
L-25 Cluster Computing

Overview

Google File System

MapReduce

BigTable

2

Google Disk Farm

Early days…

…today

3

Google Platform Characteristics

Lots of cheap PCs, each with disk and CPU
High aggregate storage capacity
Spread search processing across many CPUs

How to share data among PCs?

4

Google Platform Characteristics

100s to 1000s of PCs in cluster
Many modes of failure for each PC:

App bugs, OS bugs

Human error
Disk failure, memory failure, net failure, power supply
failure

Connector failure

Monitoring, fault tolerance, auto-recovery
essential

5 6

Google File System: Design
Criteria

Detect, tolerate, recover from failures
automatically
Large files, >= 100 MB in size
Large, streaming reads (>= 1 MB in size)

Read once

Large, sequential writes that append
Write once

Concurrent appends by multiple clients
(e.g., producer-consumer queues)

Want atomicity for appends without synchronization
overhead among clients

7

GFS: Architecture

One master server (state replicated on
backups)
Many chunk servers (100s – 1000s)

Spread across racks; intra-rack b/w greater than
inter-rack

Chunk: 64 MB portion of file, identified by 64-bit,
globally unique ID

Many clients accessing same and different
files stored on same cluster

8

GFS: Architecture (2)

9

Master Server

Holds all metadata:
Namespace (directory hierarchy)
Access control information (per-file)
Mapping from files to chunks

Current locations of chunks (chunkservers)

Delegates consistency management
Garbage collects orphaned chunks
Migrates chunks between chunkservers

10

Holds all metadata in RAM; very fast
operations on file system metadata

Chunkserver

Stores 64 MB file chunks on local disk using
standard Linux filesystem, each with version
number and checksum
Read/write requests specify chunk handle
and byte range
Chunks replicated on configurable number
of chunkservers (default: 3)
No caching of file data (beyond standard
Linux buffer cache)

11

Client

Issues control (metadata) requests to
master server
Issues data requests directly to
chunkservers
Caches metadata
Does no caching of data

No consistency difficulties among clients
Streaming reads (read once) and append writes (write
once) don’t benefit much from caching at client

12

Client Read

Client sends master:
read(file name, chunk index)

Master’s reply:
chunk ID, chunk version number, locations of replicas

Client sends “closest” chunkserver w/
replica:

read(chunk ID, byte range)

“Closest” determined by IP address on simple rack-
based network topology

Chunkserver replies with data

13

Client Write

Some chunkserver is primary for each
chunk

Master grants lease to primary (typically for 60 sec.)

Leases renewed using periodic heartbeat messages
between master and chunkservers

Client asks master for primary and
secondary replicas for each chunk
Client sends data to replicas in daisy chain

Pipelined: each replica forwards as it receives

Takes advantage of full-duplex Ethernet links

14

Client Write (2)

15

Client Write (3)

All replicas acknowledge data write to client
Client sends write request to primary
Primary assigns serial number to write
request, providing ordering
Primary forwards write request with same
serial number to secondaries
Secondaries all reply to primary after
completing write
Primary replies to client

16

Client Record Append

Google uses large files as queues between
multiple producers and consumers
Same control flow as for writes, except…
Client pushes data to replicas of last chunk
of file
Client sends request to primary
Common case: request fits in current last
chunk:

Primary appends data to own replica
Primary tells secondaries to do same at same byte
offset in theirs
Primary replies with success to client

17

Client Record Append (2)

When data won’t fit in last chunk:
Primary fills current chunk with padding
Primary instructs other replicas to do same
Primary replies to client, “retry on next chunk”

If record append fails at any replica, client
retries operation

So replicas of same chunk may contain different data
—even duplicates of all or part of record data

What guarantee does GFS provide on
success?

Data written at least once in atomic unit

18

GFS: Consistency Model

Changes to namespace (i.e., metadata)
are atomic

Done by single master server!
Master uses log to define global total order of
namespace-changing operations

19

GFS: Consistency Model (2)

Changes to data are ordered as chosen by
a primary

All replicas will be consistent
But multiple writes from the same client may
be interleaved or overwritten by concurrent
operations from other clients

Record append completes at least once, at
offset of GFS’s choosing

Applications must cope with possible duplicates

20

Logging at Master

Master has all metadata information
Lose it, and you’ve lost the filesystem!

