
L-18 More DFS

2

Review of Last Lecture

Distributed file systems functionality
Implementation mechanisms example

Client side: VFS interception in kernel
Communications: RPC
Server side: service daemons

Design choices
Topic 1: name space construction

Mount (NFS) vs. global name space (AFS)

Topic 2: AAA in distributed file systems
Kerberos

Topic 3: client-side caching
NFS and AFS

3

Today's Lecture

DFS design comparisons continued
Topic 4: file access consistency

NFS, AFS, Sprite, and DCE DFS

Topic 5: Locking

Other types of DFS
Coda – disconnected operation
LBFS – weakly connected operation

Topic 4: File Access Consistency

In UNIX local file system, concurrent file
reads and writes have “sequential”
consistency semantics

Each file read/write from user-level app is an atomic
operation

The kernel locks the file vnode

Each file write is immediately visible to all file readers

Neither NFS nor AFS provides such
concurrency control

NFS: “sometime within 30 seconds”

AFS: session semantics for consistency

4

Semantics of File Sharing

Four ways of dealing with the shared files in
a distributed system.

5

Session Semantics in AFS v2

What it means:
A file write is visible to processes on the same box
immediately, but not visible to processes on other
machines until the file is closed

When a file is closed, changes are visible to new
opens, but are not visible to “old” opens

All other file operations are visible everywhere
immediately

Implementation
Dirty data are buffered at the client machine until file
close, then flushed back to server, which leads the

server to send “break callback” to other clients

6

AFS Write Policy

Data transfer is by chunks
Minimally 64 KB
May be whole-file

Writeback cache
Opposite of NFS “every write is sacred”
Store chunk back to server

When cache overflows
On last user close()

...or don't (if client machine crashes)

Is writeback crazy?
Write conflicts “assumed rare”
Who wants to see a half-written file?

7

Access Consistency in the
“Sprite” File System

Sprite: a research file system developed in
UC Berkeley in late 80’s
Implements “sequential” consistency

Caches only file data, not file metadata
When server detects a file is open on multiple

machines but is written by some client, client caching
of the file is disabled; all reads and writes go through
the server

“Write-back” policy otherwise
Why?

8

Implementing Sequential
Consistency

How to identify out-of-date data blocks
Use file version number
No invalidation
No issue with network partition

How to get the latest data when read-write
sharing occurs

Server keeps track of last writer

9

Implication of “Sprite” Caching

Server must keep states!
Recovery from power failure
Server failure doesn’t impact consistency
Network failure doesn’t impact consistency

Price of sequential consistency: no client
caching of file metadata; all file opens go
through server

Performance impact
Suited for wide-area network?

10

“Tokens” in DCE DFS

How does one implement sequential
consistency in a file system that spans multiple
sites over WAN

Callbacks are evolved into 4 kinds of “Tokens”
Open tokens: allow holder to open a file; submodes: read,
write, execute, exclusive-write
Data tokens: apply to a range of bytes

“read” token: cached data are valid
“write” token: can write to data and keep dirty data at client

Status tokens: provide guarantee of file attributes
“read” status token: cached attribute is valid
“write” status token: can change the attribute and keep the
change at the client

Lock tokens: allow holder to lock byte ranges in the file

11

Compatibility Rules for Tokens

Open tokens:
Open for exclusive writes are incompatible with any
other open, and “open for execute” are incompatible
with “open for write”
But “open for write” can be compatible with “open for
write” --- why?

Data tokens: R/W and W/W are
incompatible if the byte range overlaps
Status tokens: R/W and W/W are
incompatible
Data token and status token: compatible or
incompatible?

12

Token Manager

Resolve conflicts: block the new requester
and send notification to other clients’ tokens
Handle operations that request multiple
tokens

Example: rename

How to avoid deadlocks

13

Topic 5: File Locking for
Concurrency Control

Issues
Whole file locking or byte-range locking
Mandatory or advisory

UNIX: advisory
Windows: if a lock is granted, it’s mandatory on all other
accesses

NFS: network lock manager (NLM)
NLM is not part of NFS v2, because NLM is stateful
Provides both whole file and byte-range locking

Advisory
Relies on “network status monitor” for server

monitoring

14

Issues in Locking
Implementations

Failure recovery
What if server fails?

Lock holders are expected to re-establish the locks
during the “grace period”, during which no other locks
are granted

What if a client holding the lock fails?
What if network partition occurs?

