
Final Review

2

L-14 Security

3

Important Lessons - Security

Internet design and growth security
challenges
Symmetric (pre-shared key, fast) and
asymmetric (key pairs, slow) primitives
provide:

Confidentiality
Integrity
Authentication

“Hybrid Encryption” leverages strengths of
both.
Great complexity exists in securely acquiring
keys.
Crypto is hard to get right, so use tools from
others, don’t design your own (e.g. TLS).

4

Two ways to cut a table (ACM)

Order by columns (ACL) or rows (Capability
Lists)?

ACLs

Capability

File1 File2 File3

Ann rx r rwx

Bob rwxo r --

Charlie rx rwo w

5

ACL:Default Permission and
Abbreviation

Example: UNIX
Three classes of users: owner, group, all others

6
6

Capabilities and Attribute Certificates
(2)

Generation of a restricted capability
from an owner capability.

7

Delegation (2)

Using a proxy to delegate and prove ownership
of access rights.

8

Sybil Attack undermines assumed
mapping between identity to entity

and hence number of faulty
entities

A Sybil attack is the forging of multiple
identities for malicious intent -- having a set of
faulty entities represented through a larger set
of identities.
The purpose of such an attack is to
compromise a disproportionate share of a
system.
Result is overthrowing of any assumption of
designed reliably based on a limited proportion
of faulty entities.

9 10

L-15 Fault Tolerance

11

Important Lessons

Terminology & Background
Failure models

Byzantine Fault Tolerance
Protocol design with and without crypto
How many servers do we need to tolerate

Issues in client/server
Where do all those RPC failure semantics come from?

Reliable group communication
How do we manage group membership changes as
part of reliable multicast

12

Failure Models

A system is said to fail if it cannot meet its
promises. An error on the part of a
system’s state may lead to a failure. The
cause of an error is called a fault.

13

Failure Masking by Redundancy

Triple modular redundancy. For each voter, if two or three of
the inputs are the same, the output is equal to the input. If all
three inputs are different, the output is undefined.

14

Impossibility Results

No solution for three processes can handle a single traitor.

In a system with m faulty processes agreement can be
achieved only if there are 2m+1 (more than 2/3) functioning
correctly.

Lamport, Shostak, Pease. The Byzantine General’s Problem. ACM TOPLAS, 4,3, July 1982, 382-401.

General 1

General 2 General 3

General 1

General 2 General 3

attack attack attack retreat

retreat
retreat

15

Byzantine General Problem
Example - 1

Phase 1: Generals announce their troop
strengths to each other

P1 P2

P3 P4

1

1
1

16

Byzantine General Problem
 Example - 2

Phase 1: Generals announce their troop
strengths to each other

P1 P2

P3 P4

2

2 2

17

Byzantine General Problem
Example - 3

Phase 1: Generals announce their troop
strengths to each other

P1 P2

P3 P4

4 4

4

18

Byzantine General Problem
Example - 4

Phase 2: Each general construct a vector with
all troops

P1 P2 P3 P4

1 2 x 4

P1 P2

P3 P4

y x

z

P1 P2 P3 P4

1 2 y 4

P1 P2 P3 P4

1 2 z 4

19

Byzantine General Problem
Example - 5

Phase 3,4: Generals send their vectors to each
other and compute majority voting

P1 P2 P3 P4

1 2 y 4

a b c d

1 2 z 4

P1 P2

P3 P4

(e, f, g, h)

(a, b, c, d)

(h, i, j, k)

P1 P2 P3 P4

1 2 x 4

e f g h

1 2 z 4

P1 P2 P3 P4

1 2 x 4

1 2 y 4

h i j k

P2

P3

P4

P1

P3

P4

P1

P2

P3

(1, 2, ?, 4)

(1, 2, ?, 4)

(1, 2, ?, 4) 20

Signed messages

Lamport, Shostak, Pease. The Byzantine General’s Problem. ACM TOPLAS, 4,3, July 1982, 382-401.

General

Lieutenant 1 Lieutenant 2

General

Lieutenant 1 Lieutenant 2

attack:0 attack:0 attack:0 retreat:0

attack:0:1

SM(1) with one traitor

retreat:0:2

attack:0:1

???

21

Server Crashes (3)

Consider scenario where a client sends text
to a print server.
There are three events that can happen at
the server:

Send the completion message (M),
Print the text (P),
Crash (C) – at recovery, send ‘recovery’ message to
clients.

Server strategies:
send completion message before printing
send completion message after printing

22

Server Crashes (4)

These events can occur in six different orderings:

1. M P C: A crash occurs after sending the
completion message and printing the text.

2. M C (P): A crash happens after sending the
completion message, but before the text could be
printed.

3. P M C: A crash occurs after sending the
completion message and printing the text.

4. P C(M): The text printed, after which a crash
occurs before the completion message could be sent.

5. C (P M): A crash happens before the server could
do anything.

6. C (M P): A crash happens before the server could
do anything.

23

Server Crashes (6)

Different combinations of client and server
strategies in the presence of server crashes.

24

Client Crashes

Can create orphans (unwanted computations)
that waste CPU, potentially lock up resources
and create confusion when client re-boots.
Nelson solutions:
1. Orphan Extermination – keep a log of RPCs at client that

is checked at re-boot time to remove orphans.
2. Reincarnation – divide time into epochs. After a client re-

boot, increment its epoch and kill off any of its requests
belonging to an earlier epoch.

3. Gentle Reincarnation – at reboot time, an epoch
announcement causes all machines to locate the owners
of any remote computations.

