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Outline 

Why Distributed File Systems? 

Basic mechanisms for building DFSs 
Using NFS and AFS as examples 

Design choices and their implications 
Naming 

Authentication and Access Control 
Caching 
Concurrency Control 

Locking 
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What Distributed File Systems 
Provide 

Access to data stored at servers using file 
system interfaces 

What are the file system interfaces? 
Open a file, check status of a file, close a file 

Read data from a file 
Write data to a file 

Lock a file or part of a file 
List files in a directory, create/delete a directory 
Delete a file, rename a file, add a symlink to a file 

etc 
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Why DFSs are Useful 

Data sharing among multiple users 
User mobility 
Location transparency 
Backups and centralized management 
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Components in a DFS 
Implementation 

Client side: 
What has to happen to enable applications to access a 
remote file the same way a local file is accessed? 
Accessing remote files in the same way as accessing 

local files  kernel support 

 Communication layer: 
Just TCP/IP or a protocol at a higher level of 

abstraction? 

Server side: 
How are requests from clients serviced? 
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VFS interception 

VFS provides “pluggable” file systems 
Standard flow of remote access 

User process calls read() 
Kernel dispatches to VOP_READ() in some VFS 
nfs_read() 

check local cache 
send RPC to remote NFS server 
put process to sleep 

server interaction handled by kernel process 
retransmit if necessary 
convert RPC response to file system buffer 
store in local cache 
wake up user process 

nfs_read() 
copy bytes to user memory 
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VFS Interception 
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Communication Layer Example: 
Remote Procedure Calls (RPC) 

Failure handling: timeout and re-issue  
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xid 
“call” 
service 
version 
procedure 
auth-info 
arguments 
…. 

xid 
“reply” 
reply_stat 
auth-info 
results 

… 

RPC call RPC reply 

Extended Data Representation 
(XDR) 

Argument data and response data in RPC 
are packaged in XDR format 

Integers are encoded in big-endian format 

Strings: len followed by ascii bytes with NULL padded 
to four-byte boundaries 
Arrays: 4-byte size followed by array entries 

Opaque: 4-byte len followed by binary data 

Marshalling and un-marshalling data 
Extra overhead in data conversion to/from 
XDR 
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Some NFS V2 RPC Calls 

NFS RPCs using XDR over, e.g., TCP/IP 

fhandle: 32-byte opaque data (64-byte in 
v3) 
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Proc. Input args Results 

LOOKUP dirfh, name status, fhandle, fattr 

READ fhandle, offset, count status, fattr, data 

CREATE dirfh, name, fattr status, fhandle, fattr 

WRITE fhandle, offset, count, 

data 

status, fattr 

Server Side Example: 
 mountd and nfsd 

mountd: provides the initial file handle for 
the exported directory 

Client issues nfs_mount request to mountd 

mountd checks if the pathname is a directory and if 
the directory should be exported to the client 

nfsd: answers the RPC calls, gets reply from 
local file system, and sends reply via RPC 

Usually listening at port 2049 

Both mountd and nfsd use underlying RPC 
implementation 
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NFS V2 Design 

“Dumb”, “Stateless” servers 
Smart clients 
Portable across different OSs 
Immediate commitment and idempotency of 
operations 
Low implementation cost 
Small number of clients 
Single administrative domain 
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Stateless File Server? 

Statelessness 
Files are state, but... 
Server exports files without creating extra state 

No list of “who has this file open” (permission check on 
each operation on open file!) 
No “pending transactions” across crash 

Results 
Crash recovery is “fast” 

Reboot, let clients figure out what happened 

Protocol is “simple” 

State stashed elsewhere 
Separate MOUNT protocol 

Separate NLM locking protocol 
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NFS V2 Operations 

V2:  
NULL, GETATTR, SETATTR 
LOOKUP, READLINK, READ 
CREATE, WRITE, REMOVE, RENAME 

LINK, SYMLINK 
READIR, MKDIR, RMDIR 

STATFS (get file system attributes) 
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NFS V3 and V4 Operations 

V3 added: 
READDIRPLUS, COMMIT (server cache!) 
FSSTAT, FSINFO, PATHCONF 

V4 added: 
COMPOUND (bundle operations) 
LOCK (server becomes more stateful!) 

