15-446 Distributed Systems Spring 2009

Localization

Announcements

- Assignment HW3 due 4/21
- · No lecture
 - 4/16 Carnival
- · Schedule change
 - 4/21 lecture moved to recitation slot on 4/22 (Wed)
 - Location TBA

Localization

- What is localization? → Telling where you are
- Why? → Location Base Services
- E-911 Emergency assistance: Where are they?
 - Advertising: You are here!
 - Social networking: Where are my friends?
 - Tracking: Where are you going?
 - Virtual Tour: I am close to...
 - Service discovery: What is here?
 - Device recovery: Where's my stolen laptop?

Overview

- GPS
- WiFi Positioning Systems
- IP2Geo

Global Positioning System

- NAVSTAR-GPS
 - NAVigation System with Timing And Ranging Global Positioning System
 - Satellite-based distributed system
- > First satellite launched in 1978 by DoD
- > Fully operational in April, 1995.
- Civilian use(Standard Positioning Service) and military use (Precise Positioning Service)

Basic function of GPS

1. Exact location (longitude, latitude,height) Accuracy ~15m

2. Precisetime (UTC)
Accuracy ~45ns

Three segments of GPS

Control Segment

Space Segment

- 28 satellites in 6 orbits
- Each satellite has 4 atomic clocks
- Orbits the Earth at 20,180km
- 12 hours orbital time
- Atleast4satellites can be seen in any part of the planet

Positioning is based on time

- Satellite keeps an accurate time
 - Atomic clock synchronize with each other
 - Regularly adjusted from control segments on Earth
- Each satellite broadcasts the exact location and time at 1575.42 MHz (L1).
- Receiver can calculate the travel time if the clock is synchronized.

Positioning with synchronized clock

distance = travel time x The speed of light

Positioning with synchronized clock

Accounting for the clock offset

- · Satellites' clocks are well synchronized
- Receiver clock is not synchronized.
- Need to estimate 4 unknowns
 - (x, y, z, Δt)
 - $-\Delta t$ is the clock offset of the receiver
 - R: real distance, PSR: estimated distance
 - $-R = PSR \Delta t \cdot c$
- $R = \sqrt{(X_{Sat} X_{User})^2 + (Y_{Sat} Y_{User})^2 + (Z_{Sat} Z_{User})^2}$
- Need 4 satellites

GPS accuracy

- ~15 meter (worsens in urban canyon)
- Source of Error (speed of light changes)

Cause of error	Error	
Effects of the ionosphere	4 m	
Satellite clocks	2.1 m	
Receiver measurements	0.5 m	
Ephemeris data	2.1	
Effects of the troposphere	0.7	
Multipath	1.4 m	
Total RMS value (unfiltered)	5.3 m	
Total RMS value (filtered)	5.1	
Vertical error (1 sigma (68.3%) VDOP=2.5)	12.8m	
Vertical error (2 sigma (95.5.3%) VDOP=2.5)	25.6m	
Horizontal error (1 sigma (68.3%) HDOP=2.0)	10.2m	
Horizontal error (2 sigma (95.5%) HDOP=2.0)	20.4m	

Table 4: Cause of error

Wide Area Augmentation System

- Error correction system that uses reference ground stations
- 25 reference stations in US
- Monitor GPS and send correction values to two geo-stationary satellites
- The two geo-stationary satellites broadcast back to Earth on GPS L1 frequency (1575.42MHz)
- Only available in North America, WASS enabled GPS receiver needed

WAAS

With Selective Availability set to zero, and under ideal conditions, a GPS receiver without WAAS can achieve fifteen meter accuracy most of the time.* Under ideal conditions a WAAS equipped GPS receiver can achieve three meter accuracy 95% of the time.*

Overview

- Need for localization
 - Location Based Service
- GPS
- · WiFi Positioning Systems
- IP2Geo

WiFi Positioning System

- Exploit wide-scale WiFi deployment
 - WiFi density increasing to point of overlap
- WiFi base stations broadcast unique IDs
- Position WiFi devices using a map of AP's MAC to location

PlaceLab

- Keeps a database of WiFi measurements
 - Maps BSSID (MAC address) to locations
 - Wigle.net, public war driving database
- Mobile users download part of the DB
- Match the current observation of APs to location using the DB
- · Accuracy around 20m

PlaceLab localization algorithms

- · Centroid/Weighted Centroid
 - Locates the client at the average location of the Aps

- Finger printing
 - Requires signal map at each location
 - Find the nearest neighbor in signal strength space
- · Particle filter
 - Requires signal map at each location
 - Takes account of the user movement

PlaceLab

- · Localization algorithms used to locate mobile users
 - Centroid/Weighted Centroid
 - Finger printing
 - Particle filter

article filter			High density	low density
Algorithm Downto		Downtown	Ravenna	Kirkland
		(meters)	(meters)	(meters)
centroid	basic	24.4	14.8	37.0
	weighted	23.4	14.5	37.0
fingerprint	radar	18.5	15.3	30.0
(k=4)	rank	20.3	16.7	59.5
particle filter	signal strength	18.0	14.4	29.7
	response rate	21.3	12.9	28.6

Table 2: Median error in meters for all of our algorithms across the three areas.

