
L-16 Transactions

1

Today's Lecture

Transaction basics

Locking and deadlock

Distributed transactions

2

Transactions

A transaction is a sequence of server
operations that is guaranteed by the server
to be atomic in the presence of multiple
clients and server crashes.

Free from interference by operations being performed

on behalf of other concurrent clients
Either all of the operations must be completed

successfully or they must have no effect at all in the
presence of server crashes

3

Transactions –
The ACID Properties

Are the four desirable properties for reliable handling of
concurrent transactions.
Atomicity

The “All or Nothing” behavior.
C: stands for either

Concurrency: Transactions can be executed concurrently

… or Consistency: Each transaction, if executed by itself,
maintains the correctness of the database.

Isolation (Serializability)
Concurrent transaction execution should be equivalent
(in effect) to a serialized execution.

Durability
Once a transaction is done, it stays done.

4

Bank Operations

5

deposit(amount)
deposit amount in the account

withdraw(amount)
withdraw amount from the account

getBalance() -> amount
return the balance of the account

setBalance(amount)
set the balance of the account to amount

create(name) account
create a new account with a given name

lookUp(name) account
return a reference to the account with the given
name

 branchTotal() amount
return the total of all the balances at the branch

Operations of the Branch interface

Operations of the Account interface

Transaction T:
 a.withdraw(100);
 b.deposit(100);
 c.withdraw(200);
 b.deposit(200);

A client’s banking

transaction

The transactional model

Applications are coded in a stylized way:
begin transaction
Perform a series of read, update operations
Terminate by commit or abort.

Terminology
The application is the transaction manager
The data manager is presented with operations
from concurrently active transactions
It schedules them in an interleaved but
serializable order

6

A side remark

Each transaction is built up incrementally
Application runs
And as it runs, it issues operations
The data manager sees them one by one

But often we talk as if we knew the whole
thing at one time

We’re careful to do this in ways that make sense
In any case, we usually don’t need to say
anything until a “commit” is issued

7

Transaction and Data Managers

Transactions

read

update

read

update

transactions are stateful: transaction “knows” about database contents and

updates

Data (and Lock) Managers

8

Typical transactional program

begin transaction;
 x = read(“x-values”,);
 y = read(“y-values”,);
 z = x+y;
 write(“z-values”, z,);
commit transaction;

9

Transaction life histories

openTransaction() trans;
starts a new transaction and delivers a unique TID trans. This identifier will be
used in the other operations in the transaction.

closeTransaction(trans) (commit, abort);
ends a transaction: a commit return value indicates that the transaction has
committed; an abort return value indicates that it has aborted.

abortTransaction(trans);
aborts the transaction.

10

Successful Aborted by client Aborted by server

openTransaction openTransaction openTransaction

operation operation operation

operation operation operation

server aborts

transaction

operation operation operation ERROR

reported to client

closeTransaction abortTransaction

Transactional Execution Log

As the transaction runs, it creates a history
of its actions. Suppose we were to write
down the sequence of operations it
performs.
Data manager does this, one by one
This yields a “schedule”

Operations and order they executed
Can infer order in which transactions ran

Scheduling is called “concurrency control”

11

Concurrency control

Motivation: without concurrency control, we
have lost updates, inconsistent retrievals, dirty
reads, etc. (see following slides)
Concurrency control schemes are designed to
allow two or more transactions to be executed
correctly while maintaining serial equivalence

Serial Equivalence is correctness criterion
Schedule produced by concurrency control scheme should
be equivalent to a serial schedule in which transactions are
executed one after the other

Schemes:
locking,
optimistic concurrency control,
time-stamp based concurrency control

12

Serializability

Means that effect of the interleaved
execution is indistinguishable from some
possible serial execution of the committed
transactions
For example: T1 and T2 are interleaved but
it “looks like” T2 ran before T1
Idea is that transactions can be coded to be
correct if run in isolation, and yet will run
correctly when executed concurrently (and
hence gain a speedup)

13

Need for serializable execution

Data manager interleaves operations to improve concurrency

 DB: R1(X) R2(X) W2(X) R1(Y) W1(X) W2(Y) commit1 commit2

 T
1
: R1(X) R1(Y) W1(X) commit1

 T
2
: R2(X) W2(X) W2(Y) commit2

14

Non serializable execution

Problem: transactions may “interfere”. Here, T2 changes x, hence T1 should have

either run first (read and write) or after (reading the changed value).

Unsafe! Not serializable

 DB: R1(X) R2(X) W2(X) R1(Y) W1(X) W2(Y) commit2 commit1

 T
1
: R1(X) R1(Y) W1(X) commit1

 T
2
: R2(X) W2(X) W2(Y) commit2

15

Serializable execution

Data manager interleaves operations to improve concurrency but schedules them so that

it looks as if one transaction ran at a time. This schedule “looks” like T2 ran first.