PUTROOTFH, PUTPUBFH (no separate MOUNT) 
Better security and authentication 

Very different than V2/V3  stateful 
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Operator Batching 

Should each client/server interaction 
accomplish one file system operation or 
multiple operations? 

Advantage of batched operations? 
How to define batched operations 

Examples of Batched Operators 
NFS v3:  

READDIRPLUS 

NFS v4: 
COMPOUND RPC calls 
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Remote Procedure Calls in NFS 

(a) Reading data from a file in NFS version 3 
(b) Reading data using a compound procedure 
in version 4. 
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AFS Goals 

Global distributed file system 
“One AFS”, like “one Internet” 

Why would you want more than one? 

LARGE numbers of clients, servers 
1000 machines could cache a single file, 
some local, some (very) remote 

Goal: O(0) work per client operation 
O(1) may just be too expensive! 
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AFS Assumptions 

Client machines are un-trusted 
Must prove they act for a specific user 

Secure RPC layer 

Anonymous “system:anyuser” 

Client machines have disks(!!) 
Can cache whole files over long periods 

Write/write and write/read sharing are rare 
Most files updated by one user, on one machine 
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AFS Cell/Volume Architecture 

Cells correspond to administrative groups 
/afs/andrew.cmu.edu is a cell 

Client machine has cell-server database 
protection server handles authentication 
volume location server maps volumes to servers 

Cells are broken into volumes (miniature 
file systems) 

One user's files, project source tree, ... 
Typically stored on one server 
Unit of disk quota administration, backup 
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Topic 1: Name-Space 
Construction and Organization 

NFS: per-client linkage 
Server: export /root/fs1/ 
Client: mount server:/root/fs1 /fs1  fhandle 

AFS: global name space 
Name space is organized into Volumes 

Global directory /afs;  
/afs/cs.wisc.edu/vol1/…; /afs/cs.stanford.edu/vol1/… 

Each file is identified as fid = <vol_id, vnode #, 

uniquifier> 
All AFS servers keep a copy of “volume location 

database”, which is a table of vol_id  server_ip 
mappings 
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Implications on Location 
Transparency 

NFS: no transparency 
If a directory is moved from one server to another, 
client must remount 

AFS: transparency 
If a volume is moved from one server to another, only 

the volume location database on the servers needs to 
be updated 
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Naming in NFS (1) 

Figure 11-11. Mounting (part of) a remote 
file system in NFS. 
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Naming in NFS (2) 

26 

Automounting (1) 

A simple automounter for NFS. 
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Automounting (2) 

Using symbolic links with automounting. 
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Topic 2: User Authentication and 
Access Control 

User X logs onto workstation A, wants to 
access files on server B 

How does A tell B who X is? 
Should B believe A? 

Choices made in NFS V2 
All servers and all client workstations share the same 
<uid, gid> name space  B send X’s <uid,gid> to A 

Problem: root access on any client workstation can lead 
to creation of users of arbitrary <uid, gid> 

Server believes client workstation unconditionally 
Problem: if any client workstation is broken into, the 
protection of data on the server is lost; 
<uid, gid> sent in clear-text over wire  request packets 
can be faked easily 
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User Authentication (cont’d) 

How do we fix the problems in NFS v2 
Hack 1: root remapping  strange behavior 
Hack 2: UID remapping  no user mobility 
Real Solution: use a centralized Authentication/

Authorization/Access-control (AAA) system 
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A Better AAA System: Kerberos 

Basic idea: shared secrets 
User proves to KDC who he is; KDC generates shared 
secret between client and file server 
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client 

ticket server 

generates S 
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S: specific to {client,fs} pair;  

“short-term session-key”; expiration time (e.g. 8 hours) 

KDC 

encrypt S with 

client’s key 

Kerberos Interactions 

•  Why “time”?: guard against replay attack 
•  mutual authentication 
•  File server doesn’t store S, which is specific to {client, fs} 
•  Client doesn’t contact “ticket server” every time it contacts fs  
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client 

ticket server 

generates S 

“Need to access fs” 

Kclient[S], ticket = Kfs[use S for client] 

file server 
client 

1. 