15

Wrap up: Design Issues

Name space
Authentication
Caching
Consistency
Locking

16

AFS Retrospective

Small AFS installations are hard
Step 1: Install Kerberos

2-3 servers
Inside locked boxes!

Step 2: Install ~4 AFS servers (2 data, 2 pt/vldb)
Step 3: Explain Kerberos to your users

Ticket expiration!

Step 4: Explain ACLs to your users

17

AFS Retrospective

Worldwide file system
Good security, scaling
Global namespace
“Professional” server infrastructure per cell

Don't try this at home

Only ~190 AFS cells (2002-03)
8 are cmu.edu, 14 are in Pittsburgh

“No write conflict” model only partial
success

18

19

Today's Lecture

DFS design comparisons continued
Topic 4: file access consistency

NFS, AFS, Sprite, and DCE DFS

Topic 5: Locking

Other types of DFS
Coda – disconnected operation
LBFS – weakly connected operation

Background

We are back to 1990s.
Network is slow and not stable
Terminal “powerful” client

33MHz CPU, 16MB RAM, 100MB hard drive

Mobile Users appeared
1st IBM Thinkpad in 1992

We can do work at client without network

20

CODA

Successor of the very successful Andrew
File System (AFS)
AFS

First DFS aimed at a campus-sized user community
Key ideas include

open-to-close consistency
callbacks

21

Hardware Model

CODA and AFS assume that client
workstations are personal computers
controlled by their user/owner

Fully autonomous
Cannot be trusted

CODA allows owners of laptops to operate
them in disconnected mode

Opposite of ubiquitous connectivity

22

Accessibility

Must handle two types of failures
Server failures:

Data servers are replicated

Communication failures and voluntary
disconnections

Coda uses optimistic replication and file hoarding

23

Design Rationale

Scalability
Callback cache coherence (inherit from AFS)
Whole file caching
Fat clients. (security, integrity)

Avoid system-wide rapid change

Portable workstations
User’s assistance in cache management

24

Design Rationale –Replica Control

Pessimistic
Disable all partitioned writes

- Require a client to acquire control of a cached object
prior to disconnection

Optimistic
Assuming no others touching the file

- sophisticated: conflict detection
+ fact: low write-sharing in Unix
+ high availability: access anything in range

25

What about Consistency?

Pessimistic replication control
protocols guarantee the consistency of
replicated in the presence of any non-
Byzantine failures

Typically require a quorum of replicas to allow access

to the replicated data
Would not support disconnected mode

26

Pessimistic Replica Control

Would require client to acquire exclusive
(RW) or shared (R) control of cached
objects before accessing them in
disconnected mode:

Acceptable solution for voluntary disconnections

Does not work for involuntary disconnections

What if the laptop remains disconnected for

a long time?

27

Leases

We could grant exclusive/shared control of
the cached objects for a limited amount of
time
Works very well in connected mode

Reduces server workload

Server can keep leases in volatile storage as long as
their duration is shorter than boot time

Would only work for very short
disconnection periods

28

Optimistic Replica Control (I)

Optimistic replica control allows access
in every disconnected mode

Tolerates temporary inconsistencies

Promises to detect them later
Provides much higher data availability

29

Optimistic Replica Control (II)

Defines an accessible universe: set of
replicas that the user can access

Accessible universe varies over time

At any time, user
Will read from the latest replica(s) in his accessible

universe
Will update all replicas in his accessible universe

30

Coda (Venus) States

1. Hoarding:
Normal operation mode

2. Emulating:
Disconnected operation mode

3. Reintegrating:
Propagates changes and detects inconsistencies

Hoarding

Emulating Recovering

31

Hoarding

Hoard useful data for disconnection
Balance the needs of connected and
disconnected operation.

Cache size is restricted
Unpredictable disconnections

Prioritized algorithm – cache manage
 hoard walking – reevaluate objects

32

Prioritized algorithm

User defined hoard priority p: how interest
it is?
Recent Usage q
Object priority = f(p,q)
Kick out the one with lowest priority

+ Fully tunable
Everything can be customized

- Not tunable (?)
- No idea how to customize

33

Hoard Walking

Equilibrium – uncached obj < cached obj
Why it may be broken? Cache size is limited.

