
L-17 Distributed File Systems

1

Outline

Why Distributed File Systems?

Basic mechanisms for building DFSs
Using NFS and AFS as examples

Design choices and their implications
Naming

Authentication and Access Control
Caching
Concurrency Control

Locking

2

What Distributed File Systems
Provide

Access to data stored at servers using file
system interfaces

What are the file system interfaces?
Open a file, check status of a file, close a file

Read data from a file
Write data to a file

Lock a file or part of a file
List files in a directory, create/delete a directory
Delete a file, rename a file, add a symlink to a file

etc

3

Why DFSs are Useful

Data sharing among multiple users
User mobility
Location transparency
Backups and centralized management

4

Outline

Why Distributed File Systems?

Basic mechanisms for building DFSs
Using NFS and AFS as examples

Design choices and their implications
Naming

Authentication and Access Control
Caching
Concurrency Control

Locking

5

Components in a DFS
Implementation

Client side:
What has to happen to enable applications to access a
remote file the same way a local file is accessed?
Accessing remote files in the same way as accessing

local files kernel support

 Communication layer:
Just TCP/IP or a protocol at a higher level of

abstraction?

Server side:
How are requests from clients serviced?

6

VFS interception

VFS provides “pluggable” file systems
Standard flow of remote access

User process calls read()
Kernel dispatches to VOP_READ() in some VFS
nfs_read()

check local cache
send RPC to remote NFS server
put process to sleep

server interaction handled by kernel process
retransmit if necessary
convert RPC response to file system buffer
store in local cache
wake up user process

nfs_read()
copy bytes to user memory

7

VFS Interception

8

Communication Layer Example:
Remote Procedure Calls (RPC)

Failure handling: timeout and re-issue

9

xid
“call”
service
version
procedure
auth-info
arguments
….

xid
“reply”
reply_stat
auth-info
results

…

RPC call RPC reply

Extended Data Representation
(XDR)

Argument data and response data in RPC
are packaged in XDR format

Integers are encoded in big-endian format

Strings: len followed by ascii bytes with NULL padded
to four-byte boundaries
Arrays: 4-byte size followed by array entries

Opaque: 4-byte len followed by binary data

Marshalling and un-marshalling data
Extra overhead in data conversion to/from
XDR

10

Some NFS V2 RPC Calls

NFS RPCs using XDR over, e.g., TCP/IP

fhandle: 32-byte opaque data (64-byte in
v3)

11

Proc. Input args Results

LOOKUP dirfh, name status, fhandle, fattr

READ fhandle, offset, count status, fattr, data

CREATE dirfh, name, fattr status, fhandle, fattr

WRITE fhandle, offset, count,

data

status, fattr

Server Side Example:
 mountd and nfsd

mountd: provides the initial file handle for
the exported directory

Client issues nfs_mount request to mountd

mountd checks if the pathname is a directory and if
the directory should be exported to the client

nfsd: answers the RPC calls, gets reply from
local file system, and sends reply via RPC

Usually listening at port 2049

Both mountd and nfsd use underlying RPC
implementation

12

NFS V2 Design

“Dumb”, “Stateless” servers
Smart clients
Portable across different OSs
Immediate commitment and idempotency of
operations
Low implementation cost
Small number of clients
Single administrative domain

13

Stateless File Server?

Statelessness
Files are state, but...
Server exports files without creating extra state

No list of “who has this file open” (permission check on
each operation on open file!)
No “pending transactions” across crash

Results
Crash recovery is “fast”

Reboot, let clients figure out what happened

Protocol is “simple”

State stashed elsewhere
Separate MOUNT protocol

Separate NLM locking protocol

14

NFS V2 Operations

V2:
NULL, GETATTR, SETATTR
LOOKUP, READLINK, READ
CREATE, WRITE, REMOVE, RENAME

LINK, SYMLINK
READIR, MKDIR, RMDIR

STATFS (get file system attributes)

15

NFS V3 and V4 Operations

V3 added:
READDIRPLUS, COMMIT (server cache!)
FSSTAT, FSINFO, PATHCONF

V4 added:
COMPOUND (bundle operations)
LOCK (server becomes more stateful!)