4. Expiration – each RPC is given time T to complete (but a
live client can ask for more time)

Nelson. Remote Procedure Call. Ph.D. Thesis, CMU, 1981.
25

View-synchronous group communication

p

q

r

p crashes

view (q, r)view (p, q, r)

p

q

r

p crashes

view (q, r)view (p, q, r)

a (allowed). b (allowed).

p

q

r

view (p, q, r)

p

q

r

p crashes

view (q, r)view (p, q, r)

c (disallowed). d (disallowed).

p crashes

view (q, r)

26

Virtual Synchrony (2)

27

Virtual Synchrony
Implementation: Example

Gi = {P1, P2, P3, P4, P5}

P5 fails

P1 detects that P5 has
failed

P1 send a “view change”
message to every process
in Gi+1 = {P1, P2, P3, P4}

P1

P2 P3

P4

P5

change view

28

Virtual Synchrony
Implementation: Example

Every process
Send each unstable
message m from Gi to
members in Gi+1

Marks m as being stable
Send a flush message to
mark that all unstable
messages have been
sent

P1

P2 P3

P4

P5

unstable message

flush

message

29

Virtual Synchrony
Implementation: Example

Every process
After receiving a flush
message from any
process in Gi+1 installs
Gi+1

P1

P2 P3

P4

P5

30

31

L-16 Transactions

32

Transactions –
The ACID Properties

Are the four desirable properties for reliable handling of
concurrent transactions.
Atomicity

The “All or Nothing” behavior.
C: stands for either

Concurrency: Transactions can be executed concurrently
… or Consistency: Each transaction, if executed by itself,
maintains the correctness of the database.

Isolation (Serializability)
Concurrent transaction execution should be equivalent
(in effect) to a serialized execution.

Durability
Once a transaction is done, it stays done.

33

Transaction life histories

openTransaction() trans;
starts a new transaction and delivers a unique TID trans. This identifier will be
used in the other operations in the transaction.

closeTransaction(trans) (commit, abort);
ends a transaction: a commit return value indicates that the transaction has
committed; an abort return value indicates that it has aborted.

abortTransaction(trans);
aborts the transaction.

34

Successful Aborted by client Aborted by server

openTransaction openTransaction openTransaction

operation operation operation

operation operation operation

server aborts

transaction

operation operation operation ERROR

reported to client

closeTransaction abortTransaction

Need for serializable execution

Data manager interleaves operations to improve concurrency

 DB: R1(X) R2(X) W2(X) R1(Y) W1(X) W2(Y) commit1 commit2

 T
1
: R1(X) R1(Y) W1(X) commit1

 T
2
: R2(X) W2(X) W2(Y) commit2

35

Non serializable execution

Problem: transactions may “interfere”. Here, T2 changes x, hence T1 should have

either run first (read and write) or after (reading the changed value).

Unsafe! Not serializable

 DB: R1(X) R2(X) W2(X) R1(Y) W1(X) W2(Y) commit2 commit1

 T
1
: R1(X) R1(Y) W1(X) commit1

 T
2
: R2(X) W2(X) W2(Y) commit2

36

Serializable execution

Data manager interleaves operations to improve concurrency but schedules them so that

it looks as if one transaction ran at a time. This schedule “looks” like T2 ran first.

 DB: R2(X) W2(X) R1(X) W1(X) W2(Y) R1(Y) commit2 commit1

 T
1
: R1(X) R1(Y) W1(X) commit1

 T
2
: R2(X) W2(X) W2(Y) commit2

37

What about the locks?

Unlike other kinds of distributed systems,
transactional systems typically lock the data
they access
They obtain these locks as they run:

Before accessing “x” get a lock on “x”
Usually we assume that the application knows
enough to get the right kind of lock. It is not
good to get a read lock if you’ll later need to
update the object

In clever applications, one lock will often
cover many objects

38

39

Strict Two-Phase Locking (2)

Strict two-phase locking.

40

Lock compatibility

For one object Lock requested
read write

Lock already set none OK OK

read OK wait

write wait wait

Operation Conflict rules:
1. If a transaction T has already performed a read operation on a

particular object, then a concurrent transaction U must not write
that object until T commits or aborts

2. If a transaction T has already performed a read operation on a
particular object, then a concurrent transaction U must not read
or write that object until T commits or aborts

41

The wait-for graph

B

A

Waits for

Held by

Held by

T UU T

Waits for

Dealing with Deadlock in
two-phase locking

Deadlock prevention
Acquire all needed locks in a single atomic operation
Acquire locks in a particular order

Deadlock detection
Keep graph of locks held. Check for cycles
periodically or each time an edge is added
Cycles can be eliminated by aborting transactions

Timeouts
Aborting transactions when time expires

42

Contrast: Timestamped approach

Using a fine-grained clock, assign a “time”
to each transaction, uniquely. E.g. T1 is at
time 1, T2 is at time 2
Now data manager tracks temporal history
of each data item, responds to requests as
if they had occured at time given by
timestamp
At commit stage, make sure that commit is
consistent with serializability and, if not,
abort

43

Contrast: Timestamped approach

Using a fine-grained clock, assign a “time”
to each transaction, uniquely. E.g. T1 is at
time 1, T2 is at time 2
Now data manager tracks temporal history
of each data item, responds to requests as
if they had occured at time given by
timestamp
At commit stage, make sure that commit is
consistent with serializability and, if not,
abort

44

Two Phase Commit Protocol - 6

Recovery
‘Wait’ in Coordinator – use a time-out mechanism to detect
participant crashes. Send GLOBAL_ABORT
‘Init’ in Participant – Can also use a time-out and send
VOTE_ABORT
‘Ready’ in Participant P – abort is not an option (since already
voted to COMMIT and so coordinator might eventually send
GLOBAL_COMMIT). Can contact another participant Q and
choose an action based on its state.

