
L-10 Consistency

1

Important Lessons

Replication good for performance/
reliability

Key challenge keeping replicas up-to-date

Wide range of consistency models
Will see more next lecture
Range of correctness properties

Most obvious choice (sequential
consistency) can be expensive to implement

Multicast, primary, quorum

2

Today's Lecture

ACID vs. BASE – philosophy

Client-centric consistency models

Eventual consistency

Bayou

3

Two Views of Distributed Systems

Optimist: A distributed system is a
collection of independent computers that
appears to its users as a single coherent
system

Pessimist: “You know you have one when
the crash of a computer you’ve never heard
of stops you from getting any work
done.” (Lamport)

4

Recurring Theme

Academics like:
Clean abstractions
Strong semantics
Things that prove they are smart

Users like:
Systems that work (most of the time)
Systems that scale

Consistency per se isn’t important

Eric Brewer had the following
observations

5

A Clash of Cultures

Classic distributed systems: focused on
ACID semantics (transaction semantics)

Atomicity: either the operation (e.g., write) is
performed on all replicas or is not performed on any
of them
Consistency: after each operation all replicas reach
the same state
Isolation: no operation (e.g., read) can see the data
from another operation (e.g., write) in an
intermediate state
Durability: once a write has been successful, that
write will persist indefinitely

Modern Internet systems: focused on BASE
Basically Available
Soft-state (or scalable)
Eventually consistent

6

ACID vs BASE

ACID

Strong consistency for
transactions highest
priority
Availability less
important
Pessimistic
Rigorous analysis
Complex mechanisms

BASE

Availability and scaling
highest priorities
Weak consistency
Optimistic
Best effort
Simple and fast

7

Why Not ACID+BASE?

What goals might you want from a system?
C, A, P

Strong Consistency: all clients see the same
view, even in the presence of updates

High Availability: all clients can find some
replica of the data, even in the presence of
failures

Partition-tolerance: the system properties
hold even when the system is partitioned

8

CAP Theorem [Brewer]

You can only have two out of these three
properties

The choice of which feature to discard
determines the nature of your system

9

Consistency and Availability

Comment:
Providing transactional semantics requires all
functioning nodes to be in contact with each other (no
partition)

Examples:
Single-site and clustered databases
Other cluster-based designs

Typical Features:
Two-phase commit
Cache invalidation protocols
Classic DS style

10

Partition-Tolerance and
Availability

Comment:
Once consistency is sacrificed, life is easy….

Examples:
DNS
Web caches
Practical distributed systems for mobile
environments: Coda, Bayou

Typical Features:
Optimistic updating with conflict resolution
This is the “Internet design style”
TTLs and lease cache management

11

Voting with their Clicks

In terms of large-scale systems, the world
has voted with their clicks:

Consistency less important than availability and

partition-tolerance

12

Today's Lecture

ACID vs. BASE – philosophy

Client-centric consistency models

Eventual consistency

Bayou

13

Client-centric Consistency Models

A mobile user may access different replicas of a distributed
database at different times. This type of behavior implies the
need for a view of consistency that provides guarantees for
single client regarding accesses to the data store.

14

Session Guarantees

When client move around and connects to
different replicas, strange things can happen

Updates you just made are missing
Database goes back in time

Responsibility of “session manager”, not
servers
Two sets:

Read-set: set of writes that are relevant to session reads
Write-set: set of writes performed in session

Update dependencies captured in read sets and
write sets
Four different client-central consistency models

Monotonic reads
Monotonic writes
Read your writes
Writes follow reads

15 16

Monotonic Reads

A data store provides monotonic read consistency if when a process
reads the value of a data item x, any successive read operations
on x by that process will always return the same value or a more
recent value.

Example error: successive access to email have ‘disappearing
messages’

a) A monotonic-read consistent data store
b) A data store that does not provide monotonic reads.

indicates propagation of the earlier write

L1 and L2 are
two locations

process moves from L1 to L2

process moves from L1 to L2

No propagation guarantees

17

Monotonic Writes

A write operation by a process on a data item x is completed before any
successive write operation on x by the same process. Implies a
copy must be up to date before performing a write on it.

Example error: Library updated in wrong order.
a) A monotonic-write consistent data store.
b) A data store that does not provide monotonic-write consistency.

In both examples,
process performs a
write at L1, moves

and performs a write
at L2

18

Read Your Writes

The effect of a write operation by a process on data item x will
always be seen by a successive read operation on x by
the same process.

Example error: deleted email messages re-appear.
a) A data store that provides read-your-writes consistency.
b) A data store that does not.

In both examples,
process performs a
write at L1, moves

and performs a read
at L2

19

Writes Follow Reads

A write operation by a process on a data item x following a previous
read operation on x by the same process is guaranteed to take
place on the same or a more recent value of x that was read.

