 64-bit, 
globally unique ID 

Many clients accessing same and different 
files stored on same cluster 

162 

GFS: Architecture (2) 
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Master Server 

Holds all metadata: 
Namespace (directory hierarchy) 
Access control information (per-file) 
Mapping from files to chunks 
Current locations of chunks (chunkservers) 

Delegates consistency management 
Garbage collects orphaned chunks 
Migrates chunks between chunkservers 
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Holds all metadata in RAM; very fast 
operations on file system metadata 



Client Read 

Client sends master: 
read(file name, chunk index) 

Master’s reply: 
chunk ID, chunk version number, locations of replicas 

Client sends “closest” chunkserver w/
replica: 

read(chunk ID, byte range) 
“Closest” determined by IP address on simple rack-
based network topology 

Chunkserver replies with data 
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Client Write (2) 
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Client Record Append 

Google uses large files as queues between 
multiple producers and consumers 
Same control flow as for writes, except… 
Client pushes data to replicas of last chunk 
of file 
Client sends request to primary 
Common case: request fits in current last 
chunk: 

Primary appends data to own replica 
Primary tells secondaries to do same at same byte 
offset in theirs 
Primary replies with success to client 
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GFS: Consistency Model (2) 

Changes to data are ordered as chosen by 
a primary 

All replicas will be consistent 
But multiple writes from the same client may 
be interleaved or overwritten by concurrent 
operations from other clients 

Record append completes at least once, at 
offset of GFS’s choosing 

Applications must cope with possible duplicates 
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What If the Master Reboots? 

Replays log from disk 
Recovers namespace (directory) information 
Recovers file-to-chunk-ID mapping 

Asks chunkservers which chunks they hold 
Recovers chunk-ID-to-chunkserver mapping 

If chunk server has older chunk, it’s stale 
Chunk server down at lease renewal 

If chunk server has newer chunk, adopt its 
version number 

Master may have failed while granting lease 
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What if Chunkserver Fails? 

Master notices missing heartbeats 
Master decrements count of replicas for all 
chunks on dead chunkserver 
Master re-replicates chunks missing replicas 
in background 

Highest priority for chunks missing greatest number 
of replicas 
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GFS: Summary 

Success: used actively by Google to support 
search service and other applications 

Availability and recoverability on cheap hardware 
High throughput by decoupling control and data 
Supports massive data sets and concurrent appends 

Semantics not transparent to apps 
Must verify file contents to avoid inconsistent 
regions, repeated appends (at-least-once 
semantics) 

Performance not good for all apps 
Assumes read-once, write-once workload (no client 
caching!) 
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MapReduce Programming Model 

Input & Output: sets of <key, value> 
pairs 
Programmer writes 2 functions: 
map (in_key, in_value)  list(out_key, 
intermediate_value) 

Processes <k,v> pairs 
Produces intermediate pairs 

 reduce (out_key, list(interm_val))     
 list(out_value) 

Combines intermediate values for a key 
Produces a merged set of outputs (may be also 
<k,v> pairs) 
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MapReduce: Example 
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MapReduce in Parallel: Example 
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MapReduce: Execution overview 
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BigTable: Basic Data Model 

A BigTable is a sparse, distributed 
persistent multi-dimensional sorted map 
(row, column, timestamp)  cell contents 

Good match for most Google applications 

176 



Table 

Multiple tablets make up the table 
SSTables can be shared 
Tablets do not overlap, SSTables can overlap 

SSTable SSTable SSTable SSTable 

Tablet 

aardvark apple 

Tablet 

apple_two_E boat 
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Tablet Location 

Since tablets move around from server to 
server, given a row, how do clients find the 
right machine? 

Need to find tablet whose row range covers the target 
row 
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Chubby 

{lock/file/name} service 
Coarse-grained locks, can store small 
amount of data in a lock 
5 replicas, need a majority vote to be active 
Also an OSDI ’06 Paper 
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Master’s Tasks 

Use Chubby to monitor health of tablet 
servers, restart failed servers 

Tablet server registers itself by getting a lock in a 
specific directory chubby 

Chubby gives “lease” on lock, must be renewed 
periodically 
Server loses lock if it gets disconnected 

Master monitors this directory to find which 
servers exist/are alive 

If server not contactable/has lost lock, master grabs lock 
and reassigns tablets 
GFS replicates data. Prefer to start tablet server on same 
machine that the data is already at 
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Master’s Tasks (Cont) 

When (new) master starts 
grabs master lock on chubby  

Ensures only one master at a time 

Finds live servers (scan chubby directory) 
Communicates with servers to find assigned tablets 
Scans metadata table to find all tablets 

Keeps track of unassigned tablets, assigns them 
Metadata root from chubby, other metadata tablets 
assigned before scanning. 
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L-26 Cluster Computer 
(borrowed from Randy Katz, UCB) 

Energy Proportional Computing 

184 

Figure 2. Server power usage and energy efficiency at varying utilization levels, from idle to  
peak performance. Even an energy-efficient server still consumes about half its full power 
when doing virtually no work. 