2. 

 ticket=Kfs[use S for client], S{client, time} 

S{time} 

KDC 



AFS Security (Kerberos) 

Kerberos has multiple administrative 
domains (realms) 

principal@realm 
srini@cs.cmu.edu sseshan@andrew.cmu.edu 

Client machine presents Kerberos ticket 
Arbitrary binding of (user,machine) to Kerberos 
(principal,realm) 

dongsuh on  grad.pc.cs.cmu.edu machine can be 
srini@cs.cmu.edu  

Server checks against access control list 
(ACL) 
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AFS ACLs 

Apply to directory, not to file 
Format: 

sseshan rlidwka 

srini@cs.cmu.edu rl 
sseshan:friends rl 

Default realm is typically the cell name 
(here andrew.cmu.edu) 
Negative rights 

Disallow “joe rl” even though joe is in sseshan:friends 
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Topic 3: Client-Side Caching 

Why is client-side caching necessary? 
What is cached 

Read-only file data and directory data  easy 

Data written by the client machine  when is data 
written to the server? What happens if the client 
machine goes down? 

Data that is written by other machines  how to 
know that the data has changed?  How to ensure data 

consistency? 
Is there any pre-fetching? 
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Client Caching in NFS v2 

Cache both clean and dirty file data and file 
attributes 
File attributes in the client cache expire after 

60 seconds (file data doesn’t expire) 
File data is checked against the modified-time 
in file attributes (which could be a cached copy) 

Changes made on one machine can take up to 60 seconds 
to be reflected on another machine 

Dirty data are buffered on the client machine 
until file close or up to 30 seconds 

If the machine crashes before then, the changes are lost 
Similar to UNIX FFS local file system behavior 
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Implication of NFS v2 Client 
Caching 

Data consistency guarantee is very poor 
Simply unacceptable for some distributed applications 
Productivity apps tend to tolerate such loose 
consistency 

Different client implementations implement 
the “prefetching” part differently 
Generally clients do not cache data on local 
disks 
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Client Caching in AFS v2 

Client caches both clean and dirty file data 
and attributes 

The client machine uses local disks to cache data 
When a file is opened for read, the whole file is 
fetched and cached on disk 

Why?  What’s the disadvantage of doing so? 

However, when a client caches file data, it 
obtains a “callback” on the file 
In case another client writes to the file, the 
server “breaks” the callback 

Similar to invalidations in distributed shared memory 
implementations 

Implication: file server must keep state! 
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AFS v2 RPC Procedures 

Procedures that are not in NFS 
Fetch: return status and optionally data of a file or 
directory, and place a callback on it 
RemoveCallBack: specify a file that the client has 

flushed from the local machine 
BreakCallBack: from server to client, revoke the 

callback on a file or directory 
What should the client do if a callback is revoked? 

Store: store the status and optionally data of a file 

Rest are similar to NFS calls 
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Failure Recovery in AFS v2 

What if the file server fails? 
What if the client fails? 
What if both the server and the client fail? 
Network partition 

How to detect it? How to recover from it? 

Is there anyway to ensure absolute consistency in the 
presence of network partition? 

Reads 
Writes 

What if all three fail: network partition, 
server, client? 
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Key to Simple Failure Recovery 

Try not to keep any state on the server 
If you must keep some state on the server 

Understand why and what state the server is keeping 

Understand the worst case scenario of no state on the 
server and see if there are still ways to meet the 
correctness goals 

Revert to this worst case in each combination of 
failure cases 
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Topic 4: File Access Consistency 

In UNIX local file system, concurrent file 
reads and writes have “sequential” 
consistency semantics 

Each file read/write from user-level app is an atomic 
operation 

The kernel locks the file vnode 

Each file write is immediately visible to all file readers 

Neither NFS nor AFS provides such 
concurrency control 

NFS: “sometime within 30 seconds” 

AFS: session semantics for consistency 
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Semantics of File Sharing 

Four ways of dealing with the shared files in 
a distributed system. 
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Session Semantics in AFS v2 

What it means: 
A file write is visible to processes on the same box 
immediately, but not visible to processes on other 
machines until the file is closed 

When a file is closed, changes are visible to new 
opens, but are not visible to “old” opens 