PUTROOTFH, PUTPUBFH (no separate MOUNT)
Better security and authentication

Very different than V2/V3 stateful

16

Operator Batching

Should each client/server interaction
accomplish one file system operation or
multiple operations?

Advantage of batched operations?
How to define batched operations

Examples of Batched Operators
NFS v3:

READDIRPLUS

NFS v4:
COMPOUND RPC calls

17

Remote Procedure Calls in NFS

(a) Reading data from a file in NFS version 3
(b) Reading data using a compound procedure
in version 4.

18

AFS Goals

Global distributed file system
“One AFS”, like “one Internet”

Why would you want more than one?

LARGE numbers of clients, servers
1000 machines could cache a single file,
some local, some (very) remote

Goal: O(0) work per client operation
O(1) may just be too expensive!

19

AFS Assumptions

Client machines are un-trusted
Must prove they act for a specific user

Secure RPC layer

Anonymous “system:anyuser”

Client machines have disks(!!)
Can cache whole files over long periods

Write/write and write/read sharing are rare
Most files updated by one user, on one machine

20

AFS Cell/Volume Architecture

Cells correspond to administrative groups
/afs/andrew.cmu.edu is a cell

Client machine has cell-server database
protection server handles authentication
volume location server maps volumes to servers

Cells are broken into volumes (miniature
file systems)

One user's files, project source tree, ...
Typically stored on one server
Unit of disk quota administration, backup

21

Outline

Why Distributed File Systems?

Basic mechanisms for building DFSs
Using NFS and AFS as examples

Design choices and their implications
Naming

Authentication and Access Control
Caching
Concurrency Control

Locking

22

Topic 1: Name-Space
Construction and Organization

NFS: per-client linkage
Server: export /root/fs1/
Client: mount server:/root/fs1 /fs1 fhandle

AFS: global name space
Name space is organized into Volumes

Global directory /afs;
/afs/cs.wisc.edu/vol1/…; /afs/cs.stanford.edu/vol1/…

Each file is identified as fid = <vol_id, vnode #,

uniquifier>
All AFS servers keep a copy of “volume location

database”, which is a table of vol_id server_ip
mappings

23

Implications on Location
Transparency

NFS: no transparency
If a directory is moved from one server to another,
client must remount

AFS: transparency
If a volume is moved from one server to another, only

the volume location database on the servers needs to
be updated

24

Naming in NFS (1)

Figure 11-11. Mounting (part of) a remote
file system in NFS.

25

Naming in NFS (2)

26

Automounting (1)

A simple automounter for NFS.
27

Automounting (2)

Using symbolic links with automounting.

28

Topic 2: User Authentication and
Access Control

User X logs onto workstation A, wants to
access files on server B

How does A tell B who X is?
Should B believe A?

Choices made in NFS V2
All servers and all client workstations share the same
<uid, gid> name space B send X’s <uid,gid> to A

Problem: root access on any client workstation can lead
to creation of users of arbitrary <uid, gid>

Server believes client workstation unconditionally
Problem: if any client workstation is broken into, the
protection of data on the server is lost;
<uid, gid> sent in clear-text over wire request packets
can be faked easily

29

User Authentication (cont’d)

How do we fix the problems in NFS v2
Hack 1: root remapping strange behavior
Hack 2: UID remapping no user mobility
Real Solution: use a centralized Authentication/

Authorization/Access-control (AAA) system

30

A Better AAA System: Kerberos

Basic idea: shared secrets
User proves to KDC who he is; KDC generates shared
secret between client and file server

31

client

ticket server

generates S

“N
ee

d to
 ac

ce
ss

 fs
”

Kcli
ent

[S
] file server K

fs[S]

S: specific to {client,fs} pair;

“short-term session-key”; expiration time (e.g. 8 hours)

KDC

encrypt S with

client’s key

Kerberos Interactions

• Why “time”?: guard against replay attack
• mutual authentication
• File server doesn’t store S, which is specific to {client, fs}
• Client doesn’t contact “ticket server” every time it contacts fs

32

client

ticket server

generates S

“Need to access fs”

Kclient[S], ticket = Kfs[use S for client]

file server
client

1.

