
L-19 P2P

Scaling Problem

Millions of clients server and network
meltdown

2

P2P System

Leverage the resources of client machines
(peers)

Computation, storage, bandwidth

3

Why p2p?

Harness lots of spare capacity
1 Big Fast Server: 1Gbit/s, $10k/month++
2,000 cable modems: 1Gbit/s, $??
1M end-hosts: Uh, wow.

Build self-managing systems / Deal with
huge scale

Same techniques attractive for both companies /
servers / p2p

E.g., Akamai’s 14,000 nodes
Google’s 100,000+ nodes

4

Outline

p2p file sharing techniques
Downloading: Whole-file vs. chunks
Searching

Centralized index (Napster, etc.)
Flooding (Gnutella, etc.)
Smarter flooding (KaZaA, …)
Routing (Freenet, etc.)

Uses of p2p - what works well, what
doesn’t?

servers vs. arbitrary nodes
Hard state (backups!) vs soft-state (caches)

Challenges
Fairness, freeloading, security, …

5

P2p file-sharing

Quickly grown in popularity
Dozens or hundreds of file sharing applications
35 million American adults use P2P networks --
29% of all Internet users in US!
Audio/Video transfer now dominates traffic on the
Internet

6

What’s out there?

Central Flood Super-
node flood

Route

Whole

File

Napster Gnutella Freenet

Chunk

Based

BitTorrent KaZaA
(bytes, not
chunks)

DHTs

7

Searching

Internet

N1

N2 N3

N6 N5

N4

Publisher

Key=“title”
Value=MP3 data…

Client

Lookup(“title”)

?

8

Searching 2

Needles vs. Haystacks
Searching for top 40, or an obscure punk track from
1981 that nobody’s heard of?

Search expressiveness
Whole word? Regular expressions? File names?
Attributes? Whole-text search?

(e.g., p2p gnutella or p2p google?)

9

Framework

Common Primitives:
Join: how to I begin participating?
Publish: how do I advertise my file?
Search: how to I find a file?

Fetch: how to I retrieve a file?

10

Outline

Centralized Database
Napster

Query Flooding
Gnutella
KaZaA

Swarming
BitTorrent

Unstructured Overlay Routing
Freenet

Structured Overlay Routing
Distributed Hash Tables

11

Napster

History
1999: Sean Fanning launches Napster
Peaked at 1.5 million simultaneous users
Jul 2001: Napster shuts down

Centralized Database:
Join: on startup, client contacts central server

Publish: reports list of files to central server
Search: query the server => return someone that

stores the requested file
Fetch: get the file directly from peer

12

Napster: Publish

I have X, Y, and Z!

Publish

insert(X,

 123.2.21.23)
...

123.2.21.23

13

Napster: Search

Where is file A?

Query Reply

search(A)

-->
123.2.0.18 Fetch

123.2.0.18

14

Napster: Discussion

Pros:
Simple
Search scope is O(1)
Controllable (pro or con?)

Cons:
Server maintains O(N) State
Server does all processing
Single point of failure

15

Outline

Centralized Database
Napster

Query Flooding
Gnutella
KaZaA

Swarming
BitTorrent

Unstructured Overlay Routing
Freenet

Structured Overlay Routing
Distributed Hash Tables

16

Gnutella

History
In 2000, J. Frankel and T. Pepper from Nullsoft released
Gnutella
Soon many other clients: Bearshare, Morpheus, LimeWire,
etc.
In 2001, many protocol enhancements including
“ultrapeers”

Query Flooding:
Join: on startup, client contacts a few other nodes; these
become its “neighbors”
Publish: no need
Search: ask neighbors, who ask their neighbors, and so
on... when/if found, reply to sender.

TTL limits propagation
Fetch: get the file directly from peer

17

Gnutella: Overview

Query Flooding:
Join: on startup, client contacts a few other nodes;
these become its “neighbors”
Publish: no need
Search: ask neighbors, who ask their neighbors, and
so on... when/if found, reply to sender.

TTL limits propagation
Fetch: get the file directly from peer

18

I have file A.

I have file A.

Gnutella: Search

Where is file A?