45

State of Q Action by P

COMMIT Transition to COMMIT

ABORT Transition to ABORT

INIT Both P and Q transition to ABORT

(Q sends VOTE_ABORT)

READY Contact more participants. If all participants are ‘READY’, must wait

for coordinator to recover

46

Three Phase Commit protocol - 1

Problem with 2PC
If coordinator crashes, participants cannot reach a
decision, stay blocked until coordinator recovers

Three Phase Commit3PC
There is no single state from which it is possible to
make a transition directly to either COMMIT or ABORT
states
There is no state in which it is not possible to make a
final decision, and from which a transition to COMMIT
can be made

47

Three-Phase Commit protocol - 2

a) Finite state machine for the coordinator in 3PC
b) Finite state machine for a participant

Three Phase Commit Protocol - 3

Recovery
‘Wait’ in Coordinator – same
‘Init’ in Participant – same
‘PreCommit’ in Coordinator – Some participant has crashed but
we know it wanted to commit. GLOBAL_COMMIT the application
knowing that once the participant recovers, it will commit.
‘Ready’ or ‘PreCommit’ in Participant P – (i.e. P has voted to
COMMIT)

48

State of Q Action by P

PRECOMMIT Transition to PRECOMMIT. If all participants

in PRECOMMIT, if majority in PRECOMMIT

can COMMIT the transaction

ABORT Transition to ABORT

INIT Both P (in READY) and Q transition to ABORT

(Q sends VOTE_ABORT)

READY Contact more participants. If can contact a

majority and they are in ‘Ready’, then ABORT

the transaction.

If the participants contacted in ‘PreCommit’ it

is safe to COMMIT the transaction

Note: if any participant
is in state PRECOMMIT,
it is impossible for any
other participant to be in
any state other than READY
or PRECOMMIT.

49

L-17 Distributed File Systems

50

Wrap up: Design Issues

Name space
Authentication
Caching
Consistency
Locking

51

NFS V2 Design

“Dumb”, “Stateless” servers
Smart clients
Portable across different OSs
Immediate commitment and idempotency of
operations
Low implementation cost
Small number of clients
Single administrative domain

52

Stateless File Server?

Statelessness
Files are state, but...
Server exports files without creating extra state

No list of “who has this file open” (permission check on
each operation on open file!)
No “pending transactions” across crash

Results
Crash recovery is “fast”

Reboot, let clients figure out what happened

Protocol is “simple”

State stashed elsewhere
Separate MOUNT protocol
Separate NLM locking protocol

53

NFS V2 Operations

V2:
NULL, GETATTR, SETATTR
LOOKUP, READLINK, READ
CREATE, WRITE, REMOVE, RENAME
LINK, SYMLINK
READIR, MKDIR, RMDIR
STATFS (get file system attributes)

54

AFS Assumptions

Client machines are un-trusted
Must prove they act for a specific user

Secure RPC layer

Anonymous “system:anyuser”

Client machines have disks(!!)
Can cache whole files over long periods

Write/write and write/read sharing are rare
Most files updated by one user, on one machine

55

Topic 1: Name-Space
Construction and Organization

NFS: per-client linkage
Server: export /root/fs1/
Client: mount server:/root/fs1 /fs1 fhandle

AFS: global name space
Name space is organized into Volumes

Global directory /afs;
/afs/cs.wisc.edu/vol1/…; /afs/cs.stanford.edu/vol1/…

Each file is identified as fid = <vol_id, vnode #,
uniquifier>
All AFS servers keep a copy of “volume location
database”, which is a table of vol_id server_ip
mappings

56

Topic 2: User Authentication and
Access Control

User X logs onto workstation A, wants to
access files on server B

How does A tell B who X is?
Should B believe A?

Choices made in NFS V2
All servers and all client workstations share the same
<uid, gid> name space B send X’s <uid,gid> to A

Problem: root access on any client workstation can lead
to creation of users of arbitrary <uid, gid>

Server believes client workstation unconditionally
Problem: if any client workstation is broken into, the
protection of data on the server is lost;
<uid, gid> sent in clear-text over wire request packets
can be faked easily

57

A Better AAA System: Kerberos

Basic idea: shared secrets
User proves to KDC who he is; KDC generates shared
secret between client and file server

58

client

ticket server
generates S

“N
ee

d to
 ac

ce
ss

fs”

Kclie
nt
[S

] file server K
fs[S]

S: specific to {client,fs} pair;
“short-term session-key”; expiration time (e.g. 8 hours)

KDC

encrypt S with
client’s key

AFS ACLs

Apply to directory, not to file
Format:

sseshan rlidwka
srini@cs.cmu.edu rl
sseshan:friends rl

Default realm is typically the cell name
(here andrew.cmu.edu)
Negative rights

Disallow “joe rl” even though joe is in sseshan:friends

59

Topic 3: Client-Side Caching

Why is client-side caching necessary?
What is cached

Read-only file data and directory data easy
Data written by the client machine when is data
written to the server? What happens if the client
machine goes down?
Data that is written by other machines how to
know that the data has changed? How to ensure data
consistency?
Is there any pre-fetching?

60

Client Caching in NFS v2

Cache both clean and dirty file data and file
attributes
File attributes in the client cache expire after
60 seconds (file data doesn’t expire)
File data is checked against the modified-time
in file attributes (which could be a cached copy)

Changes made on one machine can take up to 60 seconds
to be reflected on another machine

Dirty data are buffered on the client machine
until file close or up to 30 seconds

If the machine crashes before then, the changes are lost
Similar to UNIX FFS local file system behavior

61

Implication of NFS v2 Client
Caching

Data consistency guarantee is very poor
Simply unacceptable for some distributed applications
Productivity apps tend to tolerate such loose
consistency

Different client implementations implement
the “prefetching” part differently
Generally clients do not cache data on local
disks

62

Client Caching in AFS v2

Client caches both clean and dirty file data
and attributes

The client machine uses local disks to cache data
When a file is opened for read, the whole file is
fetched and cached on disk

Why? What’s the disadvantage of doing so?

However, when a client caches file data, it
obtains a “callback” on the file
In case another client writes to the file, the
server “breaks” the callback

Similar to invalidations in distributed shared memory
implementations

Implication: file server must keep state!

63

Semantics of File Sharing

Four ways of dealing with the shared files in
a distributed system.

64

Session Semantics in AFS v2

What it means:
A file write is visible to processes on the same box
immediately, but not visible to processes on other
machines until the file is closed
When a file is closed, changes are visible to new
opens, but are not visible to “old” opens
All other file operations are visible everywhere
immediately

Implementation
Dirty data are buffered at the client machine until file
close, then flushed back to server, which leads the
server to send “break callback” to other clients

65

File Locking (3)

The result of an open operation with share
reservations in NFS When the client requests a
denial state given the current file access state.

