
2/28/2009

1

L-13 Security

1

Schedule up to Midterm

 2/26 No class (work on project 1, hw3)

 Review 3/2 Monday 4:30 pm NSH 3002
 HW 3 due

 Midterm 3/3 Tuesday in class

2

Project

 Problem in coping files
 Files are not deleted at every new run
 Older files are copied into SD card

 Will fix (release a new ruby server)

3

Important Lessons - CDNs

 Akamai CDN  illustrate range of ideas
 BASE (not ACID design)
 Weak consistency
 Naming of objects  location translation

 Consistent hashing

 Why are these the right design choices for
this application?

4

2/28/2009

2

Today's Lecture

 Internet security weaknesses

 Establishing secure channels (Crypto 101)

 Key distribution

5

What is “Internet Security” ?

Worms & Viruses

Denial-of-Service

DNS Poisoning

Phishing

Trojan Horse

Traffic
Eavesdropping

Route Hijacks

Password
Cracking

IP Spoofing

Spam

Spyware

Traffic
modification

End-host
impersonation

Internet Design Decisions:
(ie: how did we get here?)

 Origin as a small and cooperative network
( largely trusted infrastructure)

 Global Addressing
(every sociopath is your next-door
neighbor*)

 Connection-less datagram service
(can’t verify source, hard to protect

bandwidth)

* Dan Geer

Internet Design Decisions:
(ie: how did we get here?)

 Anyone can connect
 ( ANYONE can connect)

 Millions of hosts run nearly identical
software
 ( single exploit can create epidemic)

 Most Internet users know about as much as
Senator Stevens aka “the tubes guy”
 ( God help us all…)

2/28/2009

3

Our “Narrow” Focus

Yes:
1) Creating a “secure channel” for
communication (today)
2) Protecting resources and limiting
connectivity (after exam)

No:
1) Preventing software vulnerabilities &
malware, or “social engineering”.

Secure Communication with an Untrusted

Infrastructure

ISP A

ISP D

ISP C

ISP B

Alice

Bob

Secure Communication with an Untrusted

Infrastructure

ISP A

ISP D

ISP C

ISP B

Alice

Bob
Mallory

Secure Communication with an Untrusted

Infrastructure

ISP A

ISP D

ISP C

ISP B

Alice

Hello, I’m
“Bob”

2/28/2009

4

What do we need for a secure
communication channel?

 Authentication (Who am I talking to?)

 Confidentiality (Is my data hidden?)

 Integrity (Has my data been modified?)

 Availability (Can I reach the destination?)

Today's Lecture

 Internet security weaknesses

 Crypto 101

 Key distribution

14

What is cryptography?

"cryptography is about communication in the
presence of adversaries."

- Ron Rivest

What is cryptography?

Tools to help us build secure communication
channels that provide:

1) Authentication
2) Integrity
3) Confidentiality

2/28/2009

5

Cryptography As a Tool

 Using cryptography securely is not simple
 Designing cryptographic schemes correctly

is near impossible.

Today we want to give you an idea of what
can be done with cryptography.
Take a security course if you think you may
use it in the future (e.g. 18-487)

The Great Divide

Symmetric Crypto:
(Private key)

Example: AES

Asymmetric
Crypto:

(Public key)

Example: RSA
Requires a pre-
shared secret
between
communicating
parties?

Yes

Overall speed of
cryptographic
operations

Slow

No

Fast

Symmetric Key: Confidentiality

Motivating Example:
You and a friend share a key K of L random
bits, and a message M also L bits long.

Scheme:
You send her the xor(M,K) and then they
“decrypt” using xor(M,K) again.

1) Do you get the right message to your friend?

2) Can an adversary recover the message M?

Symmetric Key: Confidentiality

 One-time Pad (OTP) is secure but usually
impactical
 Key is as long at the message
 Keys cannot be reused (why?)

Stream
Ciphers:

Ex: RC4, A5

Block Ciphers:

Ex: DES, AES,
Blowfish

In practice, two types of ciphers are
used that require only constant key
length:

2/28/2009

6

Symmetric Key: Confidentiality

 Stream Ciphers (ex: RC4)

PRNG
Pseudo-Random stream of L bits

Message of Length L bits
XOR

=

Encrypted Ciphertext

K A-B

Bob uses KA-B as PRNG seed, and XORs encrypted
text to get the message back (just like OTP).