 DB: R2(X) W2(X) R1(X) W1(X) W2(Y) R1(Y) commit2 commit1

 T
1
: R1(X) R1(Y) W1(X) commit1

 T
2
: R2(X) W2(X) W2(Y) commit2

16

17

Read and write operation conflict
rules

Operations of different
transactions

Conflict Reason

read read No Because the effect of a pair of read operations

does not depend on the order in which they are

executed

read write Yes Because the effect of a read and a write operation

depends on the order of their execution

write write Yes Because the effect of a pair of write operations

depends on the order of their execution

18

A dirty read when transaction T
aborts

Transaction T:

a.getBalance()
a.setBalance(balance + 10)

Transaction U:

a.getBalance()
a.setBalance(balance + 20)

balance = a.getBalance() $100

a.setBalance(balance + 10) $110
balance = a.getBalance() $110

a.setBalance(balance + 20) $130

commit transaction

abort transaction

uses result of uncommitted transaction!

Nested transactions

19

T : top-level transaction

T1 = openSubTransaction T2 = openSubTransaction

openSubTransaction openSubTransactionopenSubTransaction

openSubTransaction

T1 : T2 :

T11 : T12 :

T211 :

T21 :

prov.commit

prov. commit

abort

prov. commitprov. commit

prov. commit

commit

provisional commit

Committing Nested Transactions

A transaction may commit or abort only after its child
transactions have completed

When a sub-transaction completes, it makes an
independent decision either to commit provisionally or
to abort. Its decision to abort is final.

When a parent aborts, all of its sub-transactions are
aborted

When a sub-transaction aborts, the parent can decide
whether to abort or not

If a top-level transaction commits, then all of the sub-
transactions that have provisionally committed can
commit too, provided that non of their ancestors has
aborted.

20

Today's Lecture

Transaction basics

Locking and deadlock

Distributed transactions

21

Schemes for Concurrency control

Locking
Server attempts to gain an exclusive ‘lock’ that is
about to be used by one of its operations in a
transaction.

Can use different lock types (read/write for example)
Two-phase locking

Optimistic concurrency control
Time-stamp based concurrency control

22

What about the locks?

Unlike other kinds of distributed systems,
transactional systems typically lock the data
they access
They obtain these locks as they run:

Before accessing “x” get a lock on “x”
Usually we assume that the application knows
enough to get the right kind of lock. It is not
good to get a read lock if you’ll later need to
update the object

In clever applications, one lock will often
cover many objects

23

Locking rule

Suppose that transaction T will access
object x.

We need to know that first, T gets a lock that “covers”

x

What does coverage entail?
We need to know that if any other transaction T’ tries
to access x it will attempt to get the same lock

24

Examples of lock coverage

We could have one lock per object
… or one lock for the whole database
… or one lock for a category of objects

In a tree, we could have one lock for the whole tree
associated with the root
In a table we could have one lock for row, or one for each
column, or one for the whole table

All transactions must use the same rules!
And if you will update the object, the lock must be
a “write” lock, not a “read” lock

25 26

Two-Phase Locking (1)

In two-phase locking, a transaction is not allowed to acquire

any new locks after it has released a lock

27

Strict Two-Phase Locking (2)

Strict two-phase locking.

28

Use of locks in strict two-phase
locking

1. When an operation accesses an object within a transaction:
(a) If the object is not already locked, it is locked and the operation

proceeds.
(b) If the object has a conflicting lock set by another transaction, the

transaction must wait until it is unlocked.
(c) If the object has a non-conflicting lock set by another transaction,

the lock is shared and the operation proceeds.
(d) If the object has already been locked in the same transaction, the

lock will be promoted if necessary and the operation proceeds.
(Where promotion is prevented by a conflicting lock, rule (b) is
used.)

2. When a transaction is committed or aborted, the server unlocks all objects
it locked for the transaction.

29

Lock compatibility

For one object Lock requested
read write

Lock already set none OK OK

read OK wait

write wait wait

Operation Conflict rules:

1. If a transaction T has already performed a read operation on a
particular object, then a concurrent transaction U must not write

that object until T commits or aborts
2. If a transaction T has already performed a read operation on a

particular object, then a concurrent transaction U must not read

or write that object until T commits or aborts

30

Deadlock with write locks

Transaction T Transaction U

Operations Locks Operations Locks

a.deposit(100); write lock A

b.deposit(200) write lock B

b.withdraw(100)
waits for U’s a.withdraw(200); waits for T’s

lock on B lock on A

31

The wait-for graph

B

A

Waits for

Held by

Held by

T UU T

Waits for

Dealing with Deadlock in
two-phase locking

Deadlock prevention
Acquire all needed locks in a single atomic operation
Acquire locks in a particular order