Master logs all client requests to disk
sequentially
Replicates log entries to remote backup
servers
Only replies to client after log entries safe
on disk on self and backups!

21

Chunk Leases and Version
Numbers

If no outstanding lease when client requests
write, master grants new one
Chunks have version numbers

Stored on disk at master and chunkservers
Each time master grants new lease, increments

version, informs all replicas

Master can revoke leases
e.g., when client requests rename or snapshot of file

22

What If the Master Reboots?

Replays log from disk
Recovers namespace (directory) information
Recovers file-to-chunk-ID mapping

Asks chunkservers which chunks they hold
Recovers chunk-ID-to-chunkserver mapping

If chunk server has older chunk, it’s stale
Chunk server down at lease renewal

If chunk server has newer chunk, adopt its
version number

Master may have failed while granting lease

23

What if Chunkserver Fails?

Master notices missing heartbeats
Master decrements count of replicas for all
chunks on dead chunkserver
Master re-replicates chunks missing replicas
in background

Highest priority for chunks missing greatest number
of replicas

24

File Deletion

When client deletes file:
Master records deletion in its log
File renamed to hidden name including deletion
timestamp

Master scans file namespace in background:
Removes files with such names if deleted for longer

than 3 days (configurable)
In-memory metadata erased

Master scans chunk namespace in
background:

Removes unreferenced chunks from chunkservers

25

Limitations

Security?
Trusted environment, trusted users
But that doesn’t stop users from interfering with each
other…

Does not mask all forms of data corruption
Requires application-level checksum

26

GFS: Summary

Success: used actively by Google to support
search service and other applications

Availability and recoverability on cheap hardware

High throughput by decoupling control and data
Supports massive data sets and concurrent appends

Semantics not transparent to apps
Must verify file contents to avoid inconsistent
regions, repeated appends (at-least-once

semantics)

Performance not good for all apps
Assumes read-once, write-once workload (no client

caching!)

27

Overview

Google File System

MapReduce

BigTable

28

You are an engineer at:
Hare-brained-scheme.com

Your boss, comes to your office
and says:

 “We’re going to be hog-nasty rich! We just
need a program to search for strings in
text files...”

Input: <search_term>, <files>
Output: list of files containing

<search_term>
29

One solution

public class StringFinder {
 int main(…) {
 foreach(File f in getInputFiles()) {
 if(f.contains(searchTerm))

 results.add(f.getFileName());
 }
 }
 System.out.println(“Files:” +
results.toString()); }

30

Another solution

Throw hardware at the problem!
Use your StringFinder class on one
machine…

 but attach lots of disks!

31

Third Time’s a charm

32

StringFinder was the easy part!

You really need general infrastructure.
Likely to have many different tasks
Want to use hundreds or thousands of
PC’s
Continue to function if something breaks
Must be easy to program…

33

MapReduce

Programming model + infrastructure
Write programs that run on lots of machines
Automatic parallelization and distribution
Fault-tolerance
Scheduling, status and monitoring

34

MapReduce Programming Model

Input & Output: sets of <key, value>
pairs
Programmer writes 2 functions:
map (in_key, in_value) list(out_key,

intermediate_value)
Processes <k,v> pairs

Produces intermediate pairs

 reduce (out_key, list(interm_val))

 list(out_value)
Combines intermediate values for a key
Produces a merged set of outputs (may be also

<k,v> pairs)

35

Example: Counting Words…

map(String input_key, String input_value):
// input_key: document name
// input_value: document contents

for each word w in input_value:
 EmitIntermediate(w, "1");

reduce(String output_key, Iterator intermediate_values):
// output_key: a word
// output_values: a list of counts

int result = 0;
for each v in intermediate_values:
 result += ParseInt(v);

Emit(AsString(result));

36

37 38

39

MapReduce: Refinements
Locality Optimization

Leverage GFS to schedule a map task on a
machine that contains a replica of the
corresponding input data.

