
L-15 Fault Tolerance

1

Fault Tolerance

Terminology & Background

Byzantine Fault Tolerance

Issues in client/server

Reliable group communication

2

Fault Tolerance

Being fault tolerant is strongly related to
what are called dependable systems.
Dependability implies the following:

Availability: probability the system operates
correctly at any given moment

Reliability: ability to run correctly for a long interval
of time
Safety: failure to operate correctly does not lead to

catastrophic failures
Maintainability: ability to “easily” repair a failed

system

3

Failure Models

A system is said to fail if it cannot meet its
promises. An error on the part of a
system’s state may lead to a failure. The
cause of an error is called a fault.

4

Failure Masking by Redundancy

Triple modular redundancy. For each voter, if two or three of
the inputs are the same, the output is equal to the input. If all
three inputs are different, the output is undefined.

5

Process Resilience - 1

The key approach to tolerating a faulty
process is to use process groups:

This group can be thought of as an abstraction for a

single “process”. Messages to the “process” are sent
to the entire group.
Group membership can be dynamic

Need mechanisms for creating and destroying groups
Need mechanisms for adding and removing processes
from groups

Many choices for the structure of the group

6

Flat Groups versus Hierarchical
Groups

(a) Communication in a flat group.
(b) Communication in a simple hierarchical group.

7

Process Resilience - 2

Reaching agreement:
computation results
Electing a leader
synchronization

committing to a transaction
…

How much replication is necessary?
A system is k fault tolerant if it can survive faults in k

components and still meet its specifications.

8

Agreement in Faulty Systems - 1

Many things can go wrong…
Communication

Message transmission can be unreliable

Time taken to deliver a message is unbounded
Adversary can intercept messages

Processes
Can fail or team up to produce wrong results

Agreement very hard, sometime impossible,
to achieve!

9

Agreement in Faulty Systems - 2

Possible characteristics of the underlying
system:

1. Synchronous versus asynchronous
systems.

A system is synchronized if the process operation in

lock-step mode. Otherwise, it is asynchronous.

2. Communication delay is bounded or not.
3. Message delivery is ordered or not.
4. Message transmission is done through

unicasting or multicasting.

10

Agreement in Faulty Systems - 3

Circumstances under which distributed agreement
can be reached. Note that most distributed systems
assume that
1. processes behave asynchronously
2. messages are unicast
3. communication delays are unbounded (see red blocks)

11

Fault Tolerance

Terminology & Background

Byzantine Fault Tolerance

Issues in client/server

Reliable group communication

12

Agreement in Faulty Systems - 4

Byzantine Agreement [Lamport, Shostak,
Pease, 1982]
Assumptions:

Every message that is sent is delivered correctly
The receiver knows who sent the message

Message delivery time is bounded

13

Agreement in Faulty Systems - 5

Figure 8-5. The Byzantine
agreement problem for three
nonfaulty and one faulty process.

System of N processes, where
each process i will provide a
value vi to each other. Some
number of these processes may
be incorrect (or malicious)

Goal: Each process learn the
true values sent by each of the
correct processes

14

Byzantine General’s Problem

The Problem: “Several divisions of the Byzantine army
are camped outside an enemy city, each division
commanded by its own general. After observing the
enemy, they must decide upon a common plan of
action. Some of the generals may be traitors, trying to
prevent the loyal generals from reaching agreement.”
Goal:

All loyal generals decide upon the same plan of action.
A small number of traitors cannot cause the loyal generals to adopt a
bad plan.

The paper considers a slightly different version from the
standpoint of one general (i.e. process) and multiple
lieutenants.
Goal:

All loyal lieutenants obey the same order.
If the commanding general is loyal, the every loyal lieutenant obeys
the order he sends.

Lamport, Shostak, Pease. The Byzantine General’s Problem. ACM TOPLAS, 4,3, July 1982, 382-401.
15

Impossibility Results

No solution for three processes can handle a single traitor.