2.

 ticket=Kfs[use S for client], S{client, time}

S{time}

KDC

AFS Security (Kerberos)

Kerberos has multiple administrative
domains (realms)

principal@realm
srini@cs.cmu.edu sseshan@andrew.cmu.edu

Client machine presents Kerberos ticket
Arbitrary binding of (user,machine) to Kerberos
(principal,realm)

dongsuh on grad.pc.cs.cmu.edu machine can be
srini@cs.cmu.edu

Server checks against access control list
(ACL)

33

AFS ACLs

Apply to directory, not to file
Format:

sseshan rlidwka

srini@cs.cmu.edu rl
sseshan:friends rl

Default realm is typically the cell name
(here andrew.cmu.edu)
Negative rights

Disallow “joe rl” even though joe is in sseshan:friends

34

Topic 3: Client-Side Caching

Why is client-side caching necessary?
What is cached

Read-only file data and directory data easy

Data written by the client machine when is data
written to the server? What happens if the client
machine goes down?

Data that is written by other machines how to
know that the data has changed? How to ensure data

consistency?
Is there any pre-fetching?

35

Client Caching in NFS v2

Cache both clean and dirty file data and file
attributes
File attributes in the client cache expire after

60 seconds (file data doesn’t expire)
File data is checked against the modified-time
in file attributes (which could be a cached copy)

Changes made on one machine can take up to 60 seconds
to be reflected on another machine

Dirty data are buffered on the client machine
until file close or up to 30 seconds

If the machine crashes before then, the changes are lost
Similar to UNIX FFS local file system behavior

36

Implication of NFS v2 Client
Caching

Data consistency guarantee is very poor
Simply unacceptable for some distributed applications
Productivity apps tend to tolerate such loose
consistency

Different client implementations implement
the “prefetching” part differently
Generally clients do not cache data on local
disks

37

Client Caching in AFS v2

Client caches both clean and dirty file data
and attributes

The client machine uses local disks to cache data
When a file is opened for read, the whole file is
fetched and cached on disk

Why? What’s the disadvantage of doing so?

However, when a client caches file data, it
obtains a “callback” on the file
In case another client writes to the file, the
server “breaks” the callback

Similar to invalidations in distributed shared memory
implementations

Implication: file server must keep state!

38

AFS v2 RPC Procedures

Procedures that are not in NFS
Fetch: return status and optionally data of a file or
directory, and place a callback on it
RemoveCallBack: specify a file that the client has

flushed from the local machine
BreakCallBack: from server to client, revoke the

callback on a file or directory
What should the client do if a callback is revoked?

Store: store the status and optionally data of a file

Rest are similar to NFS calls

39

Failure Recovery in AFS v2

What if the file server fails?
What if the client fails?
What if both the server and the client fail?
Network partition

How to detect it? How to recover from it?

Is there anyway to ensure absolute consistency in the
presence of network partition?

Reads
Writes

What if all three fail: network partition,
server, client?

40

Key to Simple Failure Recovery

Try not to keep any state on the server
If you must keep some state on the server

Understand why and what state the server is keeping

Understand the worst case scenario of no state on the
server and see if there are still ways to meet the
correctness goals

Revert to this worst case in each combination of
failure cases

41

Topic 4: File Access Consistency

In UNIX local file system, concurrent file
reads and writes have “sequential”
consistency semantics

Each file read/write from user-level app is an atomic
operation

The kernel locks the file vnode

Each file write is immediately visible to all file readers

Neither NFS nor AFS provides such
concurrency control

NFS: “sometime within 30 seconds”

AFS: session semantics for consistency

42

Semantics of File Sharing

Four ways of dealing with the shared files in
a distributed system.