Deadlock detection
Keep graph of locks held. Check for cycles
periodically or each time an edge is added

Cycles can be eliminated by aborting transactions

Timeouts
Aborting transactions when time expires

32

33

Resolution of deadlock

Transaction T Transaction U

Operations Locks Operations Locks

a.deposit(100); write lock A

b.deposit(200) write lock B

b.withdraw(100)

waits for U’s a.withdraw(200); waits for T’s

lock on B lock on A

 (timeout elapses)

T’s lock on A becomes vulnerable,

 unlock A, abort T

a.withdraw(200); write locks A

unlock A, B

Contrast: Timestamped approach

Using a fine-grained clock, assign a “time”
to each transaction, uniquely. E.g. T1 is at
time 1, T2 is at time 2
Now data manager tracks temporal history
of each data item, responds to requests as
if they had occured at time given by
timestamp
At commit stage, make sure that commit is
consistent with serializability and, if not,
abort

34

Example of when we abort

T1 runs, updates x, setting to 3
T2 runs concurrently but has a larger
timestamp. It reads x=3
T1 eventually aborts
... T2 must abort too, since it read a value
of x that is no longer a committed value

Called a cascaded abort since abort of T1 triggers
abort of T2

35

Pros and cons of approaches

Locking scheme works best when conflicts
between transactions are common and
transactions are short-running
Timestamped scheme works best when
conflicts are rare and transactions are
relatively long-running

36

Today's Lecture

Transaction basics

Locking and deadlock

Distributed transactions

37 38

Distributed Transactions

Motivation
Provide distributed atomic operations at multiple
servers that maintain shared data for clients
Provide recoverability from server crashes

Properties
Atomicity, Consistency, Isolation, Durability (ACID)

Concepts: commit, abort, distributed
commit

39

Concurrency Control for
Distributed Transactions

Locking
Distributed deadlocks possible

Timestamp ordering
Lamport time stamps

for efficiency it is required that timestamps issued by
coordinators be roughly synchronized

Transactions in distributed
systems

Notice that client and data manager might
not run on same computer

Both may not fail at same time

Also, either could timeout waiting for the other in
normal situations

When this happens, we normally abort the
transaction

Exception is a timeout that occurs while commit is
being processed
If server fails, one effect of crash is to break locks

even for read-only access

40

Transactions in distributed
systems

Main issue that arises is that now we can
have multiple database servers that are
touched by one transaction
Reasons?

Data spread around: each owns subset

Could have replicated some data object on multiple
servers, e.g. to load-balance read access for large

client set
Might do this for high availability

41 42

Atomic Commit Protocols

The atomicity of a transaction requires that
when a distributed transaction comes to an
end, either all of its operations are carried
out or none of them
One phase commit

Coordinator tells all participants to commit
If a participant cannot commit (say because of
concurrency control), no way to inform coordinator

Two phase commit (2PC)

43

The two-phase commit protocol -
1

Phase 1 (voting phase):
1. The coordinator sends a canCommit? (VOTE_REQUEST) request

to each of the participants in the transaction.
2. When a participant receives a canCommit? request it replies with

its vote Yes (VOTE_COMMIT) or No (VOTE_ABORT) to the
coordinator. Before voting Yes, it prepares to commit by saving
objects in permanent storage. If the vote is No the participant aborts
immediately.

44

The two-phase commit protocol -
2

Phase 2 (completion according to outcome of vote):
3. The coordinator collects the votes (including its own).

(a) If there are no failures and all the votes are Yes the
coordinator decides to commit the transaction and sends a
doCommit (GLOBAL_COMMIT) request to each of the
participants.

(b) Otherwise the coordinator decides to abort the transaction
and sends doAbort (GLOBAL_ABORT) requests to all
participants that voted Yes.

4. Participants that voted Yes are waiting for a doCommit or doAbort
request from the coordinator. When a participant receives one of
these messages it acts accordingly and in the case of commit,
makes a haveCommitted call as confirmation to the coordinator.

45

Communication in two-phase
commit protocol

canCommit?

Yes

doCommit

haveCommitted

Coordinator

1

3

(waiting for votes)

committed

done

prepared to commit

step

Participant

2

4

(uncertain)

prepared to commit

committed

statusstepstatus

Commit protocol illustrated

ok to commit?

46

Commit protocol illustrated

ok to commit?

ok with us commit

Note: garbage collection protocol not shown here
47 48

Operations for two-phase
commit protocol

canCommit?(trans)-> Yes / No
Call from coordinator to participant to ask whether it can commit a
transaction. Participant replies with its vote.

doCommit(trans)
Call from coordinator to participant to tell participant to commit its part of a
transaction.

doAbort(trans)
Call from coordinator to participant to tell participant to abort its part of a
transaction.

haveCommitted(trans, participant)
Call from participant to coordinator to confirm that it has committed the
transaction.

getDecision(trans) -> Yes / No
Call from participant to coordinator to ask for the decision on a transaction
after it has voted Yes but has still had no reply after some delay. Used to
recover from server crash or delayed messages.

