
L-25 Cluster Computing 

Overview 

Google File System 

MapReduce 

BigTable 
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Google Disk Farm 

Early days… 

…today 
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Google Platform Characteristics 

Lots of cheap PCs, each with disk and CPU 
High aggregate storage capacity 
Spread search processing across many CPUs 

How to share data among PCs? 
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Google Platform Characteristics 

100s to 1000s of PCs in cluster 
Many modes of failure for each PC: 

App bugs, OS bugs 

Human error 
Disk failure, memory failure, net failure, power supply 
failure 

Connector failure 

Monitoring, fault tolerance, auto-recovery 
essential 
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Google File System: Design 
Criteria 

Detect, tolerate, recover from failures 
automatically 
Large files, >= 100 MB in size 
Large, streaming reads (>= 1 MB in size) 

Read once 

Large, sequential writes that append 
Write once 

Concurrent appends by multiple clients 
(e.g., producer-consumer queues) 

Want atomicity for appends without synchronization 
overhead among clients 
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GFS: Architecture 

One master server (state replicated on 
backups) 
Many chunk servers (100s – 1000s) 

Spread across racks; intra-rack b/w greater than 
inter-rack 

Chunk: 64 MB portion of file, identified by 64-bit, 
globally unique ID 

Many clients accessing same and different 
files stored on same cluster 
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GFS: Architecture (2) 
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Master Server 

Holds all metadata: 
Namespace (directory hierarchy) 
Access control information (per-file) 
Mapping from files to chunks 

Current locations of chunks (chunkservers) 

Delegates consistency management 
Garbage collects orphaned chunks 
Migrates chunks between chunkservers 
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Holds all metadata in RAM; very fast 
operations on file system metadata 

Chunkserver 

Stores 64 MB file chunks on local disk using 
standard Linux filesystem, each with version 
number and checksum 
Read/write requests specify chunk handle 
and byte range 
Chunks replicated on configurable number 
of chunkservers (default: 3) 
No caching of file data (beyond standard 
Linux buffer cache) 
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Client 

Issues control (metadata) requests to 
master server 
Issues data requests directly to 
chunkservers 
Caches metadata 
Does no caching of data 

No consistency difficulties among clients 
Streaming reads (read once) and append writes (write 
once) don’t benefit much from caching at client 
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Client Read 

Client sends master: 
read(file name, chunk index) 

Master’s reply: 
chunk ID, chunk version number, locations of replicas 

Client sends “closest” chunkserver w/
replica: 

read(chunk ID, byte range) 

“Closest” determined by IP address on simple rack-
based network topology 

Chunkserver replies with data 
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Client Write 

Some chunkserver is primary for each 
chunk 

Master grants lease to primary (typically for 60 sec.) 

Leases renewed using periodic heartbeat messages 
between master and chunkservers 

Client asks master for primary and 
secondary replicas for each chunk 
Client sends data to replicas in daisy chain 

Pipelined: each replica forwards as it receives 

Takes advantage of full-duplex Ethernet links 
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Client Write (2) 
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Client Write (3) 

All replicas acknowledge data write to client 
Client sends write request to primary 
Primary assigns serial number to write 
request, providing ordering 
Primary forwards write request with same 
serial number to secondaries 
Secondaries all reply to primary after 
completing write 
Primary replies to client 
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Client Record Append 

Google uses large files as queues between 
multiple producers and consumers 
Same control flow as for writes, except… 
Client pushes data to replicas of last chunk 
of file 
Client sends request to primary 
Common case: request fits in current last 
chunk: 

Primary appends data to own replica 
Primary tells secondaries to do same at same byte 
offset in theirs 
Primary replies with success to client 
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Client Record Append (2) 

When data won’t fit in last chunk: 
Primary fills current chunk with padding 
Primary instructs other replicas to do same 
Primary replies to client, “retry on next chunk” 

If record append fails at any replica, client 
retries operation 

So replicas of same chunk may contain different data
—even duplicates of all or part of record data 

What guarantee does GFS provide on 
success? 

Data written at least once in atomic unit 
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GFS: Consistency Model 

Changes to namespace (i.e., metadata) 
are atomic 

Done by single master server! 
Master uses log to define global total order of 
namespace-changing operations 
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GFS: Consistency Model (2) 

Changes to data are ordered as chosen by 
a primary 

All replicas will be consistent 
But multiple writes from the same client may 
be interleaved or overwritten by concurrent 
operations from other clients 

Record append completes at least once, at 
offset of GFS’s choosing 

Applications must cope with possible duplicates 
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Logging at Master 

Master has all metadata information 
Lose it, and you’ve lost the filesystem! 

