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Review of Last Lecture 

Distributed file systems functionality 
Implementation mechanisms example 

Client side: VFS interception in kernel 
Communications: RPC 
Server side: service daemons 

Design choices 
Topic 1: name space construction 

Mount (NFS) vs. global name space (AFS) 

Topic 2: AAA in distributed file systems 
Kerberos 

Topic 3: client-side caching 
NFS and AFS 
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Today's Lecture 

DFS design comparisons continued 
Topic 4: file access consistency 

NFS, AFS, Sprite, and DCE DFS 

Topic 5: Locking 

Other types of DFS 
Coda – disconnected operation 
LBFS – weakly connected operation 

Topic 4: File Access Consistency 

In UNIX local file system, concurrent file 
reads and writes have “sequential” 
consistency semantics 

Each file read/write from user-level app is an atomic 
operation 

The kernel locks the file vnode 

Each file write is immediately visible to all file readers 

Neither NFS nor AFS provides such 
concurrency control 

NFS: “sometime within 30 seconds” 

AFS: session semantics for consistency 
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Semantics of File Sharing 

Four ways of dealing with the shared files in 
a distributed system. 
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Session Semantics in AFS v2 

What it means: 
A file write is visible to processes on the same box 
immediately, but not visible to processes on other 
machines until the file is closed 

When a file is closed, changes are visible to new 
opens, but are not visible to “old” opens 

All other file operations are visible everywhere 
immediately 

Implementation 
Dirty data are buffered at the client machine until file 
close, then flushed back to server, which leads the 

server to send “break callback” to other clients 
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AFS Write Policy 

Data transfer is by chunks 
Minimally 64 KB 
May be whole-file 

Writeback cache 
Opposite of NFS “every write is sacred” 
Store chunk back to server 

When cache overflows 
On last user close() 

...or don't (if client machine crashes) 

Is writeback crazy? 
Write conflicts “assumed rare” 
Who wants to see a half-written file? 
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Access Consistency in the 
“Sprite” File System 

Sprite: a research file system developed in 
UC Berkeley in late 80’s 
Implements “sequential” consistency 

Caches only file data, not file metadata 
When server detects a file is open on multiple 

machines but is written by some client, client caching 
of the file is disabled; all reads and writes go through 
the server 

“Write-back” policy otherwise 
Why? 
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Implementing Sequential 
Consistency 

How to identify out-of-date data blocks 
Use file version number 
No invalidation 
No issue with network partition 

How to get the latest data when read-write 
sharing occurs 

Server keeps track of last writer 
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Implication of “Sprite” Caching 

Server must keep states! 
Recovery from power failure 
Server failure doesn’t impact consistency 
Network failure doesn’t impact consistency 

Price of sequential consistency: no client 
caching of file metadata; all file opens go 
through server 

Performance impact 
Suited for wide-area network? 

10 

“Tokens” in DCE DFS 

How does one implement sequential 
consistency in a file system that spans multiple 
sites over WAN 

Callbacks are evolved into 4 kinds of “Tokens” 
Open tokens: allow holder to open a file; submodes: read, 
write, execute, exclusive-write 
Data tokens: apply to a range of bytes 

“read” token: cached data are valid 
“write” token: can write to data and keep dirty data at client 

Status tokens: provide guarantee of file attributes 
“read” status token: cached attribute is valid 
“write” status token: can change the attribute and keep the 
change at the client 

Lock tokens: allow holder to lock byte ranges in the file 
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Compatibility Rules for Tokens 

Open tokens:  
Open for exclusive writes are incompatible with any 
other open, and “open for execute” are incompatible 
with “open for write” 
But “open for write” can be compatible with “open for 
write” --- why? 

Data tokens: R/W and W/W are 
incompatible if the byte range overlaps 
Status tokens: R/W and W/W are 
incompatible 
Data token and status token: compatible or 
incompatible? 
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Token Manager 

Resolve conflicts: block the new requester 
and send notification to other clients’ tokens 
Handle operations that request multiple 
tokens 

Example: rename 

How to avoid deadlocks 
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Topic 5: File Locking for 
Concurrency Control 

Issues 
Whole file locking or byte-range locking 
Mandatory or advisory 

UNIX: advisory 
Windows: if a lock is granted, it’s mandatory on all other 
accesses 

NFS: network lock manager (NLM) 
NLM is not part of NFS v2, because NLM is stateful 
Provides both whole file and byte-range locking 

Advisory 
Relies on “network status monitor” for server 

monitoring 
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Issues in Locking 
Implementations 

Failure recovery 
What if server fails? 

Lock holders are expected to re-establish the locks 
during the “grace period”, during which no other locks 
are granted 

What if a client holding the lock fails? 
What if network partition occurs? 
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Wrap up: Design Issues 

Name space 
Authentication 
Caching 
Consistency 
Locking 
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AFS Retrospective 

Small AFS installations are hard 
Step 1: Install Kerberos 

2-3 servers 
Inside locked boxes! 