PlaceLab

- Requires a database of WiFi hotspots
- - Infrastructure (wireless APs) are already there
 - Wireless device is cheap
- Coverage
 - Indoors as well as outdoors
 - Most areas have dense deployment of APs

SkyHook

- Commercial system extended from PlaceLab
- · Uses WiFi, GPS, Cell tower (hybrid approach)
- · Updates the database regularly
- Default app in iPhone, iPods

Indoor localization system

- · Usually more fine grained localization needed
 - Often 3D (2.5D): x,y and floor
 - Often want to locate users in an office
- RADAR
 - Trilateration based on signal strength from APs
 - Hard to predict distance based on signal strength because signal is blocked by walls and structures
 - Use site-surveying
- · Lots of research has been done
 - MIT Cricket (RF + ultrasound)
 - AeroScout (WiFi), Ekahau (WiFi)

Overview

- · Need for localization
 - Location Based Service
- GPS
- · WiFi Positioning Systems
- IP2Geo

IP-Geography Mapping

- Goal: Infer the geographic location of an Internet host given its IP address.
- Why is this interesting?
 - enables location-aware applications
 - example applications:
 - · Territorial Rights Management
 - Targeted Advertising
 - Network Diagnostics
- Why is this hard?
 - IP address does not inherently indicate location
 - proxies hide client identity, limit visibility into ISPs
- Desirable features of a solution
 - easily deployable, accuracy, confidence indicator

IP2Geo

- Infer geo-location of IP based on various "properties"
 - DNS names of routers often indicate location
 - Network delay correlates with geographic distance
 - Subnets are clustered
- · Three techniques
 - GeoTrack
 - GeoPing
 - GeoClusters

21

GeoTrack

- · Location info often embedded in router DNS names
 - ngcore1-serial8-0-0-0.Seattle.cw.net, 184.atm6-0.xr2.ewr1.alter.net
 - GeoTrack operation
 - do a traceroute to the target IP address
 - determine location of last recognizable router along the path
- Key ideas in GeoTrack
 - partitioned city code database to minimize chance of false match
 - ISP-specific parsing rules
 - delay-based correction
- · Limitations
 - routers may not respond to traceroute
 - DNS name may not contain location information or lookup may fail
 - target host may be behind a proxy or a firewall

GeoPing

- Nearest Neighbor in Delay Space(NNDS)
 - delay vector: delay measurements from a host to a fixed set of landmarks
 - delay map: database of delay vectors and locations for a set of known hosts

 $(50,45,20,35) \leftrightarrow Indianapolis, IN$ $(10,20,40,60) \leftrightarrow Seattle, WA$

- target location corresponds to best match in delay map
- optimal dimensionality of delay vector is 7-9

Delay Map Construction

Delay Vector = (50,45,20,35) ↔ Indianapolis, IN

GeoCluster

- Basic Idea: identify geographic clusters
 - partial IP-location database
 - construct a database of the form (IPaddr, likely location)
 - partial in coverage and potentially inaccurate
 - sources: HotMail registration/login logs, TVGuide query logs
 - cluster identification
 - use prefix info. from BGP tables to identify topological clusters
 - assign each cluster a location based on IP-location database
 - do sub-clustering when no consensus on a cluster's location
 - location of target IP address is that of best matching cluster

32

Constructing IP-Location Database

Registration logs Login logs User A ↔ 128.11.20.35 User B ↔ 128.11.35.123 User A ↔ San Francisco, CA User B ↔ Berkeley, CA User C ↔ Little Rock, AK User C ↔ 128.11.132.40 User D ↔ San Francisco, CA User D ↔ 128.11.20.145 User E ↔ New York, NY User E ↔ 128.11.100.23 User F ↔ Clinton, AK User F ↔ 128.11.163.112 128.11.20.35 ↔ San Francisco, CA $128.11.35.123 \leftrightarrow Berkeley, CA$ IP-location 128.11.132.40 ↔ Little Rock, AK database 128.11.20.145 ↔ San Francisco, CA 128.11.100.23 ↔ New York, NY 128.11.163.112 ↔ Clinton, AK

Geographic sub-clusters in a cluster

Geographic sub-clusters in a cluster

Performance

Median Error: GeoTrack:102 km, GeoPing: 382 km, GeoCluster: 28 km

IP2Geo Conclusions

- IP2Geo encompasses a diverse set of techniques
 - GeoTrack: DNS names
 - GeoPing: network delay
 - GeoCluster: geographic clusters
- · Median error 20-400 km
 - GeoCluster also provides confidence indicator
- · Each technique best suited for a different purpose
 - GeoTrack: locating routers, tracing geographic path
 - GeoPing: location determination for proximity-based routing (e.g., CoonNet)
 - GeoCluster: best suited for location-based services
- Publications at SIGCOMM 2001 & USENIX 2002

Summary

- Location based services require the location of users
- Different localization systems are built for different purposes
- Each localization system has different performance and limitations
- Localization and location based systems are interesting/active area of research