Master logs all client requests to disk 
sequentially 
Replicates log entries to remote backup 
servers 
Only replies to client after log entries safe 
on disk on self and backups! 
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Chunk Leases and Version 
Numbers 

If no outstanding lease when client requests 
write, master grants new one 
Chunks have version numbers 

Stored on disk at master and chunkservers 
Each time master grants new lease, increments 

version, informs all replicas 

Master can revoke leases 
e.g., when client requests rename or snapshot of file 
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What If the Master Reboots? 

Replays log from disk 
Recovers namespace (directory) information 
Recovers file-to-chunk-ID mapping 

Asks chunkservers which chunks they hold 
Recovers chunk-ID-to-chunkserver mapping 

If chunk server has older chunk, it’s stale 
Chunk server down at lease renewal 

If chunk server has newer chunk, adopt its 
version number 

Master may have failed while granting lease 
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What if Chunkserver Fails? 

Master notices missing heartbeats 
Master decrements count of replicas for all 
chunks on dead chunkserver 
Master re-replicates chunks missing replicas 
in background 

Highest priority for chunks missing greatest number 
of replicas 
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File Deletion 

When client deletes file: 
Master records deletion in its log 
File renamed to hidden name including deletion 
timestamp 

Master scans file namespace in background: 
Removes files with such names if deleted for longer 

than 3 days (configurable) 
In-memory metadata erased 

Master scans chunk namespace in 
background: 

Removes unreferenced chunks from chunkservers 
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Limitations 

Security? 
Trusted environment, trusted users 
But that doesn’t stop users from interfering with each 
other… 

Does not mask all forms of data corruption 
Requires application-level checksum 
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GFS: Summary 

Success: used actively by Google to support 
search service and other applications 

Availability and recoverability on cheap hardware 

High throughput by decoupling control and data 
Supports massive data sets and concurrent appends 

Semantics not transparent to apps 
Must verify file contents to avoid inconsistent 
regions, repeated appends (at-least-once 

semantics) 

Performance not good for all apps 
Assumes read-once, write-once workload (no client 

caching!) 
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You are an engineer at: 
Hare-brained-scheme.com 

Your boss,              comes to your office 
and says: 

 “We’re going to be hog-nasty rich! We just 
need a program to search for strings in 
text files...” 

Input: <search_term>, <files> 
Output: list of files containing 

<search_term> 
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One solution 

public class StringFinder { 
    int main(…) { 
  foreach(File f in getInputFiles()) { 
       if(f.contains(searchTerm)) 

           results.add(f.getFileName()); 
                } 
  } 
  System.out.println(“Files:” + 
results.toString());    } 
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Another solution 

Throw hardware at the problem! 
Use your StringFinder class on one 
machine… 

   but attach lots of disks! 
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Third Time’s a charm 
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StringFinder was the easy part! 

You really need general infrastructure. 
Likely to have many different tasks 
Want to use hundreds or thousands of 
PC’s 
Continue to function if something breaks 
Must be easy to program… 
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MapReduce 

Programming model + infrastructure 
Write programs that run on lots of machines 
Automatic parallelization and distribution  
Fault-tolerance  
Scheduling, status and monitoring  
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MapReduce Programming Model 

Input & Output: sets of <key, value> 
pairs 
Programmer writes 2 functions: 
map (in_key, in_value)  list(out_key, 

intermediate_value) 
Processes <k,v> pairs 

Produces intermediate pairs 

 reduce (out_key, list(interm_val))     

 list(out_value) 
Combines intermediate values for a key 
Produces a merged set of outputs (may be also 

<k,v> pairs) 
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Example: Counting Words… 

map(String input_key, String input_value):  
// input_key: document name  
// input_value: document contents  

for each word w in input_value:  
 EmitIntermediate(w, "1");  

reduce(String output_key, Iterator intermediate_values):  
// output_key: a word  
// output_values: a list of counts  

int result = 0;  
for each v in intermediate_values:  
 result += ParseInt(v);  

Emit(AsString(result)); 
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MapReduce: Refinements  
Locality Optimization 

Leverage GFS to schedule a map task on a 
machine that contains a replica of the 
corresponding input data. 