Two-Phase Commit protocol - 3

actions by coordinator:

while START _2PC to local log;
multicast VOTE_REQUEST to all participants;
while not all votes have been collected {
 wait for any incoming vote;
 if timeout {
 write GLOBAL_ABORT to local log;
 multicast GLOBAL_ABORT to all participants;
 exit;
 }
 record vote;
}
if all participants sent VOTE_COMMIT and coordinator votes COMMIT{
 write GLOBAL_COMMIT to local log;
 multicast GLOBAL_COMMIT to all participants;
} else {
 write GLOBAL_ABORT to local log;
 multicast GLOBAL_ABORT to all participants;
}

49 50

Two-Phase Commit protocol - 4

actions by participant:

write INIT to local log;
wait for VOTE_REQUEST from coordinator;
if timeout {
 write VOTE_ABORT to local log;
 exit;
}
if participant votes COMMIT {
 write VOTE_COMMIT to local log;
 send VOTE_COMMIT to coordinator;
 wait for DECISION from coordinator;
 if timeout {
 multicast DECISION_REQUEST to other participants;
 wait until DECISION is received; /* remain blocked */
 write DECISION to local log;
 }
 if DECISION == GLOBAL_COMMIT
 write GLOBAL_COMMIT to local log;
 else if DECISION == GLOBAL_ABORT
 write GLOBAL_ABORT to local log;
} else {
 write VOTE_ABORT to local log;
 send VOTE ABORT to coordinator;
}

Two-Phase Commit protocol - 5

a) The finite state machine for the coordinator in
2PC.

b) The finite state machine for a participant.

If a failure occurs during a ‘blocking’ state (red
boxes), there needs to be a recovery
mechanism.

51

Two Phase Commit Protocol - 6

Recovery
‘Wait’ in Coordinator – use a time-out mechanism to detect
participant crashes. Send GLOBAL_ABORT
‘Init’ in Participant – Can also use a time-out and send
VOTE_ABORT
‘Ready’ in Participant P – abort is not an option (since already
voted to COMMIT and so coordinator might eventually send
GLOBAL_COMMIT). Can contact another participant Q and
choose an action based on its state.

52

State of Q Action by P

COMMIT Transition to COMMIT

ABORT Transition to ABORT

INIT Both P and Q transition to ABORT

(Q sends VOTE_ABORT)

READY Contact more participants. If all participants are ‘READY’, must wait

for coordinator to recover

Two-Phase Commit protocol - 7

actions for handling decision requests: /* executed by
separate thread */

while true {
 wait until any incoming DECISION_REQUEST is
received; /* remain blocked */
 read most recently recorded STATE from the local log;
 if STATE == GLOBAL_COMMIT
 send GLOBAL_COMMIT to requesting participant;
 else if STATE == INIT or STATE == GLOBAL_ABORT
 send GLOBAL_ABORT to requesting participant;
 else
 skip; /* participant remains blocked */

53 54

Three Phase Commit protocol - 1

Problem with 2PC
If coordinator crashes, participants cannot reach a
decision, stay blocked until coordinator recovers

Three Phase Commit3PC
There is no single state from which it is possible to
make a transition directly to either COMMIT or ABORT

states
There is no state in which it is not possible to make a

final decision, and from which a transition to COMMIT
can be made

55

Three-Phase Commit protocol - 2

a) Finite state machine for the coordinator in 3PC
b) Finite state machine for a participant

Three Phase Commit Protocol - 3

Recovery
‘Wait’ in Coordinator – same
‘Init’ in Participant – same
‘PreCommit’ in Coordinator – Some participant has crashed but
we know it wanted to commit. GLOBAL_COMMIT the application
knowing that once the participant recovers, it will commit.
‘Ready’ or ‘PreCommit’ in Participant P – (i.e. P has voted to
COMMIT)

56

State of Q Action by P

PRECOMMIT Transition to PRECOMMIT. If all participants

in PRECOMMIT, can COMMIT the transaction

ABORT Transition to ABORT

INIT Both P (in READY) and Q transition to ABORT

(Q sends VOTE_ABORT)

READY Contact more participants. If can contact a

majority and they are in ‘Ready’, then ABORT

the transaction.

If the participants contacted in ‘PreCommit’ it

is safe to COMMIT the transaction

Note: if any participant
is in state PRECOMMIT,
it is impossible for any
other participant to be in
any state other than READY
or PRECOMMIT.