Step 2: Install ~4 AFS servers (2 data, 2 pt/vldb) 
Step 3: Explain Kerberos to your users 

Ticket expiration! 

Step 4: Explain ACLs to your users 
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AFS Retrospective 

Worldwide file system 
Good security, scaling 
Global namespace 
“Professional” server infrastructure per cell 

Don't try this at home 

Only ~190 AFS cells (2002-03)  
8 are cmu.edu, 14 are in Pittsburgh 

“No write conflict” model only partial 
success 
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Today's Lecture 

DFS design comparisons continued 
Topic 4: file access consistency 

NFS, AFS, Sprite, and DCE DFS 

Topic 5: Locking 

Other types of DFS 
Coda – disconnected operation 
LBFS – weakly connected operation 

Background 

We are back to 1990s. 
Network is slow and not stable 
Terminal  “powerful” client 

33MHz CPU, 16MB RAM, 100MB hard drive 

Mobile Users appeared 
1st IBM Thinkpad in 1992 

We can do work at client without network 
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CODA 

Successor of the very successful Andrew 
File System (AFS) 
AFS 

First  DFS aimed at a campus-sized user community 
Key ideas include 

open-to-close consistency 
callbacks 
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Hardware Model 

CODA and AFS assume that client 
workstations are personal computers 
controlled by their user/owner 

Fully autonomous 
Cannot be trusted 

CODA allows owners of laptops  to operate 
them in disconnected mode 

Opposite of ubiquitous connectivity 

22 

Accessibility 

Must handle two types of failures 
Server failures: 

Data servers are replicated 

Communication failures and voluntary 
disconnections 

Coda uses optimistic replication  and  file hoarding 
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Design Rationale 

Scalability 
Callback cache coherence (inherit from AFS) 
Whole file caching 
Fat clients. (security, integrity) 

Avoid system-wide rapid change 

Portable workstations 
User’s assistance in cache management 
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Design Rationale –Replica Control 

Pessimistic 
Disable all partitioned writes  

- Require a client to acquire control of a cached object 
prior to disconnection 

Optimistic 
Assuming no others touching the file 

- sophisticated: conflict detection  
+ fact: low write-sharing in Unix 
+ high availability: access anything in range 
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What about Consistency? 

Pessimistic replication control 
protocols guarantee the consistency of 
replicated in the presence of any non-
Byzantine failures 

Typically require a quorum of replicas to allow access 

to the replicated data 
Would not support disconnected mode  
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Pessimistic Replica Control 

Would require client to acquire  exclusive 
(RW) or shared (R) control of cached 
objects before accessing them in 
disconnected mode: 

Acceptable solution for voluntary disconnections 

Does not work for involuntary disconnections 

What if the laptop remains disconnected for 

a long time? 
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Leases 

We could grant exclusive/shared control of 
the cached objects for a limited amount of 
time 
Works very well in connected mode  

Reduces server workload 

Server can keep leases in volatile storage as long as 
their duration is shorter than boot time 

Would only work for very short 
disconnection periods 
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Optimistic Replica Control (I) 

Optimistic replica control allows access 
in every disconnected mode 

Tolerates temporary inconsistencies 

Promises to detect them later 
Provides much higher data availability 
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Optimistic Replica Control (II) 

Defines an accessible universe:  set of 
replicas that the user can access 

Accessible universe varies over time 

At any time, user 
Will read from the latest replica(s) in his accessible 

universe 
Will update all replicas  in his accessible universe 
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Coda (Venus) States 

1. Hoarding: 
Normal operation mode 

2. Emulating: 
Disconnected operation mode 

3. Reintegrating: 
Propagates  changes and detects inconsistencies 

Hoarding 

Emulating Recovering 
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Hoarding 

Hoard useful data for disconnection 
Balance the needs of connected and 
disconnected operation. 

Cache size is restricted 
Unpredictable disconnections 

Prioritized algorithm – cache manage 
 hoard walking – reevaluate objects 
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Prioritized algorithm 

User defined hoard priority p: how interest 
it is? 
Recent Usage q  
Object priority = f(p,q) 
Kick out the one with lowest priority 

+ Fully tunable 
Everything can be customized 

- Not tunable (?) 
- No idea how to customize 
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Hoard Walking 

Equilibrium – uncached obj < cached obj 
Why it may be broken? Cache size is limited. 