All other file operations are visible everywhere 
immediately 

Implementation 
Dirty data are buffered at the client machine until file 
close, then flushed back to server, which leads the 

server to send “break callback” to other clients 
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AFS Write Policy 

Data transfer is by chunks 
Minimally 64 KB 
May be whole-file 

Writeback cache 
Opposite of NFS “every write is sacred” 
Store chunk back to server 

When cache overflows 
On last user close() 

...or don't (if client machine crashes) 

Is writeback crazy? 
Write conflicts “assumed rare” 
Who wants to see a half-written file? 
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Access Consistency in the 
“Sprite” File System 

Sprite: a research file system developed in 
UC Berkeley in late 80’s 
Implements “sequential” consistency 

Caches only file data, not file metadata 
When server detects a file is open on multiple 

machines but is written by some client, client caching 
of the file is disabled; all reads and writes go through 
the server 

“Write-back” policy otherwise 
Why? 
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Implementing Sequential 
Consistency 

How to identify out-of-date data blocks 
Use file version number 
No invalidation 
No issue with network partition 

How to get the latest data when read-write 
sharing occurs 

Server keeps track of last writer 
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Implication of “Sprite” Caching 

Server must keep states! 
Recovery from power failure 
Server failure doesn’t impact consistency 
Network failure doesn’t impact consistency 

Price of sequential consistency: no client 
caching of file metadata; all file opens go 
through server 

Performance impact 
Suited for wide-area network? 
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“Tokens” in DCE DFS 

How does one implement sequential 
consistency in a file system that spans multiple 
sites over WAN 

Callbacks are evolved into 4 kinds of “Tokens” 
Open tokens: allow holder to open a file; submodes: read, 
write, execute, exclusive-write 
Data tokens: apply to a range of bytes 

“read” token: cached data are valid 
“write” token: can write to data and keep dirty data at client 

Status tokens: provide guarantee of file attributes 
“read” status token: cached attribute is valid 
“write” status token: can change the attribute and keep the 
change at the client 

Lock tokens: allow holder to lock byte ranges in the file 
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Compatibility Rules for Tokens 

Open tokens:  
Open for exclusive writes are incompatible with any 
other open, and “open for execute” are incompatible 
with “open for write” 
But “open for write” can be compatible with “open for 
write” --- why? 

Data tokens: R/W and W/W are 
incompatible if the byte range overlaps 
Status tokens: R/W and W/W are 
incompatible 
Data token and status token: compatible or 
incompatible? 
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Token Manager 

Resolve conflicts: block the new requester 
and send notification to other clients’ tokens 
Handle operations that request multiple 
tokens 

Example: rename 

How to avoid deadlocks 
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Topic 5: File Locking for 
Concurrency Control 

Issues 
Whole file locking or byte-range locking 
Mandatory or advisory 

UNIX: advisory 
Windows: if a lock is granted, it’s mandatory on all other 
accesses 

NFS: network lock manager (NLM) 
NLM is not part of NFS v2, because NLM is stateful 
Provides both whole file and byte-range locking 

Advisory 
Relies on “network status monitor” for server 

monitoring 
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Issues in Locking 
Implementations 

Failure recovery 
What if server fails? 

Lock holders are expected to re-establish the locks 
during the “grace period”, during which no other locks 
are granted 

What if a client holding the lock fails? 
What if network partition occurs? 
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AFS Locking 

Locking 
Server refuses to keep a waiting-client list 
Client cache manager refuses to poll server 
User program must invent polling strategy 
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Wrap up: Design Issues 

Name space 
Authentication 
Caching 
Consistency 
Locking 
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AFS Retrospective 

Small AFS installations are hard 
Step 1: Install Kerberos 

2-3 servers 
Inside locked boxes! 

Step 2: Install ~4 AFS servers (2 data, 2 pt/vldb) 
Step 3: Explain Kerberos to your users 

Ticket expiration! 

Step 4: Explain ACLs to your users 
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AFS Retrospective 

Worldwide file system 
Good security, scaling 
Global namespace 
“Professional” server infrastructure per cell 

Don't try this at home 

Only ~190 AFS cells (2002-03)  
8 are cmu.edu, 14 are in Pittsburgh 

“No write conflict” model only partial 
success 

57 