Example error: Newsgroup displays responses to articles before
original article has propagated there

a) A writes-follow-reads consistent data store
b) A data store that does not provide writes-follow-reads

consistency

In both examples,
process performs a
read at L1, moves

and performs a write
at L2

Today's Lecture

ACID vs. BASE – philosophy

Client-centric consistency models

Eventual consistency

Bayou

20

Many Kinds of Consistency

Strict: updates happen instantly everywhere
A read has to return the result of the latest write which
occurred on that data item
Assume instantaneous propagation; not realistic

Linearizable: updates appear to happen
instantaneously at some point in time

Like “Sequential” but operations are ordered using a global
clock
Primarly used for formal verification of concurrent programs

Sequential: all updates occur in the same order
everywhere

Every client sees the writes in the same order
Order of writes from the same client is preserved
Order of writes from different clients may not be preserved

Equivalent to Atomicity + Consistency + Isolation
Eventual consistency: if all updating stops then
eventually all replicas will converge to the identical
values

21

Eventual Consistency

There are replica situations where updates
(writes) are rare and where a fair amount of
inconsistency can be tolerated.

DNS – names rarely changed, removed, or added and
changes/additions/removals done by single authority
Web page update – pages typically have a single
owner and are updated infrequently.

If no updates occur for a while, all replicas
should gradually become consistent.
May be a problem with mobile user who
access different replicas (which may be
inconsistent with each other).

22

Why (not) eventual consistency?

Support disconnected operations
Better to read a stale value than nothing
Better to save writes somewhere than nothing

Potentially anomalous application behavior
Stale reads and conflicting writes…

23

Implementing Eventual
Consistency

Can be implemented with two steps:

1. All writes eventually propagate to all
replicas

2. Writes, when they arrive, are written to a
log and applied in the same order at all
replicas
• Easily done with timestamps and “undo-ing”

optimistic writes

24

Update Propagation

Rumor or epidemic stage:
Attempt to spread an update quickly
Willing to tolerate incompletely coverage in return for
reduced traffic overhead

Correcting omissions:
Making sure that replicas that weren’t updated during
the rumor stage get the update

25

Anti-Entropy

Every so often, two servers compare
complete datasets

Use various techniques to make this cheap

If any data item is discovered to not have
been fully replicated, it is considered a new
rumor and spread again

26

Today's Lecture

ACID vs. BASE – philosophy

Client-centric consistency models

Eventual consistency

Bayou

27

System Assumptions

Early days: nodes always on when not
crashed

Bandwidth always plentiful (often LANs)
Never needed to work on a disconnected node
Nodes never moved
Protocols were “chatty”

Now: nodes detach then reconnect
elsewhere

Even when attached, bandwidth is variable
Reconnection elsewhere means often talking to
different replica
Work done on detached nodes

28

Disconnected Operation

Challenge to old paradigm
Standard techniques disallowed any operations while
disconnected
Or disallowed operations by others

But eventual consistency not enough
Reconnecting to another replica could result in
strange results

E. g., not seeing your own recent writes
Merely letting latest write prevail may not be
appropriate
No detection of read-dependencies

What do we do?

29

Bayou

System developed at PARC in the mid-90’s

First coherent attempt to fully address the
problem of disconnected operation

Several different components

30

Bayou Architecture

31

Motivating Scenario: Shared
Calendar

Calendar updates made by several people
e.g., meeting room scheduling, or exec+admin

Want to allow updates offline

But conflicts can’t be prevented

Two possibilities:
Disallow offline updates?

Conflict resolution?

32

Conflict Resolution

Replication not transparent to application
Only the application knows how to resolve conflicts
Application can do record-level conflict detection, not
just file-level conflict detection

Calendar example: record-level, and easy resolution

Split of responsibility:
Replication system: propagates updates

Application: resolves conflict

Optimistic application of writes requires that
writes be “undo-able”

33

Meeting room scheduler

Reserve same room at same time: conflict
Reserve different rooms at same time: no
conflict
Reserve same room at different times: no
conflict
Only the application would know this!

Rm2

Rm1

time

No conflict

34

Meeting Room Scheduler

Rm2

Rm1

time

No conflict

35

Meeting Room Scheduler

Conflict detection

Rm2

Rm1

time

conflict

36

Meeting Room Scheduler

Automated resolution

Rm2

Rm1

time

No conflict

37

Meeting Room Scheduler

Rm2

Rm1

time

No conflict

38

Other Resolution Strategies

Classes take priority over meetings

Faculty reservations are bumped by admin
reservations

Move meetings to bigger room, if available

Point:
Conflicts are detected at very fine granularity
Resolution can be policy-driven

39

Updates

Client sends update to a server

Identified by a triple:
<Commit-stamp, Time-stamp, Server-ID of accepting
server>

Updates are either committed or tentative
Commit-stamps increase monotonically
Tentative updates have commit-stamp = inf

40

Anti-Entropy Exchange

Each server keeps a vector timestamp

When two servers connect, exchanging the
version vectors allows them to identify the

missing updates

These updates are exchanged in the order of
the logs, so that if the connection is dropped
the crucial monotonicity property still holds

If a server X has an update accepted by server Y, server X
has all previous updates accepted by that server

