
L-10 Consistency 
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Important Lessons 

Replication  good for performance/
reliability 

Key challenge  keeping replicas up-to-date  

Wide range of consistency models 
Will see more next lecture 
Range of correctness properties 

Most obvious choice (sequential 
consistency) can be expensive to implement 

Multicast, primary, quorum 
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Today's Lecture 

ACID vs. BASE – philosophy 

Client-centric consistency models 

Eventual consistency 

Bayou 
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Two Views of Distributed Systems 

Optimist: A distributed system is a 
collection of independent computers that 
appears to its users as a single coherent 
system 

Pessimist: “You know you have one when 
the crash of a computer you’ve never heard 
of stops you from getting any work 
done.” (Lamport) 
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Recurring Theme 

Academics like: 
Clean abstractions 
Strong semantics 
Things that prove they are smart 

Users like: 
Systems that work (most of the time) 
Systems that scale 

Consistency per se isn’t important 

Eric Brewer had the following 
observations 
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A Clash of Cultures 

Classic distributed systems: focused on 
ACID semantics (transaction semantics) 

Atomicity: either the operation (e.g., write) is 
performed on all replicas or is not performed on any 
of them 
Consistency: after each operation all replicas reach 
the same state 
Isolation: no operation (e.g., read) can see the data 
from another operation (e.g., write) in an 
intermediate state  
Durability: once a write has been successful, that 
write will persist indefinitely 

Modern Internet systems: focused on BASE 
Basically Available 
Soft-state (or scalable) 
Eventually consistent 
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ACID vs BASE 

ACID 

Strong consistency for 
transactions highest 
priority 
Availability less 
important 
Pessimistic 
Rigorous analysis 
Complex mechanisms 

BASE 

Availability and scaling 
highest priorities 
Weak consistency 
Optimistic 
Best effort 
Simple and fast 

7 

Why Not ACID+BASE? 

What goals might you want from a system? 
C, A, P 

Strong Consistency: all clients see the same 
view, even in the presence of updates 

High Availability: all clients can find some 
replica of the data, even in the presence of 
failures 

Partition-tolerance: the system properties 
hold even when the system is partitioned 
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CAP Theorem [Brewer] 

You can only have two out of these three 
properties 

The choice of which feature to discard 
determines the nature of your system 
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Consistency and Availability 

Comment: 
Providing transactional semantics requires all 
functioning nodes to be in contact with each other (no 
partition) 

Examples: 
Single-site and clustered databases 
Other cluster-based designs 

Typical Features: 
Two-phase commit 
Cache invalidation protocols 
Classic DS style 
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Partition-Tolerance and 
Availability 

Comment: 
Once consistency is sacrificed, life is easy…. 

Examples: 
DNS 
Web caches 
Practical distributed systems for mobile 
environments: Coda, Bayou 

Typical Features: 
Optimistic updating with conflict resolution 
This is the “Internet design style” 
TTLs and lease cache management 

11 

Voting with their Clicks 

In terms of large-scale systems, the world 
has voted with their clicks: 

Consistency less important than availability and 

partition-tolerance 
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Client-centric Consistency Models 

A mobile user may access different replicas of a distributed 
database at different times.  This type of behavior implies the 
need for a view of consistency that provides guarantees for  
single client regarding accesses to the data store. 
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Session Guarantees 

When client move around and connects to 
different replicas, strange things can happen 

Updates you just made are missing 
Database goes back in time 

Responsibility of “session manager”, not 
servers 
Two sets: 

Read-set: set of writes that are relevant to session reads 
Write-set: set of writes performed in session 

Update dependencies captured in read sets and 
write sets 
Four different client-central consistency models 

Monotonic reads 
Monotonic writes 
Read your writes 
Writes follow reads 
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Monotonic Reads 

A data store provides monotonic read consistency if when a process 
reads the value of a data item x, any successive read operations 
on x by that process will always return the same value or a more 
recent value.  

Example error: successive access to email have ‘disappearing 
messages’ 

a) A monotonic-read consistent data store 
b) A data store that does not provide monotonic reads. 

indicates propagation of the earlier write 

L1 and L2 are 
two locations 

process moves from L1 to L2 

process moves from L1 to L2 

No propagation guarantees 
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Monotonic Writes 

A write operation by a process on a data item x is completed before any 
successive write operation on x by the same process.  Implies a 
copy must be up to date before performing a write on it. 

Example error: Library updated in wrong order. 
a) A monotonic-write consistent data store. 
b) A data store that does not provide monotonic-write consistency. 

In both examples,  
process performs a  
write at L1, moves  

and performs a write  
at L2 
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Read Your Writes 

The effect of a write operation by a process on data item x will 
always be seen by a successive read operation on x by 
the same process.  

Example error: deleted email messages re-appear. 
a) A data store that provides read-your-writes consistency. 
b) A data store that does not. 