66

Failure recovery

What if server fails?
Lock holders are expected to re-establish the locks
during the “grace period”, during which no other locks
are granted

What if a client holding the lock fails?
What if network partition occurs?
NFS relies on “network status monitor” for
server monitoring

67 68

L-18 More DFS

Hardware Model

CODA and AFS assume that client
workstations are personal computers
controlled by their user/owner

Fully autonomous
Cannot be trusted

CODA allows owners of laptops to operate
them in disconnected mode

Opposite of ubiquitous connectivity

70

Pessimistic Replica Control

Would require client to acquire exclusive
(RW) or shared (R) control of cached
objects before accessing them in
disconnected mode:

Acceptable solution for voluntary disconnections
Does not work for involuntary disconnections

What if the laptop remains disconnected for
a long time?

71

Leases

We could grant exclusive/shared control of
the cached objects for a limited amount of
time
Works very well in connected mode

Reduces server workload
Server can keep leases in volatile storage as long as
their duration is shorter than boot time

Would only work for very short
disconnection periods

72

Optimistic Replica Control (I)

Optimistic replica control allows access
in every disconnected mode

Tolerates temporary inconsistencies
Promises to detect them later
Provides much higher data availability

73

Coda (Venus) States

1. Hoarding:
Normal operation mode

2. Emulating:
Disconnected operation mode

3. Reintegrating:
Propagates changes and detects inconsistencies

Hoarding

Emulating Recovering

74

Reintegration

When workstation gets reconnected, Coda
initiates a reintegration process

Performed one volume at a time
Venus ships replay log to all volumes
Each volume performs a log replay algorithm

Only care write/write confliction
Succeed?

Yes. Free logs, reset priority
No. Save logs to a tar. Ask for help

75

Performance

Duration of Reintegration
A few hours disconnection 1 min
But sometimes much longer

Cache size
100MB at client is enough for a “typical” workday

Conflicts
No Conflict at all! Why?
Over 99% modification by the same person
Two users modify the same obj within a day:
<0.75%

76

Working on slow networks

Make local copies
Must worry about update conflicts

Use remote login
Only for text-based applications

Use instead a LBFS
Better than remote login
Must deal with issues like auto-saves blocking the
editor for the duration of transfer

77

LBFS design

Provides close-to-open consistency
Uses a large, persistent file cache at client

Stores clients working set of files

LBFS server divides file it stores into chunks
and indexes the chunks by hash value
Client similarly indexes its file cache
Exploits similarities between files

LBFS never transfers chunks that the recipient already
has

78

Indexing

Uses the SHA-1 algorithm for hashing
It is collision resistant

Central challenge in indexing file chunks is
keeping the index at a reasonable size while
dealing with shifting offsets

Indexing the hashes of fixed size data blocks
Indexing the hashes of all overlapping blocks at all
offsets

79

Effects of edits on file chunks

Chunks of file before/after edits
Grey shading show edits

Stripes show 48byte regions with magic hash
values creating chunk boundaries

80

81

L-19 P2P

What’s out there?

Central Flood Super-
node flood

Route

Whole

File

Napster Gnutella Freenet

Chunk

Based

BitTorrent KaZaA
(bytes, not
chunks)

DHTs

83

Napster: Publish

I have X, Y, and Z!

Publish

insert(X,

 123.2.21.23)
...

123.2.21.23

84

Napster: Search

Where is file A?

Query Reply

search(A)

-->
123.2.0.18 Fetch

123.2.0.18

85

I have file A.

I have file A.

Gnutella: Search

Where is file A?

Query

Reply

86

KaZaA: File Insert

I have X!

Publish

insert(X,

 123.2.21.23)
...

123.2.21.23

87

KaZaA: File Search

Where is file A?

Query

search(A)

-->
123.2.0.18

search(A)

-->
123.2.22.50

Replies

123.2.0.18

123.2.22.50

88

BitTorrent: Publish/Join

Tracker

89

BitTorrent: Fetch

90

DHT: Consistent Hashing

N32

N90

N105

K80

K20

K5

Circular ID space

Key 5
Node 105

A key is stored at its successor: node with next higher ID

91

DHT: Chord “Finger Table”

N80

1/2 1/4

1/8

1/16
1/32
1/64
1/128

• Entry i in the finger table of node n is the first node that
succeeds or equals n + 2i

• In other words, the ith finger points 1/2n-i way around the
ring

92

DHT: Chord Join

Nodes n0, n6 join

0

1

2

3
4

5

6

7

i id+2
i
succ

0 2 2

1 3 6
2 5 6

Succ. Table

i id+2
i
succ

0 3 6

1 4 6
2 6 6

Succ. Table

i id+2
i
succ

0 1 1

1 2 2
2 4 0

Succ. Table

i id+2
i
succ

0 7 0

1 0 0
2 2 2

Succ. Table

93

DHT: Chord Join

Nodes:
n1, n2, n0, n6

Items:
f7, f2

0

1

2

3
4

5

6

7 i id+2
i
succ

0 2 2

1 3 6
2 5 6

Succ. Table

i id+2
i
succ

0 3 6

1 4 6
2 6 6

Succ. Table

i id+2
i
succ

0 1 1

1 2 2
2 4 0

Succ. Table

7

Items

1

Items

i id+2
i
succ

0 7 0

1 0 0
2 2 2

Succ. Table

94

DHT: Chord Routing
Upon receiving a query
for item id, a node:
Checks whether stores
the item locally
If not, forwards the
query to the largest
node in its successor
table that does not
exceed id

0

1

2

3
4

5

6

7 i id+2
i
succ

0 2 2

1 3 6
2 5 6

Succ. Table

i id+2
i
succ

0 3 6

1 4 6
2 6 6

Succ. Table

i id+2
i
succ

0 1 1

1 2 2
2 4 0

Succ. Table

7

Items

1

Items

i id+2
i
succ

0 7 0

1 0 0
2 2 2

Succ. Table

query(7)