In a system with m faulty processes agreement can be
achieved only if there are 2m+1 (more than 2/3) functioning
correctly.

Lamport, Shostak, Pease. The Byzantine General’s Problem. ACM TOPLAS, 4,3, July 1982, 382-401.

General 1

General 2 General 3

General 1

General 2 General 3

attack attack attack
retreat

retreat
retreat

16

Byzantine Agreement Algorithm
(oral messages) - 1

Phase 1: Each process sends its value to the
other processes. Correct processes send
the same (correct) value to all. Faulty
processes may send different values to each
if desired (or no message).

Assumptions: 1) Every message that is sent is delivered
correctly; 2) The receiver of a message knows who sent it; 3)

The absence of a message can be detected.

Lamport, Shostak, Pease. The Byzantine General’s Problem. ACM TOPLAS, 4,3, July 1982, 382-401.
17

Byzantine General Problem
Example - 1

Phase 1: Generals announce their troop
strengths to each other

P1 P2

P3 P4

1

1
1

18

Byzantine General Problem
 Example - 2

Phase 1: Generals announce their troop
strengths to each other

P1 P2

P3 P4

2

2 2

19

Byzantine General Problem
Example - 3

Phase 1: Generals announce their troop
strengths to each other

P1 P2

P3 P4

4 4

4

20

Byzantine Agreement Algorithm
(oral messages) - 2

Phase 2: Each process uses the messages
to create a vector of responses – must be a
default value for missing messages.

Assumptions: 1) Every message that is sent is delivered
correctly; 2) The receiver of a message knows who sent it; 3)
The absence of a message can be detected.

Lamport, Shostak, Pease. The Byzantine General’s Problem. ACM TOPLAS, 4,3, July 1982, 382-401.
21

Byzantine General Problem
Example - 4

Phase 2: Each general construct a vector with
all troops

P1 P2 P3 P4

1 2 x 4

P1 P2

P3 P4

y x

z

P1 P2 P3 P4

1 2 y 4

P1 P2 P3 P4

1 2 z 4

22

Byzantine Agreement Algorithm
(oral messages) - 3

Phase 3: Each process sends its vector to all
other processes.

Phase 4: Each process the information received
from every other process to do its computation.

Assumptions: 1) Every message that is sent is delivered
correctly; 2) The receiver of a message knows who sent it; 3)
The absence of a message can be detected.

Lamport, Shostak, Pease. The Byzantine General’s Problem. ACM TOPLAS, 4,3, July 1982, 382-401.
23

Byzantine General Problem
Example - 5

Phase 3,4: Generals send their vectors to each
other and compute majority voting

P1 P2 P3 P4

1 2 y 4

a b c d

1 2 z 4

P1 P2

P3 P4

(e, f, g, h)

(a, b, c, d)

(h, i, j, k)

P1 P2 P3 P4

1 2 x 4

e f g h

1 2 z 4

P1 P2 P3 P4

1 2 x 4

1 2 y 4

h i j k

P2

P3

P4

P1

P3

P4

P1

P2

P3

(1, 2, ?, 4)

(1, 2, ?, 4)

(1, 2, ?, 4) 24

Byzantine Agreement Algorithm
(oral messages) - 4

Byzantine Agreement:
Note: This result only guarantees that each
process receives the true values sent by
correct processors, but it does not identify
the correct processes!

Lamport, Shostak, Pease. The Byzantine General’s Problem. ACM TOPLAS, 4,3, July 1982, 382-401.
25

Byzantine Agreement Algorithm
(signed messages)

Adds the additional assumptions:
A loyal general’s signature cannot be forged and any alteration of the contents
of the signed message can be detected.
Anyone can verify the authenticity of a general’s signature.