Thousands of machines read input at local 
disk speed 

Without this, rack switches limit read rate 
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MapReduce: Refinements 
Redundant Execution 

Slow workers are source of bottleneck, may 
delay completion time. 

Near end of phase, spawn backup tasks, 
one to finish first wins. 

Effectively utilizes computing power, 
reducing job completion time by a factor.  
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MapReduce: Refinements  
 Skipping Bad Records 

Map/Reduce functions sometimes fail for 
particular inputs. 

Fixing the bug might not be possible : Third 
Party Libraries. 

On Error 
Worker sends signal to Master 
If multiple error on same record, skip record 
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Take Home Messages 

Although restrictive, provides good fit for many 
problems encountered in the practice of 
processing large data sets. 

Functional Programming Paradigm can be 
applied to large scale computation. 

Easy to use, hides messy details of 
parallelization, fault-tolerance, data distribution 
and load balancing from the programmers. 

And finally, if it works for Google, it should be 
handy !! 
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BigTable 

Distributed storage system for managing 
structured data. 
Designed to scale to a very large size 

Petabytes of data across thousands of servers 

Used for many Google projects 
Web indexing, Personalized Search, Google Earth, 
Google Analytics, Google Finance, … 

Flexible, high-performance solution for all of 
Google’s products 
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Motivation 

Lots of (semi-)structured data at Google 
URLs: 

Contents, crawl metadata, links, anchors, pagerank, … 
Per-user data: 

User preference settings, recent queries/search results, 
… 

Geographic locations: 
Physical entities (shops, restaurants, etc.), roads, 
satellite image data, user annotations, … 

Scale is large 
Billions of URLs, many versions/page (~20K/
version) 
Hundreds of millions of users, thousands or q/sec 
100TB+ of satellite image data 
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Why not just use commercial DB? 

Scale is too large for most commercial 
databases 
Even if it weren’t, cost would be very high 

Building internally means system can be applied 
across many projects for low incremental cost 

Low-level storage optimizations help 
performance significantly 

Much harder to do when running on top of a 
database layer 
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Goals 

Want asynchronous processes to be 
continuously updating different pieces of 
data 

Want access to most current data at any time 
Need to support: 

Very high read/write rates (millions of ops per 
second) 
Efficient scans over all or interesting subsets of 
data 
Efficient joins of large one-to-one and one-to-
many datasets 

Often want to examine data changes over 
time 

E.g. Contents of a web page over multiple crawls 
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BigTable 

Distributed multi-level map 
Fault-tolerant, persistent 
Scalable 

Thousands of servers 
Terabytes of in-memory data 
Petabyte of disk-based data 
Millions of reads/writes per second, efficient 
scans 

Self-managing 
Servers can be added/removed dynamically 
Servers adjust to load imbalance 
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Basic Data Model 

A BigTable is a sparse, distributed 
persistent multi-dimensional sorted map 
(row, column, timestamp) -> cell contents 

Good match for most Google applications 
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WebTable Example 

Want to keep copy of a large collection of web 
pages and related information 
Use URLs as row keys 
Various aspects of web page as column names 
Store contents of web pages in the contents: 
column under the timestamps when they were 
fetched. 
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Rows 

Name is an arbitrary string 
Access to data in a row is atomic 
Row creation is implicit upon storing data 

Rows ordered lexicographically 
Rows close together lexicographically usually on one 
or a small number of machines 
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Rows (cont.) 

Reads of short row ranges are efficient and 
typically require communication with a 
small number of machines. 
Can exploit this property by selecting row 
keys so they get good locality for data 
access. 
Example:  

 math.gatech.edu, math.uga.edu, phys.gatech.edu, 
phys.uga.edu  
 VS  
 edu.gatech.math, edu.gatech.phys, edu.uga.math, 
edu.uga.phys 
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Columns 

Columns have two-level name structure: 
family:optional_qualifier 

Column family 
Unit of access control 
Has associated type information 

Qualifier gives unbounded columns 
Additional levels of indexing, if desired 
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Timestamps 

Used to store different versions of data in a cell 
New writes default to current time, but timestamps for writes can 
also be set explicitly by clients 

Lookup options: 
“Return most recent K values” 
“Return all values in timestamp range (or all values)” 

Column families can be marked w/ attributes: 
“Only retain most recent K values in a cell” 
“Keep values until they are older than K seconds” 
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Implementation – Three Major 
Components 

Library linked into every client 
One master server 

Responsible for: 
Assigning tablets to tablet servers 
Detecting addition and expiration of tablet servers 
Balancing tablet-server load 
Garbage collection 

Many tablet servers 
Tablet servers handle read and write requests to 
its table 
Splits tablets that have grown too large 
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Implementation (cont.) 