In both examples,  
process performs a  
write at L1, moves  

and performs a read  
at L2 
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Writes Follow Reads 

A write operation by a process on a data item x following a previous 
read operation on x by the same process is guaranteed to take 
place on the same or a more recent value of x that was read.  

Example error: Newsgroup displays responses to articles before 
original article has propagated there 

a) A writes-follow-reads consistent data store 
b) A data store that does not provide writes-follow-reads 

consistency 

In both examples,  
process performs a  
read at L1, moves  

and performs a write 
at L2 
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Many Kinds of Consistency 

Strict: updates happen instantly everywhere 
A read has to return the result of the latest write which 
occurred on that data item  
Assume instantaneous propagation; not realistic 

Linearizable: updates appear to happen 
instantaneously at some point in time 

Like “Sequential” but operations are ordered using a global 
clock 
Primarly used for formal verification of concurrent programs 

Sequential: all updates occur in the same order 
everywhere 

Every client sees the writes in the same order  
Order of writes from the same client is preserved 
Order of writes from different clients may not be preserved 

Equivalent to Atomicity + Consistency + Isolation 
Eventual consistency: if all updating stops then 
eventually all replicas will converge to the identical 
values 
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Eventual Consistency 

There are replica situations where updates 
(writes) are rare and where a fair amount of 
inconsistency can be tolerated. 

DNS – names rarely changed, removed, or added and 
changes/additions/removals done by single authority 
Web page update – pages typically have a single 
owner and are updated infrequently. 

If no updates occur for a while, all replicas 
should gradually become consistent. 
May be a problem with mobile user who 
access different replicas (which may be 
inconsistent with each other). 
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Why (not) eventual consistency? 

Support disconnected operations 
Better to read a stale value than nothing 
Better to save writes somewhere than nothing 

Potentially anomalous application behavior 
Stale reads and conflicting writes… 
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Implementing Eventual 
Consistency 

Can be implemented with two steps: 

1. All writes eventually propagate to all 
replicas 

2. Writes, when they arrive, are written to a 
log and applied in the same order at all 
replicas 
• Easily done with timestamps and “undo-ing” 

optimistic writes 
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Update Propagation 

Rumor or epidemic stage: 
Attempt to spread an update quickly 
Willing to tolerate incompletely coverage in return for 
reduced traffic overhead 

Correcting omissions: 
Making sure that replicas that weren’t updated during 
the rumor stage get the update 
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Anti-Entropy 

Every so often, two servers compare 
complete datasets 

Use various techniques to make this cheap 

If any data item is discovered to not have 
been fully replicated, it is considered a new 
rumor and spread again 
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System Assumptions 

Early days: nodes always on when not 
crashed 

Bandwidth always plentiful (often LANs) 
Never needed to work on a disconnected node 
Nodes never moved 
Protocols were “chatty” 

Now: nodes detach then reconnect 
elsewhere 

Even when attached, bandwidth is variable 
Reconnection elsewhere means often talking to 
different replica 
Work done on detached nodes 
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Disconnected Operation 

Challenge to old paradigm 
Standard techniques disallowed any operations while 
disconnected 
Or disallowed operations by others 

But eventual consistency not enough 
Reconnecting to another replica could result in 
strange results 

E. g., not seeing your own recent writes 
Merely letting latest write prevail may not be 
appropriate 
No detection of read-dependencies 

What do we do? 
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Bayou 

System developed at PARC in the mid-90’s 

First coherent attempt to fully address the 
problem of disconnected operation 

Several different components 
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Bayou Architecture 
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Motivating Scenario: Shared 
Calendar 

Calendar updates made by several people 
e.g., meeting room scheduling, or exec+admin 

Want to allow updates offline 

But conflicts can’t be prevented 

Two possibilities: 
Disallow offline updates? 

Conflict resolution? 
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Conflict Resolution 

Replication not transparent to application 
Only the application knows how to resolve conflicts 
Application can do record-level conflict detection, not 
just file-level conflict detection 

Calendar example: record-level, and easy resolution 

Split of responsibility: 
Replication system: propagates updates 

Application: resolves conflict 

Optimistic application of writes requires that 
writes be “undo-able” 
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Meeting room scheduler 

Reserve same room at same time: conflict 
Reserve different rooms at same time: no 
conflict 
Reserve same room at different times: no 
conflict 
Only the application would know this! 