Alice:

Symmetric Key: Confidentiality

Block 4Block 3Block 2Block 1

Round
#1

Round
#2

Round
#n

Block 1

 Block Ciphers (ex: AES)

K A-B

Alice:

Bob breaks the ciphertext into blocks, feeds it
through decryption engine using KA-B to recover
the message.

Block 2 Block 3 Block 4

(fixed block size,
e.g. 128 bits)

Symmetric Key: Integrity

 Background: Hash Function Properties
 Consistent

hash(X) always yields same result
 One-way

given X, can’t find Y s.t. hash(Y) = X
 Collision resistant

given hash(W) = Z, can’t find X such that hash(X)
= Z

Hash FnMessage of arbitrary length
Fixed Size

Hash

Symmetric Key: Integrity

 Hash Message Authentication Code (HMAC)

Hash Fn
Message

MAC Message

Alice Transmits Message &
MAC

Why is this secure? How do
properties of a hash function help
us?

MAC

Step #1:

Alice creates
MAC

Step
#2

Step #3

Bob computes MAC with
message and KA-B to
verify.

K A-B

2/28/2009

7

Symmetric Key: Authentication

 You already know how to do this!
(hint: think about how we showed
integrity)

Hash Fn
I am Bob

A43FF234

Alice receives the hash, computes a hash with KA-B ,
and she knows the sender is Bob

Wrong!

K A-B

Symmetric Key: Authentication

What is Mallory overhears the hash sent by
Bob, and then “replays” it later?

ISP A

ISP D

ISP C

ISP B

Hello, I’m
Bob. Here’s
the hash to
“prove” it

A43FF234

Symmetric Key: Authentication

 A “Nonce”
 A random bitstring used only once. Alice sends nonce to

Bob as a “challenge”. Bob Replies with “fresh” MAC
result.

Hash
Nonce

B4FE64

Bob

K A-

B

Nonce

B4FE64

Alice

Performs same
hash with KA-B

and compares
results

Symmetric Key: Authentication

 A “Nonce”
 A random bitstring used only once. Alice sends nonce to

Bob as a “challenge”. Bob Replies with “fresh” MAC
result.

Nonce

Alice

?!?!

If Alice sends Mallory a nonce,
she cannot compute the
corresponding MAC without K A-B

Mallory

2/28/2009

8

Symmetric Key Crypto Review

 Confidentiality: Stream & Block Ciphers
 Integrity: HMAC
 Authentication: HMAC and Nonce

Questions??

Are we done? Not Really:

1)Number of keys scales as O(n2)

2)How to securely share keys in the first
place?

Asymmetric Key Crypto:

 Instead of shared keys, each person has a
“key pair”

Bob’s public key

Bob’s private
key

KB

KB
-1

 The keys are inverses,
so:

KB
-1 (KB (m)) = m

Asymmetric Key Crypto:

 It is believed to be computationally
unfeasible to derive KB

-1 from KB or to
find any way to get M from KB(M) other
than using KB

-1 .

=> KB can safely be made public.

Note: We will not detail the computation that KB(m) entails,
but rather treat these functions as black boxes with the

desired properties.

Asymmetric Key: Confidentiality

ciphertextencryption
algorithm

decryption
algorithm

Bob’s public
key

plaintext
message

KB (m)

Bob’s private
key

m = KB
-1 (KB (m))

KB

KB
-1

2/28/2009

9

Asymmetric Key: Sign & Verify

 The message must be from Bob, because it
must be the case that S = KB

-1(M), and only
Bob has KB

-1 !

 If we are given a message M, and a
value S such that KB(S) = M, what can
we conclude?

 This gives us two primitives:
 Sign (M) = KB

-1(M) = Signature S

 Verify (S, M) = test(KB(S) == M)

Asymmetric Key: Integrity & Authentication

 We can use Sign() and Verify() in a similar
manner as our HMAC in symmetric schemes.

Integrity:
S = Sign(M) Message M

Receiver must only check Verify(M, S)

Authentication:
Nonce

S = Sign(Nonce)

Verify(Nonce, S)

Asymmetric Key Review:

 Confidentiality: Encrypt with Public Key of
Receiver

 Integrity: Sign message with private key of
the sender

 Authentication: Entity being authenticated
signs a nonce with private key, signature is
then verified with the public key

But, these operations are computationally
expensive*

Today's Lecture

 Internet security weaknesses

 Crypto 101

 Key distribution

36

2/28/2009

10

One last “little detail”…

How do I get these keys in the first place??
Remember:

 Symmetric key primitives assumed Alice and
Bob had already shared a key.