Query

Reply

19

Gnutella: Discussion

Pros:
Fully de-centralized
Search cost distributed
Processing @ each node permits powerful search
semantics

Cons:
Search scope is O(N)
Search time is O(???)
Nodes leave often, network unstable

TTL-limited search works well for haystacks.
For scalability, does NOT search every node. May
have to re-issue query later

20

KaZaA

History
In 2001, KaZaA created by Dutch company Kazaa BV
Single network called FastTrack used by other clients
as well: Morpheus, giFT, etc.
Eventually protocol changed so other clients could no
longer talk to it

“Supernode” Query Flooding:
Join: on startup, client contacts a “supernode” ... may
at some point become one itself
Publish: send list of files to supernode
Search: send query to supernode, supernodes flood
query amongst themselves.
Fetch: get the file directly from peer(s); can fetch
simultaneously from multiple peers

21

KaZaA: Network Design

“Super Nodes”

22

KaZaA: File Insert

I have X!

Publish

insert(X,

 123.2.21.23)
...

123.2.21.23

23

KaZaA: File Search

Where is file A?

Query

search(A)

-->
123.2.0.18

search(A)

-->
123.2.22.50

Replies

123.2.0.18

123.2.22.50

24

KaZaA: Fetching

More than one node may have requested file...
How to tell?

Must be able to distinguish identical files
Not necessarily same filename
Same filename not necessarily same file...

Use Hash of file
KaZaA uses UUHash: fast, but not secure
Alternatives: MD5, SHA-1

How to fetch?
Get bytes [0..1000] from A, [1001...2000] from B
Alternative: Erasure Codes

25

KaZaA: Discussion

Pros:
Tries to take into account node heterogeneity:

Bandwidth
Host Computational Resources

Host Availability (?)

Rumored to take into account network locality

Cons:
Mechanisms easy to circumvent
Still no real guarantees on search scope or search time

Similar behavior to gnutella, but better.

26

Stability and Superpeers

Why superpeers?
Query consolidation

Many connected nodes may have only a few files
Propagating a query to a sub-node would take more b/w
than answering it yourself

Caching effect
Requires network stability

Superpeer selection is time-based
How long you’ve been on is a good predictor of
how long you’ll be around.

27

Outline

Centralized Database
Napster

Query Flooding
Gnutella
KaZaA

Swarming
BitTorrent

Unstructured Overlay Routing
Freenet

Structured Overlay Routing
Distributed Hash Tables

28

BitTorrent: History

In 2002, B. Cohen debuted BitTorrent
Key Motivation:

Popularity exhibits temporal locality (Flash Crowds)
E.g., Slashdot effect, CNN on 9/11, new movie/game
release

Focused on Efficient Fetching, not Searching:
Distribute the same file to all peers
Single publisher, multiple downloaders

Has some “real” publishers:
Blizzard Entertainment using it to distribute the beta of
their new game

29

BitTorrent: Overview

Swarming:
Join: contact centralized “tracker” server, get a
list of peers.
Publish: Run a tracker server.
Search: Out-of-band. E.g., use Google to find a
tracker for the file you want.
Fetch: Download chunks of the file from your
peers. Upload chunks you have to them.

Big differences from Napster:
Chunk based downloading
“few large files” focus
Anti-freeloading mechanisms

30

BitTorrent: Publish/Join

Tracker

31

BitTorrent: Fetch

32

BitTorrent: Sharing Strategy

Employ “Tit-for-tat” sharing strategy
A is downloading from some other people

A will let the fastest N of those download from him

Be optimistic: occasionally let freeloaders
download

Otherwise no one would ever start!
Also allows you to discover better peers to download
from when they reciprocate

Let N peop

Goal: Pareto Efficiency
Game Theory: “No change can make anyone
better off without making others worse off”
Does it work? lots of work on breaking/
improving this

33

BitTorrent: Summary

Pros:
Works reasonably well in practice
Gives peers incentive to share resources; avoids
freeloaders

Cons:
Pareto Efficiency relatively weak
Central tracker server needed to bootstrap
swarm

34

Outline

Centralized Database
Napster

Query Flooding
Gnutella
KaZaA

Swarming
BitTorrent

Unstructured Overlay Routing
Freenet

Structured Overlay Routing
Distributed Hash Tables

35

Distributed Hash Tables: History

Academic answer to p2p
Goals

Guatanteed lookup success

Provable bounds on search time
Provable scalability

Makes some things harder
Fuzzy queries / full-text search / etc.