Walking: restore equilibrium
Reloading HDB (changed by others)
Reevaluate priorities in HDB and cache
Enhanced callback

Increase scalability, and availability
Decrease consistency

34

Emulation

 In emulation mode:
Attempts to access files that are not in the client
caches appear as failures to application
All changes are written in a persistent log,

the client modification log (CML)
Venus removes from log all obsolete entries like those

pertaining to files that have been deleted

35

Persistence

Venus keeps its cache and related data
structures in non-volatile storage
All Venus metadata are updated through
atomic transactions

Using a lightweight recoverable virtual memory

(RVM) developed for Coda
Simplifies Venus design

36

Reintegration

When workstation gets reconnected, Coda
initiates a reintegration process

Performed one volume at a time

Venus ships replay log to all volumes
Each volume performs a log replay algorithm

Only care write/write confliction
Succeed?

Yes. Free logs, reset priority
No. Save logs to a tar. Ask for help

37

Performance

Duration of Reintegration
A few hours disconnection 1 min

Cache size
100MB at client is enough for a “typical” workday

Conflicts
No Conflict at all! Why?

Over 99% modification by the same person
Two users modify the same obj within a day:

<0.75%

38

Coda Summary

Puts scalability and availability before
data consistency

Unlike NFS

Assumes that inconsistent updates are very
infrequent
Introduced disconnected operation mode
and file hoarding

39

Remember this slide?

We are back to 1990s.
Network is slow and not stable
Terminal “powerful” client

33MHz CPU, 16MB RAM, 100MB hard drive

Mobile Users appear
1st IBM Thinkpad in 1992

40

What’s now?

We are in 2000s now.
Network is fast and reliable in LAN
“powerful” client very powerful client

2.4GHz CPU, 1GB RAM, 120GB hard drive

Mobile Users everywhere
Do we still need disconnection?

How many people are using coda?

41

Do we still need disconnection?

WAN and wireless is not very reliable, and is
slow
PDA is not very powerful

200MHz strongARM, 128M CF Card
Electric power constrained

LBFS (MIT) on WAN, Coda and Odyssey
(CMU) for mobile users

Adaptation is also important

42

What is the future?

High bandwidth, reliable wireless
everywhere
Even PDA is powerful

2GHz, 1G RAM/Flash

What will be the research topic in FS?
P2P?

43 44

Today's Lecture

DFS design comparisons continued
Topic 4: file access consistency

NFS, AFS, Sprite, and DCE DFS

Topic 5: Locking

Other types of DFS
Coda – disconnected operation
LBFS – weakly connected operation

Low Bandwidth File System
Key Ideas

A network file systems for slow or wide-area
networks
Exploits similarities between files or
versions of the same file

Avoids sending data that can be found in the server’s

file system or the client’s cache

Also uses conventional compression and
caching
Requires 90% less bandwidth than
traditional network file systems

45

Working on slow networks

Make local copies
Must worry about update conflicts

Use remote login
Only for text-based applications

Use instead a LBFS
Better than remote login
Must deal with issues like auto-saves blocking the
editor for the duration of transfer

46

LBFS design

Provides close-to-open consistency
Uses a large, persistent file cache at client

Stores clients working set of files

LBFS server divides file it stores into chunks
and indexes the chunks by hash value
Client similarly indexes its file cache
Exploits similarities between files

LBFS never transfers chunks that the recipient already
has

47

Indexing

Uses the SHA-1 algorithm for hashing
It is collision resistant

Central challenge in indexing file chunks is
keeping the index at a reasonable size while
dealing with shifting offsets

Indexing the hashes of fixed size data blocks
Indexing the hashes of all overlapping blocks at all

offsets

48

LBFS indexing solution

Considers only non-overlapping chunks
Sets chunk boundaries based on file
contents rather than on position within a file
Examines every overlapping 48-byte region
of file to select the boundary regions called
breakpoints using Rabin fingerprints

When low-order 13 bits of region’s fingerprint equals
a chosen value, the region constitutes a breakpoint

49

Effects of edits on file chunks

Chunks of file before/after edits
Grey shading show edits

Stripes show 48byte regions with magic hash
values creating chunk boundaries

50

More Indexing Issues

Pathological cases
Very small chunks

Sending hashes of chunks would consume as much
bandwidth as just sending the file

Very large chunks
Cannot be sent in a single RPC

LBFS imposes minimum and maximum
chuck sizes

51

The Chunk Database

Indexes each chunk by the first 64 bits of
its SHA-1 hash
To avoid synchronization problems, LBFS
always recomputes the SHA-1 hash of any
data chunk before using it

Simplifies crash recovery

Recomputed SHA-1 values are also used to
detect hash collisions in the database

52

Conclusion

Under normal circumstances, LBFS
consumes 90% less bandwidth than
traditional file systems.
Makes transparent remote file access a
viable and less frustrating alternative to
running interactive programs on remote
machines.

53