“The Case for  
Energy-Proportional  
Computing,” 
Luiz André Barroso, 
Urs Hölzle, 
IEEE Computer 
December 2007  Doing nothing well … 

NOT! 



Energy Proportional Computing 
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Figure 1. Average CPU utilization of more than 5,000 servers during a six-month period. Servers  
are rarely completely idle and seldom operate near their maximum utilization, instead operating  
most of the time at between 10 and 50 percent of their maximum 

It is surprisingly hard 
to achieve high levels 
of utilization of typical  
servers (and your home 
PC or laptop is even  
worse) 

“The Case for  
Energy-Proportional  
Computing,” 
Luiz André Barroso, 
Urs Hölzle, 
IEEE Computer 
December 2007  

Spin-down Disk Model 

Not 

Spinning 
Spinning 

& Ready 

Spinning 

& Access 

Spinning 

& Seek 
Spinning 

up 

Spinning 

down 

Request 

Trigger: 
request or  
predict 

Predictive 

.2W 
.65-1.8W 

2W 
2.3W 4.7W 

Inactivity Timeout  
threshold* 

Disk Spindown 

Disk Power Management – Oracle (off-line) 

Disk Power Management – Practical scheme 
(on-line) 
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access1 
access2 

IdleTime > BreakEvenTime 

Idle for  

BreakEvenTime Wait time 

Source: from the presentation slides of the authors 

Spin-Down Policies 

Fixed Thresholds 
Tout = spin-down cost s.t. 2*Etransition = Pspin*Tout 

Adaptive Thresholds: Tout = f (recent 
accesses) 

Exploit burstiness in Tidle 

Minimizing Bumps (user annoyance/latency) 
Predictive spin-ups 

Changing access patterns (making 
burstiness) 

Caching 
Prefetching 



Thermal Image of Typical Cluster 
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Rack 
Switch 

M. K. Patterson, A. Pratt, P. Kumar,  
“From UPS to Silicon: an end-to-end evaluation of datacenter efficiency”, Intel Corporation 

Datacenter Power Efficiencies 

Power conversions in server 
Power supply (<80% efficiency) 
Voltage regulation modules (80% common) 
Better available (95%) and inexpensive 

Simple rules to minimize power distribution 
losses in priority order 
1. Avoid conversions (indirect UPS or no UPS) 
2. Increase efficiency of conversions 
3. High voltage as close to load as possible 
4. Size board voltage regulators to load and use high quality 
5. Direct Current small potential win (but regulatory issues) 

Two interesting approaches: 
480VAC to rack and 48VDC (or 12VDC) within rack 
480VAC to PDU and 277VAC (1 leg of 480VAC 3-phase 
distribution) to each server 
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James Hamilton, Amazon

Google 1U + UPS 
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Why built-in batteries? 

Building the power supply into the server is 
cheaper and means costs are matched 
directly to the number of servers 
Large UPSs can reach 92 to 95 percent 
efficiency vs. 99.9 percent efficiency for 
server mounted batteries 
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L-27 Social Networks and Other Stuff 

Background: Sybil Attack 

Sybil attack: Single user 
pretends many fake/sybil 
identities 

Creating multiple accounts 
from different IP addresses 

Sybil identities can 
become a large fraction 
of all identities  

Out-vote honest users in 
collaborative tasks 

launch 
sybil 
attack 

honest 

malicious 
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SybilGuard Basic Insight 

honest 
nodes 

sybil 
nodes 

Dis-proportionally 
small cut 
disconnecting a large 
number of identities  

But cannot search for 
such cut brute-
force… 
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Random 1 to 1 mapping between  
incoming edge and outgoing edge 

Random Route: Convergence 

Using routing table gives Convergence 
Property 

Routes merge if crossing the same edge 
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a  d 

b  a 

c  b 

d  c 

d  e 

e  d 

f   f 

a 

b 

c 

d e 

f 

randomized  
routing table 

Random Route: Back-traceable 

Using 1-1 mapping gives Back-traceable 
Property  

Routes may be back-traced 
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a  d 

b  a 

c  b 

d  c 

d  e 

e  d 

f   f 

a 

b 

c 

d e 

f 

If we know the 
route traverses 
edge e, then we 
know the whole 
route 

Random Route Intersection:  
Honest Nodes 

Verifier accepts 
a suspect if the 
two routes 
intersect 

Route length w: 

W.h.p., verifier’s 
route stays within 
honest region 
W.h.p., routes 
from two honest 
nodes intersect sybil nodes honest nodes 

Verifier 

Suspect 
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~ n logn