Walking: restore equilibrium 
Reloading HDB (changed by others) 
Reevaluate priorities in HDB and cache 
Enhanced callback 

Increase scalability, and availability 
Decrease consistency 
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Emulation 

 In emulation mode: 
Attempts to access files that are not in the client 
caches appear as failures to application 
All changes are written in a persistent log, 

the client modification log (CML) 
Venus removes from log all obsolete entries like those 

pertaining to files that have been deleted 
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Persistence 

Venus keeps its cache and related data 
structures in non-volatile storage 
All Venus metadata are updated through 
atomic transactions 

Using a lightweight recoverable virtual memory 

(RVM) developed for Coda 
Simplifies Venus design 
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Reintegration 

When workstation gets reconnected, Coda 
initiates a reintegration process 

Performed one volume at a time 

Venus ships replay log to all volumes 
Each volume performs a log replay algorithm 

Only care write/write confliction 
Succeed? 

Yes. Free logs, reset priority 
No. Save logs to a tar. Ask for help 
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Performance 

Duration of Reintegration 
A few hours disconnection  1 min 

Cache size 
100MB at client is enough for a “typical” workday 

Conflicts 
No Conflict at all! Why? 

Over 99% modification by the same person 
Two users modify the same obj within a day: 

<0.75% 
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Coda Summary 

Puts scalability and availability before 
data consistency 

Unlike NFS 

Assumes that inconsistent updates are very 
infrequent 
Introduced disconnected operation mode 
and  file hoarding 
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Remember this slide? 

We are back to 1990s. 
Network is slow and not stable 
Terminal  “powerful” client 

33MHz CPU, 16MB RAM, 100MB hard drive 

Mobile Users appear 
1st IBM Thinkpad in 1992 
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What’s now? 

We are in 2000s now. 
Network is fast and reliable in LAN 
“powerful” client  very powerful client 

2.4GHz CPU, 1GB RAM, 120GB hard drive 

Mobile Users everywhere 
Do we still need disconnection? 

How many people are using coda? 
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Do we still need disconnection? 

WAN and wireless is not very reliable, and is 
slow 
PDA is not very powerful 

200MHz strongARM, 128M CF Card 
Electric power constrained 

LBFS (MIT) on WAN, Coda and Odyssey 
(CMU) for mobile users 

Adaptation is also important 
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What is the future? 

High bandwidth, reliable wireless 
everywhere 
Even PDA is powerful 

2GHz, 1G RAM/Flash 

What will be the research topic in FS? 
P2P? 
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Today's Lecture 

DFS design comparisons continued 
Topic 4: file access consistency 

NFS, AFS, Sprite, and DCE DFS 

Topic 5: Locking 

Other types of DFS 
Coda – disconnected operation 
LBFS – weakly connected operation 



Low Bandwidth File System 
Key Ideas 

A network file systems for slow or wide-area 
networks 
Exploits similarities between files or 
versions of the same file 

Avoids sending data  that can be found in the server’s 

file system or the client’s cache 

Also uses conventional compression and 
caching 
Requires 90% less bandwidth than 
traditional network file systems 

45 

Working on slow networks 

Make local copies 
Must worry about update conflicts 

Use remote login 
Only for text-based applications 

Use instead a LBFS 
Better than remote login 
Must deal with issues like auto-saves blocking the 
editor for the duration of  transfer 
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LBFS design 

Provides close-to-open consistency 
Uses a large, persistent file cache at client 

Stores clients working set of files 

LBFS server divides file it stores into chunks 
and indexes the chunks by hash value 
Client similarly indexes its file cache 
Exploits similarities between files 

LBFS never transfers chunks that the recipient already 
has 
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Indexing 

Uses the SHA-1 algorithm for hashing 
It is collision resistant 

Central challenge in indexing file chunks is 
keeping the index at a reasonable size while 
dealing with shifting offsets 

Indexing the hashes of fixed size data blocks 
Indexing the hashes of all overlapping blocks at all 

offsets 
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LBFS indexing solution 

Considers only non-overlapping chunks 
Sets chunk boundaries based on file 
contents rather than on position within a file 
Examines every overlapping 48-byte region 
of file to select the boundary regions called 
breakpoints using Rabin fingerprints 

When low-order 13 bits of region’s fingerprint equals 
a chosen value, the region constitutes a breakpoint 
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Effects of edits on file chunks 

Chunks of file before/after edits 
Grey shading show edits 

Stripes show 48byte regions with magic hash 
values creating chunk boundaries 
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More Indexing Issues 

Pathological cases 
Very small chunks 

Sending hashes of chunks would consume as much 
bandwidth as just sending the file 

Very large chunks 
Cannot be sent in a single RPC 

LBFS imposes minimum and maximum 
chuck sizes 
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The Chunk Database 

Indexes each chunk by the first 64 bits of 
its SHA-1 hash 
To avoid synchronization problems, LBFS 
always recomputes the SHA-1 hash of any 
data chunk before using it 

Simplifies crash recovery 

Recomputed SHA-1 values are also used  to 
detect hash collisions in the database 
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Conclusion 

Under normal circumstances, LBFS 
consumes 90% less bandwidth than 
traditional file systems.  
Makes transparent remote file access a 
viable and less frustrating alternative to 
running interactive programs on remote 
machines. 
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