95 96

Resolution

Service

Flat Names Example

<A HREF=

http://f012012/pub.pdf

>here is a paper

HTTP GET: /docs/

pub.pd
f

10.1.2.3

/docs/

20.2.4.6

HTTP GET: /~user/pubs/

pub.pdf

(10.1.2.3,80,
/docs/)

(20.2.4.6,80,
/~user/pubs/)

/~user/pubs/

• SID abstracts all object reachability information

• Objects: any granularity (files, directories)

• Benefit: Links (referrers) don’t break
Domain H

Domain Y

P2P-enabled Applications:
Self-Certifying Names

Name = Hash(pubkey, salt)

Value = <pubkey, salt, data, signature>
can verify name related to pubkey and pubkey signed
data

Can receive data from caches or other 3rd
parties without worry

much more opportunistic data transfer

97 98

CFS

signature

public key

Root Block

D

Directory

Block

H(D)

F

H(F)

File Block

B1 B2

Data Block Data Block

H(B1)
H(B2)

99

L-20 Multicast

101

IP Multicast Architecture

Hosts

Routers

Service model

Host-to-router protocol

(IGMP)

Multicast routing protocols

(various)

102

Multicast – Efficient Data
Distribution

Src Src

103

Multicast Scope Control – Small
TTLs

TTL expanding-ring search to reach or find a
nearby subset of a group

s

1

2

3

104

Prune

G G

S

Prune (s,g)

Prune (s,g)

G

105

R1

Implosion

S

R3 R4

R2

2 1

R1

S

R3 R4

R2

Packet 1 is lost All 4 receivers request a resend

Resend request

106

R1

Exposure

S

R3 R4

R2

2 1

R1

S

R3 R4

R2

Packet 1 does not reach R1;

Receiver 1 requests a resend
Packet 1 resent to all 4 receivers

1

1

Resend request
Resent packet

107

R1

SRM Request Suppression

S

R3

R2

2 1

R1

S

R3

R2

Packet 1 is lost; R1 requests

resend to Source and Receivers

Packet 1 is resent; R2 and R3 no

longer have to request a resend

1

X

X
Delay varies

by distance

X

Resend request Resent packet

108

Deterministic Suppression

d

d

d

d

3d

Time

data

nack repair

d

4d

d

2d

3d

= Sender

= Repairer

= Requestor

Delay = C1 dS,R

109

SRM: Stochastic Suppression

data d

d

d

d

Time

NACK

repair

2d

session msg

0

1

2

3

Delay = U[0,D2] dS,R

= Sender

= Repairer

= Requestor

110

Multicast Congestion Control

What if receivers
have very
different
bandwidths?
Send at max?
Send at min?
Send at avg?

R

R

R

S

???Mb/s

100Mb/s

100Mb/s

1Mb/s

1Mb/s

56Kb/s

R

111

Layered Media Streams

S R

R1
R2

R3

R 10Mbps

10Mbps

512Kbps

128Kbps

10Mbps

R3 joins layer 1,

fails at layer 2

R2 join layer 1,

join layer 2

fails at layer 3

R1 joins layer 1,

joins layer 2

joins layer 3

112

Join Experiments

1

2

3

4

Time

Layer

113

Supporting Multicast on the
Internet

IP

Application

Internet architecture

Network

?

?

At which layer should
multicast be
implemented?

114

IP Multicast

CMU

Berkeley

MIT

UCSD

routers

end systems

multicast flow

Highly efficient
Good delay

115

End System Multicast

MIT1

MIT2

CMU1

CMU2

UCSD

MIT1

MIT2

CMU2

Overlay Tree
Berkeley

CMU1

CMU

Berkeley

MIT

UCSD

Publish/Subscribe

Publish/Subscribe

Service

Want

champions

league football

news

Want

weather

news for
Lancaster

REAL MADRID

4-2 MARSEILLE

Publication

Weather Lancaster :

sunny intervals

min 11°C max 20°C

Publisher Want Traffic
update for

junction A6

Subscriber

Subscription

Subscribe

Publish

116

Key attributes of P/S communication
model

The publishing entities and subscribing
entities are anonymous
The publishing entities and subscribing
entities are highly de-coupled
Asynchronous communication model
The number of publishing and subscribing
entities can dynamically change without
affecting the entire system

117

Subject based vs.
Content based

Subject based:
Generally also known as topic based, group based or
channel based event filtering.
Here each event is published to one of these channels
by its publisher
A subscriber subscribes to a particular channel and
will receive all events published to the subscribed
channel.
Simple process for matching an event to
subscriptions

118

Subject based vs.
Content based

Content based:
More flexibility and power to subscribers, by allowing
to express as an arbitrary query over the contents of
the event.
E.g. Notify me of all stock quotes of IBM from New
York stock exchange if the price is greater than 150
Added complexity in matching an event to
subscriptions

119

Event routing

P

P

P

P

Event broker

 system

S1

S2

S3

C1

C2

C3

C1,C2,C3 are

subscriptions of
S1,S2,S3 respectively

P- Event publisher

S – Event subscriber

Single broker

Cluster of
cooperating brokers

OR

120

Basic elements of P/S model

Event data model
Structure
Types

Subscription model
Filter language
Scope (subject, content, context)

General challenge
Expressiveness vs. Scalability

121 122

L-22 Sensor Networks

124

Metric: Communication

Lifetime from one
pair of AA
batteries

2-3 days at full
power
6 months at 2%
duty cycle

Communication
dominates cost

< few mS to
compute
30mS to send
message

125

Communication In Sensor Nets

Radio
communication has
high link-level
losses

typically about 20%
@ 5m

Ad-hoc neighbor
discovery

Tree-based routing

A

B C

D

F

E

Illustrating Directed Diffusion

126

Sink

Source

Setting up gradients

Sink

Source

Sending data

Sink

Source

Recovering
from node failure

Sink

Source

Reinforcing
stable path

Summary

Data Centric
 Sensors net is queried for specific data
 Source of data is irrelevant
 No sensor-specific query

Application Specific
 In-sensor processing to reduce data transmitted
 In-sensor caching

Localized Algorithms
 Maintain minimum local connectivity – save energy
 Achieve global objective through local coordination

Its gains due to aggregation and duplicate suppression
may make it more viable than ad-hoc routing in sensor
networks

127

Basic Aggregation

In each epoch:
Each node samples local sensors once
Generates partial state record
(PSR)

local readings
readings from children

Outputs PSR during its comm. slot.