43

Session Semantics in AFS v2

What it means:
A file write is visible to processes on the same box
immediately, but not visible to processes on other
machines until the file is closed

When a file is closed, changes are visible to new
opens, but are not visible to “old” opens

All other file operations are visible everywhere
immediately

Implementation
Dirty data are buffered at the client machine until file
close, then flushed back to server, which leads the

server to send “break callback” to other clients

44

AFS Write Policy

Data transfer is by chunks
Minimally 64 KB
May be whole-file

Writeback cache
Opposite of NFS “every write is sacred”
Store chunk back to server

When cache overflows
On last user close()

...or don't (if client machine crashes)

Is writeback crazy?
Write conflicts “assumed rare”
Who wants to see a half-written file?

45

Access Consistency in the
“Sprite” File System

Sprite: a research file system developed in
UC Berkeley in late 80’s
Implements “sequential” consistency

Caches only file data, not file metadata
When server detects a file is open on multiple

machines but is written by some client, client caching
of the file is disabled; all reads and writes go through
the server

“Write-back” policy otherwise
Why?

46

Implementing Sequential
Consistency

How to identify out-of-date data blocks
Use file version number
No invalidation
No issue with network partition

How to get the latest data when read-write
sharing occurs

Server keeps track of last writer

47

Implication of “Sprite” Caching

Server must keep states!
Recovery from power failure
Server failure doesn’t impact consistency
Network failure doesn’t impact consistency

Price of sequential consistency: no client
caching of file metadata; all file opens go
through server

Performance impact
Suited for wide-area network?

48

“Tokens” in DCE DFS

How does one implement sequential
consistency in a file system that spans multiple
sites over WAN

Callbacks are evolved into 4 kinds of “Tokens”
Open tokens: allow holder to open a file; submodes: read,
write, execute, exclusive-write
Data tokens: apply to a range of bytes

“read” token: cached data are valid
“write” token: can write to data and keep dirty data at client

Status tokens: provide guarantee of file attributes
“read” status token: cached attribute is valid
“write” status token: can change the attribute and keep the
change at the client

Lock tokens: allow holder to lock byte ranges in the file

49

Compatibility Rules for Tokens

Open tokens:
Open for exclusive writes are incompatible with any
other open, and “open for execute” are incompatible
with “open for write”
But “open for write” can be compatible with “open for
write” --- why?

Data tokens: R/W and W/W are
incompatible if the byte range overlaps
Status tokens: R/W and W/W are
incompatible
Data token and status token: compatible or
incompatible?

50

Token Manager

Resolve conflicts: block the new requester
and send notification to other clients’ tokens
Handle operations that request multiple
tokens

Example: rename

How to avoid deadlocks

51

Topic 5: File Locking for
Concurrency Control

Issues
Whole file locking or byte-range locking
Mandatory or advisory

UNIX: advisory
Windows: if a lock is granted, it’s mandatory on all other
accesses

NFS: network lock manager (NLM)
NLM is not part of NFS v2, because NLM is stateful
Provides both whole file and byte-range locking

Advisory
Relies on “network status monitor” for server

monitoring

52

Issues in Locking
Implementations

Failure recovery
What if server fails?

Lock holders are expected to re-establish the locks
during the “grace period”, during which no other locks
are granted

What if a client holding the lock fails?
What if network partition occurs?

53

AFS Locking

Locking
Server refuses to keep a waiting-client list
Client cache manager refuses to poll server
User program must invent polling strategy

54

Wrap up: Design Issues

Name space
Authentication
Caching
Consistency
Locking

55

AFS Retrospective

Small AFS installations are hard
Step 1: Install Kerberos

2-3 servers
Inside locked boxes!

Step 2: Install ~4 AFS servers (2 data, 2 pt/vldb)
Step 3: Explain Kerberos to your users

Ticket expiration!

Step 4: Explain ACLs to your users

56

AFS Retrospective

Worldwide file system
Good security, scaling
Global namespace
“Professional” server infrastructure per cell

Don't try this at home

Only ~190 AFS cells (2002-03)
8 are cmu.edu, 14 are in Pittsburgh

“No write conflict” model only partial
success

57