 Asymmetric key primitives assumed Alice
knew Bob’s public key.

This may work with friends, but when was
the last time you saw Amazon.com walking
down the street?

Symmetric Key Distribution

 How does Andrew do this?

Andrew Uses Kerberos, which relies
on a Key Distribution Center (KDC)
to establish shared symmetric keys.

Key Distribution Center (KDC)

 Alice, Bob need shared symmetric key.
 KDC: server shares different secret key with

each registered user (many users)
 Alice, Bob know own symmetric keys, KA-KDC

KB-KDC , for communicating with KDC.

KB-KDC

KX-KDC

KY-KDC

KZ-KDC

KP-KDC

KB-KDC

KA-KDC

KA-KDC

KP-KDC

KDC

Key Distribution Center (KDC)

Alice
knows

R1

Bob knows
to use R1 to
communicat
e with Alice

Alice and Bob communicate: using R1 as
session key for shared symmetric

encryption

Q: How does KDC allow Bob, Alice to determine
shared symmetric secret key to communicate with
each other?

KDC
generates

R1

KB-KDC(A,R1)

KA-KDC(A,B)

KA-KDC(R1, KB-KDC(A,R1))

2/28/2009

11

How Useful is a KDC?

 Must always be online to support secure
communication

 KDC can expose our session keys to others!
 Centralized trust and point of failure.

In practice, the KDC model is mostly used
within single organizations (e.g. Kerberos)
but not more widely.

The Dreaded PKI

 Definition:
Public Key Infrastructure (PKI)

1) A system in which “roots of trust”
authoritatively bind public keys to real-
world identities

2) A significant stumbling block in deploying
many “next generation” secure Internet
protocol or applications.

Certification Authorities

 Certification authority (CA): binds public
key to particular entity, E.

 An entity E registers its public key with CA.
 E provides “proof of identity” to CA.
 CA creates certificate binding E to its public key.
 Certificate contains E’s public key AND the CA’s

signature of E’s public key.

Bob’s
public

key

Bob’s
identifying

information

CA generates
S = Sign(KB)

CA
private

key

certificate = Bob’s
public key and

signature by CA

KB

K-1
CA

KB

Certification Authorities

 When Alice wants Bob’s public key:

 Gets Bob’s certificate (Bob or elsewhere).
 Use CA’s public key to verify the signature

within Bob’s certificate, then accepts public
key

Verify(S, KB)

CA
public

key KCA

KB
If signature
is valid, use
KB

2/28/2009

12

Certificate Contents

 info algorithm and key value itself (not shown)

 Cert owner

 Cert issuer

 Valid dates

 Fingerprint of
signature

Transport Layer Security (TLS)

aka Secure Socket Layer (SSL)

 Used for protocols like HTTPS

 Special TLS socket layer between application
and TCP (small changes to application).

 Handles confidentiality, integrity, and
authentication.

 Uses “hybrid” cryptography.

Setup Channel with TLS “Handshake”

Handshake Steps:

1) Clients and servers negotiate
exact cryptographic protocols

2) Client’s validate public key
certificate with CA public key.

3) Client encrypt secret random
value with servers key, and
send it as a challenge.

4) Server decrypts, proving it
has the corresponding
private key.

5) This value is used to derive
symmetric session keys for
encryption & MACs.

How TLS Handles Data

1) Data arrives as a stream from the application via the TLS Socket

2) The data is segmented by TLS into chunks

3) A session key is used to encrypt and MAC each chunk to form a TLS
“record”, which includes a short header and data that is encrypted, as
well as a MAC.

4) Records form a byte stream that is fed to a TCP socket for
transmission.

2/28/2009

13

Important Lessons

 Internet design and growth  security
challenges

 Symmetric (pre-shared key, fast) and
asymmetric (key pairs, slow) primitives
provide:

 Confidentiality
 Integrity
 Authentication

 “Hybrid Encryption” leverages strengths of
both.

 Great complexity exists in securely acquiring
keys.

 Crypto is hard to get right, so use tools from
others, don’t design your own (e.g. TLS).

Resources

 Wikipedia for overview of Symmetric/Asymmetric
primitives and Hash functions.

 OpenSSL (www.openssl.org): top-rate open source
code for SSL and primitive functions.

 “Handbook of Applied Cryptography” available free
online: www.cacr.math.uwaterloo.ca/hac/

http://www.openssl.org/