At end of epoch, PSR for whole
network output at root
(In paper: pipelining, grouping)

128

1

2 3

4

5

129

Illustration: Aggregation

1 2 3 4 5

1 1

2 2

3 1 3

4

1

1

2 3

4

5

3 1

Sensor #

S
lo

t
#

Slot 3
SELECT COUNT(*) FROM
sensors

Taxonomy of Aggregates

TAG insight: classify aggregates according
to various functional properties

Yields a general set of optimizations that can
automatically be applied

130

Property Examples Affects

Partial State MEDIAN : unbounded,
MAX : 1 record

Effectiveness of TAG

Duplicate
Sensitivity

MIN : dup. insensitive,
AVG : dup. sensitive

Routing Redundancy

Exemplary vs.
Summary

MAX : exemplary
COUNT: summary

Applicability of Sampling,
Effect of Loss

Monotonic COUNT : monotonic
AVG : non-monotonic

Hypothesis Testing, Snooping

131

A Naïve ODI Algorithm

Goal: count the live sensors in the
network

0 1 0 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 0 0 1

id Bit vector

132

Synopsis Diffusion (SenSys’04)

Goal: count the live sensors in the
network

0 1 0 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 0 0 1

id Bit vector

0 1 0 0 0 0 Boolean
OR

0 1 0 0 1 0

0 1 1 0 0 0

0 1 0 0 0 0 0 1 0 0 1 0

0 1 1 0 1 0

0 1 0 0 1 0

0 1 0 0 1 1

0 1 1 0 1 1 Count 1 bits

4

Synopsis should be small

Approximate COUNT algorithm: logarithmic size bit vector

Challenge

Synopsis Diffusion over Rings

A node is in ring i if it
is i hops away from
the base-station

Broadcasts by nodes
in ring i are received
by neighbors in ring
i-1

Each node transmits
once = optimal energy
cost (same as Tree)

133

Ring 2

134

Localization

Positioning with synchronized
clock

distance =
travel time x
The speed of
light

Trilateration

Accounting for the clock offset

Satellites’ clocks are well synchronized
Receiver clock is not synchronized.
Need to estimate 4 unknowns

(x, y, z, t)
t is the clock offset of the receiver

R: real distance, PSR : estimated distance
R = PSR - t c

Need 4 satellites

Wide Area Augmentation System

Error correction system that uses
reference ground stations
25 reference stations in US
Monitor GPS and send correction values to
two geo-stationary satellites
The two geo-stationary satellites
broadcast back to Earth on GPS L1
frequency (1575.42MHz)
Only available in North America, WASS
enabled GPS receiver needed

How good is WAAS?

+ -

3
meter

s

+-15

meters

With Selective Availability
set to zero, and under
ideal conditions, a GPS
receiver without WAAS
can achieve fifteen meter
accuracy most of the
time.*

Under ideal conditions a
WAAS equipped GPS
receiver can achieve
three meter accuracy
95% of the time.*

* Precision depends on good satellite geometry, open sky view, and no
user induced errors.

Place Lab 140

WiFi Positioning System

Exploit wide-scale WiFi deployment
WiFi density increasing to point of overlap

WiFi base stations broadcast unique IDs
Position WiFi devices using a map of AP’s
MAC to location

Indoor localization system

Usually more fine grained localization
needed

Often 3D (2.5D) : x,y and floor
Often want to locate users in an office

RADAR
Trilateration based on signal strength from APs
Hard to predict distance based on signal strength
because signal is blocked by walls and structures
Use site-surveying

Lots of research has been done
MIT Cricket (RF + ultrasound)
AeroScout (WiFi), Ekahau (WiFi)

142

IP-Geography Mapping

Goal: Infer the geographic location of an
Internet host given its IP address.
Why is this interesting?

enables location-aware applications
example applications:

Territorial Rights Management
Targeted Advertising
Network Diagnostics

Why is this hard?
IP address does not inherently indicate location
proxies hide client identity, limit visibility into ISPs

Desirable features of a solution
easily deployable, accuracy, confidence indicator

IP2Geo

Infer geo-location of IP based on various
“properties”

DNS names of routers often indicate location
Network delay correlates with geographic distance
Subnets are clustered

Three techniques
GeoTrack
GeoPing
GeoClusters

IP2Geo Conclusions

IP2Geo encompasses a diverse set of
techniques

GeoTrack: DNS names
GeoPing: network delay
GeoCluster: geographic clusters

Median error 20-400 km
GeoCluster also provides confidence indicator

Each technique best suited for a different
purpose

GeoTrack: locating routers, tracing geographic path
GeoPing: location determination for proximity-based
routing (e.g., CoopNet)
GeoCluster: best suited for location-based services

Publications at SIGCOMM 2001 & USENIX 2002

144

GeoTrack

Location info often embedded in router DNS
names

ngcore1-serial8-0-0-0.Seattle.cw.net,
184.atm6-0.xr2.ewr1.alter.net

GeoTrack operation
do a traceroute to the target IP address
determine location of last recognizable router along the path

Key ideas in GeoTrack
partitioned city code database to minimize chance of false
match
 ISP-specific parsing rules
delay-based correction

Limitations
routers may not respond to traceroute
 DNS name may not contain location information or lookup
may fail
 target host may be behind a proxy or a firewall

146

GeoPing

Nearest Neighbor in Delay Space(NNDS)
delay vector: delay measurements from a host to a
fixed set of landmarks
delay map: database of delay vectors and locations
for a set of known hosts
(50,45,20,35) Indianapolis, IN
(10,20,40,60) Seattle, WA
•••
target location corresponds to best match in delay
map
optimal dimensionality of delay vector is 7-9

147

GeoCluster

Basic Idea: identify geographic clusters
partial IP-location database

construct a database of the form (IPaddr, likely location)
partial in coverage and potentially inaccurate
sources: HotMail registration/login logs, TVGuide query logs

cluster identification
use prefix info. from BGP tables to identify topological
clusters
assign each cluster a location based on IP-location database
do sub-clustering when no consensus on a cluster’s location

location of target IP address is that of best matching
cluster

148

L-24 Adaptive Applications

149

Revisit: Why is Automated
Adaptation Hard?