Client data doesn’t move through master 
server.  Clients communicate directly with 
tablet servers for reads and writes. 
Most clients never communicate with the 
master server, leaving it lightly loaded in 
practice. 
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Tablets 

Large tables broken into tablets at row 
boundaries 

Tablet holds contiguous range of rows 
Clients can often choose row keys to achieve locality 

Aim for ~100MB to 200MB of data per tablet 

Serving machine responsible for ~100 
tablets 

Fast recovery: 
100 machines each pick up 1 tablet for failed machine 

Fine-grained load balancing: 
Migrate tablets away from overloaded machine 
Master makes load-balancing decisions 

59 

SSTable 

Immutable, sorted file of key-
value pairs 
Chunks of data plus an index  

Index is of block ranges, not values 

Index 

64K 

block 

64K 

block 

64K 

block 

SSTable 
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Tablet  

Contains some range of rows of the table 
Built out of multiple SSTables 

Index 

64K 

block 

64K 

block 

64K 

block 

SSTable 

Index 

64K 

block 

64K 

block 

64K 

block 

SSTable 

Tablet Start:aardvark End:apple 
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Table 

Multiple tablets make up the table 
SSTables can be shared 
Tablets do not overlap, SSTables can overlap 

SSTable SSTable SSTable SSTable 

Tablet 

aardvark apple 

Tablet 

apple_two_E boat 
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Tablet Location 

Since tablets move around from server to 
server, given a row, how do clients find the 
right machine? 

Need to find tablet whose row range covers the target 
row 
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Chubby 

{lock/file/name} service 
Coarse-grained locks, can store small 
amount of data in a lock 
5 replicas, need a majority vote to be active 
Also an OSDI ’06 Paper 
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Servers 

Tablet servers manage tablets, multiple 
tablets per server. Each tablet is 100-200 
MB 

Each tablet lives at only one server 
Tablet server splits tablets that get too big 

Master responsible for load balancing and 
fault tolerance 
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Editing a table 

Mutations are logged, then applied to an in-
memory memtable 

May contain “deletion” entries to handle updates 
Group commit on log: collect multiple updates before log 
flush 

SSTable SSTable 

Tablet 

apple_two_E boat 

Insert 

Insert 

Delete 

Insert 

Delete 

Insert 

Memtable 

ta
b
le

t 
lo

g
 

GFS 

Memory 

66 

Compactions 

Minor compaction – convert the memtable 
into an SSTable 

Reduce memory usage  
Reduce log traffic on restart 

Merging compaction 
Reduce number of SSTables 
Good place to apply policy “keep only N versions” 

Major compaction 
Merging compaction that results in only one 
SSTable 
No deletion records, only live data 
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Master’s Tasks 

Use Chubby to monitor health of tablet 
servers, restart failed servers 

Tablet server registers itself by getting a lock in a 
specific directory chubby 

Chubby gives “lease” on lock, must be renewed 
periodically 
Server loses lock if it gets disconnected 

Master monitors this directory to find which 
servers exist/are alive 

If server not contactable/has lost lock, master grabs lock 
and reassigns tablets 
GFS replicates data. Prefer to start tablet server on same 
machine that the data is already at 
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Master’s Tasks (Cont) 

When (new) master starts 
grabs master lock on chubby  

Ensures only one master at a time 

Finds live servers (scan chubby directory) 
Communicates with servers to find assigned tablets 

Scans metadata table to find all tablets 
Keeps track of unassigned tablets, assigns them 
Metadata root from chubby, other metadata tablets 
assigned before scanning. 
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Tablet Assignment 

Each tablet is assigned to one tablet 
server at a time. 
Master server keeps track of the set of live 
tablet servers and current assignments of 
tablets to servers.  Also keeps track of 
unassigned tablets. 
When a tablet is unassigned, master 
assigns the tablet to an tablet server with 
sufficient room. 
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