Read-write, not read-only
Hot Topic in networking since introduction
in ~2000/2001

36

DHT: Overview

Abstraction: a distributed “hash-
table” (DHT) data structure:

put(id, item);

item = get(id);

Implementation: nodes in system form a
distributed data structure

Can be Ring, Tree, Hypercube, Skip List, Butterfly

Network, ...

37

DHT: Overview (2)

Structured Overlay Routing:
Join: On startup, contact a “bootstrap” node and integrate
yourself into the distributed data structure; get a node id
Publish: Route publication for file id toward a close node id
along the data structure
Search: Route a query for file id toward a close node id.
Data structure guarantees that query will meet the
publication.
Fetch: Two options:

Publication contains actual file => fetch from where query stops
Publication says “I have file X” => query tells you 128.2.1.3

has X, use IP routing to get X from 128.2.1.3

38

DHT: Example - Chord

Associate to each node and file a unique id in
an uni-dimensional space (a Ring)

E.g., pick from the range [0...2m]
Usually the hash of the file or IP address

Properties:
Routing table size is O(log N) , where N is the
total number of nodes
Guarantees that a file is found in O(log N) hops

from MIT in 2001

39

DHT: Consistent Hashing

N32

N90

N105

K80

K20

K5

Circular ID space

Key 5
Node 105

A key is stored at its successor: node with next higher ID

40

DHT: Chord Basic Lookup

N32

N90

N105

N60

N10

N120

K80

“Where is key 80?”

“N90 has K80”

41

DHT: Chord “Finger Table”

N80

1/2 1/4

1/8

1/16
1/32
1/64
1/128

• Entry i in the finger table of node n is the first node that
succeeds or equals n + 2i

• In other words, the ith finger points 1/2n-i way around the
ring

42

DHT: Chord Join

Assume an identifier space
[0..8]

Node n1 joins 0

1

2

3
4

5

6

7

i id+2
i
succ

0 2 1

1 3 1
2 5 1

Succ. Table

43

DHT: Chord Join

Node n2 joins
0

1

2

3
4

5

6

7

i id+2
i
succ

0 2 2

1 3 1
2 5 1

Succ. Table

i id+2
i
succ

0 3 1

1 4 1
2 6 1

Succ. Table

44

DHT: Chord Join

Nodes n0, n6 join

0

1

2

3
4

5

6

7

i id+2
i
succ

0 2 2

1 3 6
2 5 6

Succ. Table

i id+2
i
succ

0 3 6

1 4 6
2 6 6

Succ. Table

i id+2
i
succ

0 1 1

1 2 2
2 4 0

Succ. Table

i id+2
i
succ

0 7 0

1 0 0
2 2 2

Succ. Table

45

DHT: Chord Join

Nodes:
n1, n2, n0, n6

Items:
f7, f2

0

1

2

3
4

5

6

7 i id+2
i
succ

0 2 2

1 3 6
2 5 6

Succ. Table

i id+2
i
succ

0 3 6

1 4 6
2 6 6

Succ. Table

i id+2
i
succ

0 1 1

1 2 2
2 4 0

Succ. Table

7

Items

1

Items

i id+2
i
succ

0 7 0

1 0 0
2 2 2

Succ. Table

46

DHT: Chord Routing
Upon receiving a query
for item id, a node:
Checks whether stores
the item locally
If not, forwards the
query to the largest
node in its successor
table that does not
exceed id

0

1

2

3
4

5

6

7 i id+2
i
succ

0 2 2

1 3 6
2 5 6

Succ. Table

i id+2
i
succ

0 3 6

1 4 6
2 6 6

Succ. Table

i id+2
i
succ

0 1 1

1 2 2
2 4 0

Succ. Table

7

Items

1

Items

i id+2
i
succ

0 7 0

1 0 0
2 2 2

Succ. Table

query(7)

47

DHT: Chord Summary

Routing table size?
Log N fingers

Routing time?
Each hop expects to 1/2 the distance to the desired id
=> expect O(log N) hops.