Algorithm SM(m):
The general signs and sends his value to every lieutenant.
For each i:

If lieutenant i receives a message of the form v:0 from the commander and he
has not received any order, then he lets Vi equal {v} and he sends v:0:i to
every other lieutenant.
If lieutenant i receives a message of the form v:0:j1:…:jk and v is not in the
set Vi then he adds v to Vi and if k < m, he sends the message v:0:j1:…:jk:i to
every other lieutenant other than j1,…,jk
For each i: When lieutenant i will receive no more messages, he obeys the
order in choice(Vi).

Algorithm SM(m) solves the Byzantine General’s problem if
there are at most m traitors.

Lamport, Shostak, Pease. The Byzantine General’s Problem. ACM TOPLAS, 4,3, July 1982, 382-401.
26

Signed messages

Lamport, Shostak, Pease. The Byzantine General’s Problem. ACM TOPLAS, 4,3, July 1982, 382-401.

General

Lieutenant 1 Lieutenant 2

General

Lieutenant 1 Lieutenant 2

attack:0 attack:0 attack:0 retreat:0

attack:0:1

SM(1) with one traitor

retreat:0:2

attack:0:1

???

27

Fault Tolerance

Terminology & Background

Byzantine Fault Tolerance

Issues in client/server

Reliable group communication

28

Fault Tolerance in Client/Server
Systems

Five different classes of failures that can occur
in RPC systems:

1. The client is unable to locate the server. Can
be dealt with at the client.

2. The request message from the client to the
server is lost.

3. The server crashes after receiving a request.

4. The reply message from the server to the
client is lost.

5. The client crashes after sending a request.

29

Lost Messages

2. The request message from the client to the server
is lost.

5. The reply message from the server to the client is
lost.

Timers at OS level can be used to detect lost
messages.
From the client standpoint – these two cases look
the same but they aren’t.
Idempotent messages aren’t a problem.
Client can safely re-issue a message that isn’t
idempotent if there is some way (sequence
numbers, stamps) for a server to detect the re-
issue

Basically make them idempotent

30

Server Crashes (1)

A server in client-server
communication.
(a) The normal case.
(b) Crash after execution.
(c) Crash before execution.

31

Server Crashes (2)

• No way for client to differentiate between
the two crash cases (b) and (c).

• How should client react? There several
options:

At-least-once semantics– client keeps trying
(sending messages) until a reply is received.
At-most-once semantics – client gives up
No guarantees

32

Server Crashes (3)

Consider scenario where a client sends text
to a print server.
There are three events that can happen at
the server:

Send the completion message (M),

Print the text (P),
Crash (C) – at recovery, send ‘recovery’ message to

clients.

Server strategies:
send completion message before printing
send completion message after printing

33

Server Crashes (4)

These events can occur in six different orderings:

1. M P C: A crash occurs after sending the
completion message and printing the text.

2. M C (P): A crash happens after sending the
completion message, but before the text could be
printed.

3. P M C: A crash occurs after sending the
completion message and printing the text.

4. P C(M): The text printed, after which a crash
occurs before the completion message could be sent.

5. C (P M): A crash happens before the server could
do anything.

6. C (M P): A crash happens before the server could
do anything.

34

Server Crashes (5)

Client strategies after a crash:
do nothing (i.e. do not re-issue request)
Always re-issue request
Re-issue only if request acknowledged
Re-issue only if request not acknowledged.

35

Server Crashes (6)

Different combinations of client and server
strategies in the presence of server crashes.

36

Client Crashes

Can create orphans (unwanted computations)
that waste CPU, potentially lock up resources
and create confusion when client re-boots.
Nelson solutions:
1. Orphan Extermination – keep a log of RPCs at client that

is checked at re-boot time to remove orphans.
2. Reincarnation – divide time into epochs. After a client re-

boot, increment its epoch and kill off any of its requests
belonging to an earlier epoch.

3. Gentle Reincarnation – at reboot time, an epoch
announcement causes all machines to locate the owners
of any remote computations.