Must infer Internet performance
Scalability
Accuracy
Tradeoff with timeliness

Support for a variety of applications
Different performance metrics
API requirements

Layered implementations hide information

150

State of the Art: IDMaps [Francis
et al ‘99]

A network distance prediction service

Tracer

Tracer

Tracer

HOPS Server

A

B

50ms

A/B

151

iPlane: Build a Structural Atlas of
the Internet

Use PlanetLab + public traceroute servers
Over 700 geographically distributed vantage points

Build an atlas of Internet routes
Perform traceroutes to a random sample of BGP
prefixes
Cluster interfaces into PoPs
Repeat daily from vantage points

152

Model for Path Prediction

S
D

V2 (Rio)

V1 (Seattle)

(Portland)
(Paris)

V3 (Chicago)

I Identify candidate paths
by intersecting observed

routes

Choose candidate path
that models Internet

routing

Actual path unknown

V4 (Atlanta)

I2

153

Multi-resolution Ring
structure

For the ith ring:

 Inner Radius ri = si-1

 Outer Radius Ri = si

 is a constant
s is multiplicative increase

factor
r0 = 0, R0 =
Each node keeps track of finite

rings

154

New Fundamental Concept:
“Internet Position”

Using GNP, every host can have an
“Internet position”

O(N) positions, as opposed to O(N2) distances

Accurate network distance estimates can be
rapidly computed from “Internet positions”
“Internet position” is a local
property that can be
determined before
applications need it
Can be an interface
for independent systems
to interact

155

y
(x2,y2,z2)

x

z

(x1,y1,z1)

(x3,y3,z3)
(x4,y4,z4)

Landmark Operations
(Basic Design)

Measure inter-Landmark distances
Use minimum of several round-trip time (RTT) samples

Compute coordinates by minimizing the
discrepancy between measured distances and
geometric distances

Cast as a generic multi-dimensional minimization problem,
solved by a central node

156

y

x

Internet

(x2,y2)

(x1,y1)

(x3,y3)

L1

L2

L3

L1

L2

L3

Ordinary Host Operations
(Basic Design)

Each host measures its distances to all the Landmarks
Compute coordinates by minimizing the discrepancy
between measured distances and geometric distances

Cast as a generic multi-dimensional minimization problem, solved by
each host

157

x

Internet

(x4,y4)

L1

L2

L3

y (x2,y2)

(x1,y1)

(x3,y3)

L2

L1

L3

Why the Difference?

IDMaps overpredicts

IDMaps
GNP (1-dimensional model)

158

Multi-resolution Ring
structure

For the ith ring:

 Inner Radius ri = si-1

 Outer Radius Ri = si

 is a constant
s is multiplicative increase

factor
r0 = 0, R0 =
Each node keeps track of finite

rings

159

160

L-25 Cluster Computing

GFS: Architecture

One master server (state replicated on
backups)
Many chunk servers (100s – 1000s)

Spread across racks; intra-rack b/w greater than
inter-rack
Chunk: 64 MB portion of file, identified by 64-bit,
globally unique ID

Many clients accessing same and different
files stored on same cluster

162

GFS: Architecture (2)

163

Master Server

Holds all metadata:
Namespace (directory hierarchy)
Access control information (per-file)
Mapping from files to chunks
Current locations of chunks (chunkservers)

Delegates consistency management
Garbage collects orphaned chunks
Migrates chunks between chunkservers

164

Holds all metadata in RAM; very fast
operations on file system metadata

Client Read

Client sends master:
read(file name, chunk index)

Master’s reply:
chunk ID, chunk version number, locations of replicas

Client sends “closest” chunkserver w/
replica:

read(chunk ID, byte range)
“Closest” determined by IP address on simple rack-
based network topology

Chunkserver replies with data

165

Client Write (2)

166

Client Record Append

Google uses large files as queues between
multiple producers and consumers
Same control flow as for writes, except…
Client pushes data to replicas of last chunk
of file
Client sends request to primary
Common case: request fits in current last
chunk:

Primary appends data to own replica
Primary tells secondaries to do same at same byte
offset in theirs
Primary replies with success to client

167

GFS: Consistency Model (2)

Changes to data are ordered as chosen by
a primary

All replicas will be consistent
But multiple writes from the same client may
be interleaved or overwritten by concurrent
operations from other clients

Record append completes at least once, at
offset of GFS’s choosing

Applications must cope with possible duplicates

168

What If the Master Reboots?

Replays log from disk
Recovers namespace (directory) information
Recovers file-to-chunk-ID mapping

Asks chunkservers which chunks they hold
Recovers chunk-ID-to-chunkserver mapping

If chunk server has older chunk, it’s stale
Chunk server down at lease renewal

If chunk server has newer chunk, adopt its
version number

Master may have failed while granting lease

169

What if Chunkserver Fails?

Master notices missing heartbeats
Master decrements count of replicas for all
chunks on dead chunkserver
Master re-replicates chunks missing replicas
in background

Highest priority for chunks missing greatest number
of replicas

170

GFS: Summary

Success: used actively by Google to support
search service and other applications

Availability and recoverability on cheap hardware
High throughput by decoupling control and data
Supports massive data sets and concurrent appends

Semantics not transparent to apps
Must verify file contents to avoid inconsistent
regions, repeated appends (at-least-once
semantics)

Performance not good for all apps
Assumes read-once, write-once workload (no client
caching!)