Pros:
Guaranteed Lookup

O(log N) per node state and search scope

Cons:
No one uses them? (only one file sharing app)
Supporting non-exact match search is hard

48

P2P-enabled Applications:
Flat-Naming

Most naming schemes use hierarchical
names to enable scaling
DHT provide a simple way to scale flat
names

E.g. just insert name resolution into Hash(name)

49 50

Resolution

Service

Flat Names Example

<A HREF=

http://f012012/pub.pdf

>here is a paper

HTTP GET: /docs/

pub.pd
f

10.1.2.3

/docs/

20.2.4.6

HTTP GET: /~user/pubs/

pub.pdf

(10.1.2.3,80,

/docs/)
(20.2.4.6,80,

/~user/pubs/)

/~user/pubs/

• SID abstracts all object reachability information

• Objects: any granularity (files, directories)

• Benefit: Links (referrers) don’t break
Domain H

Domain Y

51

i3: Motivation

Today’s Internet based on point-to-point
abstraction

Applications need more:
Multicast

Mobility
Anycast

Existing solutions:
Change IP layer
Overlays

So, what’s the problem?

A different solution for each service

Multicast

S1

C1 C2

S2

R RP RR

RR

RP: Rendezvous

Point

52

Mobility

HA FA

Home Network

Network 5

5.0.0.1 12.0.0.4

Sender

Mobile

Node

5.0.0.3

53

The i3 solution

Solution:
Add an indirection layer on top of IP
Implement using overlay networks

Solution Components:
Naming using “identifiers”
Subscriptions using “triggers”
DHT as the gluing substrate

54

Indirection

Every problem

in CS …

Only primitive

needed

i3: Implementation

Use a Distributed Hash Table
Scalable, self-organizing, robust
Suitable as a substrate for the Internet

55

Sender Receiver (R)

ID R

trigger

send(ID, data)
send(R, data)

DHT.put(id)

IP.route(R)

DHT.put(id)

P2P-enabled Applications:
Distributed File Systems

56

L -7; 11-5-04 © Srinivasan Seshan, 2004 57

De-centralized file systems

CFS [Chord]
Block based read-only storage

PAST [Pastry]
File based read-only storage

Ivy [Chord]
Block based read-write storage

L -7; 11-5-04 © Srinivasan Seshan, 2004 58

CFS

Blocks are inserted into Chord DHT
insert(blockID, block)
Replicated at successor list nodes

Read root block through public key of file
system
Lookup other blocks from the DHT

Interpret them to be the file system

Cache on lookup path

L -7; 11-5-04 © Srinivasan Seshan, 2004 59

CFS

signature

public key

Root Block

D

Directory

Block

H(D)

F

H(F)

File Block

B1 B2

Data Block Data Block

H(B1)
H(B2)

P2P-enabled Applications:
Self-Certifying Names

Name = Hash(pubkey, salt)

Value = <pubkey, salt, data, signature>
can verify name related to pubkey and pubkey signed

data

Can receive data from caches or other 3rd
parties without worry

much more opportunistic data transfer

60

When are p2p / DHTs useful?

Caching and “soft-state” data
Works well! BitTorrent, KaZaA, etc., all use peers as
caches for hot data

Finding read-only data
Limited flooding finds hay
DHTs find needles

BUT

61

A Peer-to-peer Google?

Complex intersection queries (“the” +
“who”)

Billions of hits for each term alone

Sophisticated ranking
Must compare many results before returning a
subset to user

Very, very hard for a DHT / p2p system
Need high inter-node bandwidth
(This is exactly what Google does - massive
clusters)

62

Writable, persistent p2p

Do you trust your data to 100,000
monkeys?
Node availability (aka “churn”) hurts

Ex: Store 5 copies of data on different nodes
When someone goes away, you must replicate
the data they held
Hard drives are *huge*, but cable modem upload
bandwidth is tiny - perhaps 10 Gbytes/day
Takes many days to upload contents of 200GB
hard drive. Very expensive leave/replication
situation!

63

P2P: Summary

Many different styles; remember pros and cons of
each

centralized, flooding, swarming, unstructured and
structured routing

Lessons learned:
Single points of failure are very bad
Flooding messages to everyone is bad
Underlying network topology is important
Not all nodes are equal
Need incentives to discourage freeloading
Privacy and security are important
Structure can provide theoretical bounds and guarantees

64