4. Expiration – each RPC is given time T to complete (but a
live client can ask for more time)

Nelson. Remote Procedure Call. Ph.D. Thesis, CMU, 1981.
37

Fault Tolerance

Terminology & Background

Byzantine Fault Tolerance

Issues in client/server

Reliable group communication

38

Reliable Group Communication

Can we guarantee that all members of a
process group receive all messages
delivered to that group?
Simplest solutions assume that we have a
small number of processes in the group,
processes do not fail, and the group does
not change during message transmission.
Approaches that rely on feedback
(acknowledgements) do not scale well

Will look at this later in semester

39

Basic Reliable-Multicasting Schemes

A simple solution to reliable multicasting
when all receivers are known and are
assumed not to fail

(a) Message transmission. (b) Reporting feedback.
40

Atomic Multicast

All messages are delivered in the same
order to “all” processes
Group view: the set of processes known
by the sender when it multicast the
message
Virtual synchronous multicast: a
message multicast to a group view G is
delivered to all nonfaulty processes in G

If sender fails after sending the message, the
message may be delivered to no one

41

Virtual Synchrony (1)

Logical organization of a distributed system
to distinguish between message receipt and
message delivery.

42

Group communication

Group membership service
Provides an interface for group membership changes
Implements a failure detector
Notifies members of group membership changes

Join

Group
address

expansion

Multicast
communication

Group

send

Fail
Group membership

management

Leave

Process group
43

View delivery

A view reflects current membership of
group
A view is delivered when a membership
change occurs and the application is notified
of the change
View-synchronous group communication

the delivery of a new view draws a conceptual line
across the system and every message is either
delivered on side or the other of that line

44

View-synchronous group communication

p

q

r

p crashes

view (q, r)view (p, q, r)

p

q

r

p crashes

view (q, r)view (p, q, r)

a (allowed). b (allowed).

p

q

r

view (p, q, r)

p

q

r

p crashes

view (q, r)view (p, q, r)

c (disallowed). d (disallowed).

p crashes

view (q, r)

45

Virtual Synchrony (2)

46

Virtual Synchrony Implementation:
[Birman et al., 1991]

Only stable messages are delivered

Stable message: a message received by
all processes in the message’s group view

Assumptions (can be ensured by using
TCP):

Point-to-point communication is reliable
Point-to-point communication ensures FIFO-
ordering

47

Message Ordering (1)

Four different orderings are distinguished:
1. Unordered multicasts
2. FIFO-ordered multicasts
3. Causally-ordered multicasts

4. Totally-ordered multicasts

Atomicity (everyone sees same order) is an
orthogonal property

48

Unordered Multicast

Figure 8-14. Three communicating processes in the same group. The
ordering of events per process is shown along the vertical axis.

49

FIFO Multicast

Figure 8-15. Four processes in the same group
with two different senders, and a possible delivery
order of messages under FIFO-ordered
multicasting

50

Virtual Synchrony
Implementation: Example

Gi = {P1, P2, P3, P4, P5}

P5 fails

P1 detects that P5 has
failed

P1 send a “view change”
message to every process
in Gi+1 = {P1, P2, P3, P4}

P1

P2 P3

P4

P5

change view

51

Virtual Synchrony
Implementation: Example

Every process
Send each unstable
message m from Gi to
members in Gi+1

Marks m as being stable
Send a flush message to

mark that all unstable
messages have been
sent

P1

P2 P3

P4

P5

unstable message

flush

message

52

Virtual Synchrony
Implementation: Example

Every process
After receiving a flush
message from any
process in Gi+1 installs

Gi+1

P1

P2 P3

P4

P5

53

Important Lessons

Terminology & Background
Failure models

Byzantine Fault Tolerance
Protocol design with and without crypto
How many servers do we need to tolerate

Issues in client/server
Where do all those RPC failure semantics come from?

Reliable group communication
How do we manage group membership changes as
part of reliable multicast

54