41

Example with Three Servers

P

[0,0,0]

A

[0,0,0]

B

[0,0,0]

Version Vectors

42

Vector Clocks

Vector clocks overcome the shortcoming of
Lamport logical clocks
L(e) < L(e) does not imply e happened before e

Vector timestamps are used to timestamp local
events
They are applied in schemes for replication of
data

43

Vector Clocks

How to ensure causality?
Two rules for delaying message processing:
1. VC must indicate that this is next message from

source
2. VC must indicate that you have all the other

messages that “caused” this message

44

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical
time

All Servers Write Independently

P

<inf,1,P>

<inf,4,P>
<inf,8,P>

[8,0,0]

A

<inf,2,A>

<inf,3,A>
<inf,10,A>

[0,10,0]

B

<inf,1,B>

<inf,5,B>
<inf,9,B>

[0,0,9]

45

Bayou Writes

Identifier (commit-stamp, time-stamp,
server-ID)

Nominal value

Write dependencies

Merge procedure

46

Conflict Detection

Write specifies the data the write depends
on:

Set X=8 if Y=5 and Z=3

Set Cal(11:00-12:00)=dentist if Cal(11:00-12:00) is
null

These write dependencies are crucial in
eliminating unnecessary conflicts

If file-level detection was used, all updates would
conflict with each other

47

Conflict Resolution

Specified by merge procedure (mergeproc)

When conflict is detected, mergeproc is
called

Move appointments to open spot on calendar

Move meetings to open room

48

P and A Do Anti-Entropy
Exchange

P

<inf,1,P>

<inf,2,A>
<inf,3,A>

<inf,4,P>

<inf,8,P>
<inf,10,A>

[8,10,0]

A

<inf,1,P>

<inf,2,A>
<inf,3,A>

<inf,4,P>

<inf,8,P>
<inf,10,A>

[8,10,0]

B

<inf,1,B>

<inf,5,B>
<inf,9,B>

[0,0,9]

<inf,1,P>

<inf,4,P>
<inf,8,P>

[8,0,0]

<inf,2,A>

<inf,3,A>
<inf,10,A>

[0,10,0]

49

Bayou uses a primary to commit a
total order

Why is it important to make log stable?
Stable writes can be committed
Stable portion of the log can be truncated

Problem: If any node is offline, the
stable portion of all logs stops growing
Bayou’s solution:

A designated primary defines a total commit
order
Primary assigns CSNs (commit-seq-no)
Any write with a known CSN is stable
All stable writes are ordered before tentative
writes

50

P Commits Some Early Writes

P

<1,1,P>

<2,2,A>
<3,3,A>

<inf,4,P>

<inf,8,P>
<inf,10,A>

[8,10,0]

A

<inf,1,P>

<inf,2,A>
<inf,3,A>

<inf,4,P>

<inf,8,P>
<inf,10,A>

[8,10,0]

B

<inf,1,B>

<inf,5,B>
<inf,9,B>

[0,0,9]

<inf,1,P>

<inf,2,A>
<inf,3,A>

<inf,4,P>
<inf,8,P>

<inf,10,A>

[8,10,0]
51

P and B Do Anti-Entropy
Exchange

P

<1,1,P>

<2,2,A>
<3,3,A>

<inf,1,B>

<inf,4,P>
<inf,5,B>

<inf,8,P>
<inf,9,B>

<inf,10,A>

[8,10,9]

A

<inf,1,P>

<inf,2,A>
<inf,3,A>

<inf,4,P>

<inf,8,P>
<inf,10,A>

[8,10,0]

B

<1,1,P>

<2,2,A>
<3,3,A>

<inf,1,B>

<inf,4,P>
<inf,5,B>

<inf,8,P>
<inf,9,B>

<inf,10,A>

[8,10,9]

<1,1,P>

<2,2,A>
<3,3,A>

<inf,4,P>

<inf,8,P>
<inf,10,A>

<inf,1,B>

<inf,5,B>
<inf,9,B>

[0,0,9]
52

P Commits More Writes

P

<1,1,P>

<2,2,A>
<3,3,A>

<4,1,B>

<5,4,P>
<6,5,B>

<7,8,P>
<inf,9,B>

<inf,10,A>

[8,10,9]

P

<1,1,P>

<2,2,A>
<3,3,A>

<inf,1,B>

<inf,4,P>
<inf,5,B>

<inf,8,P>
<inf,9,B>

<inf,10,A>

[8,10,9]

53

Bayou Summary

Simple gossip based design
Key difference exploits knowledge of
application semantics

To identify conflicts
To handle merges

Greater complexity for the programmer
Might be useful in ubicomp context

54

Important Lessons

ACID vs. BASE
Understand the tradeoffs you are making
ACID makes things better for programmer/system
designed
BASE often preferred by users

Client-centric consistency
Different guarantees than data-centric

Eventual consistency
BASE-like design better performance/availability
Must design system to tolerate
Bayou a good example of making tolerance explicit

55