Thousands of machines read input at local
disk speed

Without this, rack switches limit read rate

40

MapReduce: Refinements
Redundant Execution

Slow workers are source of bottleneck, may
delay completion time.

Near end of phase, spawn backup tasks,
one to finish first wins.

Effectively utilizes computing power,
reducing job completion time by a factor.

41

MapReduce: Refinements
 Skipping Bad Records

Map/Reduce functions sometimes fail for
particular inputs.

Fixing the bug might not be possible : Third
Party Libraries.

On Error
Worker sends signal to Master
If multiple error on same record, skip record

42

Take Home Messages

Although restrictive, provides good fit for many
problems encountered in the practice of
processing large data sets.

Functional Programming Paradigm can be
applied to large scale computation.

Easy to use, hides messy details of
parallelization, fault-tolerance, data distribution
and load balancing from the programmers.

And finally, if it works for Google, it should be
handy !!

43

Overview

Google File System

MapReduce

BigTable

44

BigTable

Distributed storage system for managing
structured data.
Designed to scale to a very large size

Petabytes of data across thousands of servers

Used for many Google projects
Web indexing, Personalized Search, Google Earth,
Google Analytics, Google Finance, …

Flexible, high-performance solution for all of
Google’s products

45

Motivation

Lots of (semi-)structured data at Google
URLs:

Contents, crawl metadata, links, anchors, pagerank, …
Per-user data:

User preference settings, recent queries/search results,
…

Geographic locations:
Physical entities (shops, restaurants, etc.), roads,
satellite image data, user annotations, …

Scale is large
Billions of URLs, many versions/page (~20K/
version)
Hundreds of millions of users, thousands or q/sec
100TB+ of satellite image data

46

Why not just use commercial DB?

Scale is too large for most commercial
databases
Even if it weren’t, cost would be very high

Building internally means system can be applied
across many projects for low incremental cost

Low-level storage optimizations help
performance significantly

Much harder to do when running on top of a
database layer

47

Goals

Want asynchronous processes to be
continuously updating different pieces of
data

Want access to most current data at any time
Need to support:

Very high read/write rates (millions of ops per
second)
Efficient scans over all or interesting subsets of
data
Efficient joins of large one-to-one and one-to-
many datasets

Often want to examine data changes over
time

E.g. Contents of a web page over multiple crawls

48

BigTable

Distributed multi-level map
Fault-tolerant, persistent
Scalable

Thousands of servers
Terabytes of in-memory data
Petabyte of disk-based data
Millions of reads/writes per second, efficient
scans

Self-managing
Servers can be added/removed dynamically
Servers adjust to load imbalance

49

Basic Data Model

A BigTable is a sparse, distributed
persistent multi-dimensional sorted map
(row, column, timestamp) -> cell contents

Good match for most Google applications

51

WebTable Example

Want to keep copy of a large collection of web
pages and related information
Use URLs as row keys
Various aspects of web page as column names
Store contents of web pages in the contents:
column under the timestamps when they were
fetched.

52

Rows

Name is an arbitrary string
Access to data in a row is atomic
Row creation is implicit upon storing data

Rows ordered lexicographically
Rows close together lexicographically usually on one
or a small number of machines

53

Rows (cont.)

Reads of short row ranges are efficient and
typically require communication with a
small number of machines.
Can exploit this property by selecting row
keys so they get good locality for data
access.
Example:

 math.gatech.edu, math.uga.edu, phys.gatech.edu,
phys.uga.edu
 VS
 edu.gatech.math, edu.gatech.phys, edu.uga.math,
edu.uga.phys

54

Columns

Columns have two-level name structure:
family:optional_qualifier

Column family
Unit of access control
Has associated type information

Qualifier gives unbounded columns
Additional levels of indexing, if desired

55

Timestamps

Used to store different versions of data in a cell
New writes default to current time, but timestamps for writes can
also be set explicitly by clients

Lookup options:
“Return most recent K values”
“Return all values in timestamp range (or all values)”

Column families can be marked w/ attributes:
“Only retain most recent K values in a cell”
“Keep values until they are older than K seconds”

56

Implementation – Three Major
Components

Library linked into every client
One master server

Responsible for:
Assigning tablets to tablet servers
Detecting addition and expiration of tablet servers
Balancing tablet-server load
Garbage collection

Many tablet servers
Tablet servers handle read and write requests to
its table
Splits tablets that have grown too large

57

Implementation (cont.)