171

MapReduce Programming Model

Input & Output: sets of <key, value>
pairs
Programmer writes 2 functions:
map (in_key, in_value) list(out_key,
intermediate_value)

Processes <k,v> pairs
Produces intermediate pairs

 reduce (out_key, list(interm_val))
 list(out_value)

Combines intermediate values for a key
Produces a merged set of outputs (may be also
<k,v> pairs)

172

MapReduce: Example

173

MapReduce in Parallel: Example

174

MapReduce: Execution overview

175

BigTable: Basic Data Model

A BigTable is a sparse, distributed
persistent multi-dimensional sorted map
(row, column, timestamp) cell contents

Good match for most Google applications

176

Table

Multiple tablets make up the table
SSTables can be shared
Tablets do not overlap, SSTables can overlap

SSTable SSTable SSTable SSTable

Tablet

aardvark apple

Tablet

apple_two_E boat

177

Tablet Location

Since tablets move around from server to
server, given a row, how do clients find the
right machine?

Need to find tablet whose row range covers the target
row

178

Chubby

{lock/file/name} service
Coarse-grained locks, can store small
amount of data in a lock
5 replicas, need a majority vote to be active
Also an OSDI ’06 Paper

179

Master’s Tasks

Use Chubby to monitor health of tablet
servers, restart failed servers

Tablet server registers itself by getting a lock in a
specific directory chubby

Chubby gives “lease” on lock, must be renewed
periodically
Server loses lock if it gets disconnected

Master monitors this directory to find which
servers exist/are alive

If server not contactable/has lost lock, master grabs lock
and reassigns tablets
GFS replicates data. Prefer to start tablet server on same
machine that the data is already at

180

Master’s Tasks (Cont)

When (new) master starts
grabs master lock on chubby

Ensures only one master at a time

Finds live servers (scan chubby directory)
Communicates with servers to find assigned tablets
Scans metadata table to find all tablets

Keeps track of unassigned tablets, assigns them
Metadata root from chubby, other metadata tablets
assigned before scanning.

181 182

L-26 Cluster Computer
(borrowed from Randy Katz, UCB)

Energy Proportional Computing

184

Figure 2. Server power usage and energy efficiency at varying utilization levels, from idle to
peak performance. Even an energy-efficient server still consumes about half its full power
when doing virtually no work.

“The Case for
Energy-Proportional
Computing,”
Luiz André Barroso,
Urs Hölzle,
IEEE Computer
December 2007 Doing nothing well …

NOT!

Energy Proportional Computing

185

Figure 1. Average CPU utilization of more than 5,000 servers during a six-month period. Servers
are rarely completely idle and seldom operate near their maximum utilization, instead operating
most of the time at between 10 and 50 percent of their maximum

It is surprisingly hard
to achieve high levels
of utilization of typical
servers (and your home
PC or laptop is even
worse)

“The Case for
Energy-Proportional
Computing,”
Luiz André Barroso,
Urs Hölzle,
IEEE Computer
December 2007

Spin-down Disk Model

Not

Spinning
Spinning

& Ready

Spinning

& Access

Spinning

& Seek
Spinning

up

Spinning

down

Request

Trigger:
request or
predict

Predictive

.2W
.65-1.8W

2W
2.3W 4.7W

Inactivity Timeout
threshold*

Disk Spindown

Disk Power Management – Oracle (off-line)

Disk Power Management – Practical scheme
(on-line)

187

access1
access2

IdleTime > BreakEvenTime

Idle for

BreakEvenTime Wait time

Source: from the presentation slides of the authors

Spin-Down Policies

Fixed Thresholds
Tout = spin-down cost s.t. 2*Etransition = Pspin*Tout

Adaptive Thresholds: Tout = f (recent
accesses)

Exploit burstiness in Tidle

Minimizing Bumps (user annoyance/latency)
Predictive spin-ups

Changing access patterns (making
burstiness)

Caching
Prefetching

Thermal Image of Typical Cluster

189

Rack
Switch

M. K. Patterson, A. Pratt, P. Kumar,
“From UPS to Silicon: an end-to-end evaluation of datacenter efficiency”, Intel Corporation

Datacenter Power Efficiencies

Power conversions in server
Power supply (<80% efficiency)
Voltage regulation modules (80% common)
Better available (95%) and inexpensive

Simple rules to minimize power distribution
losses in priority order
1. Avoid conversions (indirect UPS or no UPS)
2. Increase efficiency of conversions
3. High voltage as close to load as possible
4. Size board voltage regulators to load and use high quality
5. Direct Current small potential win (but regulatory issues)

Two interesting approaches:
480VAC to rack and 48VDC (or 12VDC) within rack
480VAC to PDU and 277VAC (1 leg of 480VAC 3-phase
distribution) to each server

190

James Hamilton, Amazon

Google 1U + UPS

191

Why built-in batteries?

Building the power supply into the server is
cheaper and means costs are matched
directly to the number of servers
Large UPSs can reach 92 to 95 percent
efficiency vs. 99.9 percent efficiency for
server mounted batteries

192

193

L-27 Social Networks and Other Stuff

Background: Sybil Attack

Sybil attack: Single user
pretends many fake/sybil
identities

Creating multiple accounts
from different IP addresses

Sybil identities can
become a large fraction
of all identities

Out-vote honest users in
collaborative tasks

launch
sybil
attack

honest

malicious

195

SybilGuard Basic Insight

honest
nodes

sybil
nodes

Dis-proportionally
small cut
disconnecting a large
number of identities

But cannot search for
such cut brute-
force…

196

Random 1 to 1 mapping between
incoming edge and outgoing edge

Random Route: Convergence

Using routing table gives Convergence
Property

Routes merge if crossing the same edge
197

a d

b a

c b

d c

d e

e d

f f

a

b

c

d e

f

randomized
routing table

Random Route: Back-traceable

Using 1-1 mapping gives Back-traceable
Property

Routes may be back-traced

198

a d

b a

c b

d c

d e

e d

f f

a

b

c

d e

f

If we know the
route traverses
edge e, then we
know the whole
route

Random Route Intersection:
Honest Nodes

Verifier accepts
a suspect if the
two routes
intersect

Route length w:

W.h.p., verifier’s
route stays within
honest region
W.h.p., routes
from two honest
nodes intersect sybil nodes honest nodes

Verifier

Suspect

199

~ n logn