Client data doesn’t move through master
server. Clients communicate directly with
tablet servers for reads and writes.
Most clients never communicate with the
master server, leaving it lightly loaded in
practice.

58

Tablets

Large tables broken into tablets at row
boundaries

Tablet holds contiguous range of rows
Clients can often choose row keys to achieve locality

Aim for ~100MB to 200MB of data per tablet

Serving machine responsible for ~100
tablets

Fast recovery:
100 machines each pick up 1 tablet for failed machine

Fine-grained load balancing:
Migrate tablets away from overloaded machine
Master makes load-balancing decisions

59

SSTable

Immutable, sorted file of key-
value pairs
Chunks of data plus an index

Index is of block ranges, not values

Index

64K

block

64K

block

64K

block

SSTable

60

Tablet

Contains some range of rows of the table
Built out of multiple SSTables

Index

64K

block

64K

block

64K

block

SSTable

Index

64K

block

64K

block

64K

block

SSTable

Tablet Start:aardvark End:apple

61

Table

Multiple tablets make up the table
SSTables can be shared
Tablets do not overlap, SSTables can overlap

SSTable SSTable SSTable SSTable

Tablet

aardvark apple

Tablet

apple_two_E boat

62

Tablet Location

Since tablets move around from server to
server, given a row, how do clients find the
right machine?

Need to find tablet whose row range covers the target
row

63

Chubby

{lock/file/name} service
Coarse-grained locks, can store small
amount of data in a lock
5 replicas, need a majority vote to be active
Also an OSDI ’06 Paper

64

Servers

Tablet servers manage tablets, multiple
tablets per server. Each tablet is 100-200
MB

Each tablet lives at only one server
Tablet server splits tablets that get too big

Master responsible for load balancing and
fault tolerance

65

Editing a table

Mutations are logged, then applied to an in-
memory memtable

May contain “deletion” entries to handle updates
Group commit on log: collect multiple updates before log
flush

SSTable SSTable

Tablet

apple_two_E boat

Insert

Insert

Delete

Insert

Delete

Insert

Memtable

ta
b
le

t
lo

g

GFS

Memory

66

Compactions

Minor compaction – convert the memtable
into an SSTable

Reduce memory usage
Reduce log traffic on restart

Merging compaction
Reduce number of SSTables
Good place to apply policy “keep only N versions”

Major compaction
Merging compaction that results in only one
SSTable
No deletion records, only live data

67

Master’s Tasks

Use Chubby to monitor health of tablet
servers, restart failed servers

Tablet server registers itself by getting a lock in a
specific directory chubby

Chubby gives “lease” on lock, must be renewed
periodically
Server loses lock if it gets disconnected

Master monitors this directory to find which
servers exist/are alive

If server not contactable/has lost lock, master grabs lock
and reassigns tablets
GFS replicates data. Prefer to start tablet server on same
machine that the data is already at

68

Master’s Tasks (Cont)

When (new) master starts
grabs master lock on chubby

Ensures only one master at a time

Finds live servers (scan chubby directory)
Communicates with servers to find assigned tablets

Scans metadata table to find all tablets
Keeps track of unassigned tablets, assigns them
Metadata root from chubby, other metadata tablets
assigned before scanning.

69

Tablet Assignment

Each tablet is assigned to one tablet
server at a time.
Master server keeps track of the set of live
tablet servers and current assignments of
tablets to servers. Also keeps track of
unassigned tablets.
When a tablet is unassigned, master
assigns the tablet to an tablet server with
sufficient room.

70