Rm2 

Rm1 

time 

No conflict 
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Meeting Room Scheduler 

Rm2 

Rm1 

time 

No conflict 
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Meeting Room Scheduler 

Conflict detection 

Rm2 

Rm1 

time 

conflict 
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Meeting Room Scheduler 

Automated resolution 

Rm2 

Rm1 

time 

No conflict 
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Meeting Room Scheduler 

Rm2 

Rm1 

time 

No conflict 
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Other Resolution Strategies 

Classes take priority over meetings 

Faculty reservations are bumped by admin 
reservations 

Move meetings to bigger room, if available 

Point: 
Conflicts are detected at very fine granularity 
Resolution can be policy-driven 
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Updates 

Client sends update to a server 

Identified by a triple: 
<Commit-stamp, Time-stamp, Server-ID of accepting 
server> 

Updates are either committed or tentative 
Commit-stamps increase monotonically 
Tentative updates have commit-stamp = inf 
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Anti-Entropy Exchange 

Each server keeps a vector timestamp 

When two servers connect, exchanging the 
version vectors allows them to identify the 

missing updates 

These updates are exchanged in the order of 
the logs, so that if the connection is dropped 
the crucial monotonicity property still holds 

If a server X has an update accepted by server Y, server X 
has all previous updates accepted by that server 
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Example with Three Servers 

P 

[0,0,0] 

A 

[0,0,0] 

B 

[0,0,0] 

Version Vectors 
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Vector Clocks 

Vector clocks overcome the shortcoming of 
Lamport logical clocks
L(e) < L(e ) does not imply e happened before e

Vector timestamps are used to timestamp local 
events
They are applied in schemes  for replication of 
data
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Vector Clocks 

How to ensure causality? 
Two rules for delaying message processing: 
1. VC must indicate that this is next message from 

source 
2. VC must indicate that you have all the other 

messages that “caused” this message 
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a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical 
time



All Servers Write Independently 

P 

<inf,1,P> 

<inf,4,P> 
<inf,8,P> 

[8,0,0] 

A 

<inf,2,A> 

<inf,3,A> 
<inf,10,A> 

[0,10,0] 

B 

<inf,1,B> 

<inf,5,B> 
<inf,9,B> 

[0,0,9] 
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Bayou Writes 

Identifier (commit-stamp, time-stamp, 
server-ID) 

Nominal value 

Write dependencies 

Merge procedure 
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Conflict Detection 

Write specifies the data the write depends 
on: 

Set X=8 if Y=5 and Z=3 

Set Cal(11:00-12:00)=dentist if Cal(11:00-12:00) is 
null 

These write dependencies are crucial in 
eliminating unnecessary conflicts 

If file-level detection was used, all updates would 
conflict with each other 
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Conflict Resolution 

Specified by merge procedure (mergeproc) 

When conflict is detected, mergeproc is 
called 

Move appointments to open spot on calendar 

Move meetings to open room 
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P and A Do Anti-Entropy 
Exchange 

P 

<inf,1,P> 

<inf,2,A> 
<inf,3,A> 

<inf,4,P> 

<inf,8,P> 
<inf,10,A> 

[8,10,0] 

A 

<inf,1,P> 

<inf,2,A> 
<inf,3,A> 

<inf,4,P> 

<inf,8,P> 
<inf,10,A> 

[8,10,0] 

B 

<inf,1,B> 

<inf,5,B> 
<inf,9,B> 

[0,0,9] 

<inf,1,P> 

<inf,4,P> 
<inf,8,P> 

[8,0,0] 

<inf,2,A> 

<inf,3,A> 
<inf,10,A> 

[0,10,0] 
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Bayou uses a primary to commit a 
total order 

Why is it important to make log stable? 
Stable writes can be committed  
Stable portion of the log can be truncated 

Problem: If any node is offline, the 
stable portion of all logs stops growing 
Bayou’s solution: 

A designated primary defines a total commit 
order  
Primary assigns CSNs (commit-seq-no) 
Any write with a known CSN is stable 
All stable writes are ordered before tentative 
writes 
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P Commits Some Early Writes 

P 

<1,1,P> 

<2,2,A> 
<3,3,A> 

<inf,4,P> 

<inf,8,P> 
<inf,10,A> 

[8,10,0] 

A 

<inf,1,P> 

<inf,2,A> 
<inf,3,A> 

<inf,4,P> 

<inf,8,P> 
<inf,10,A> 

[8,10,0] 

B 

<inf,1,B> 

<inf,5,B> 
<inf,9,B> 

[0,0,9] 

<inf,1,P> 

<inf,2,A> 
<inf,3,A> 

<inf,4,P> 
<inf,8,P> 

<inf,10,A> 

[8,10,0] 
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P and B Do Anti-Entropy 
Exchange 

P 

<1,1,P> 

<2,2,A> 
<3,3,A> 

<inf,1,B> 

<inf,4,P> 
<inf,5,B> 

<inf,8,P> 
<inf,9,B> 

<inf,10,A> 

[8,10,9] 

A 

<inf,1,P> 

<inf,2,A> 
<inf,3,A> 

<inf,4,P> 

<inf,8,P> 
<inf,10,A> 

[8,10,0] 

B 

<1,1,P> 

<2,2,A> 
<3,3,A> 

<inf,1,B> 

<inf,4,P> 
<inf,5,B> 

<inf,8,P> 
<inf,9,B> 

<inf,10,A> 

[8,10,9] 

<1,1,P> 

<2,2,A> 
<3,3,A> 

<inf,4,P> 

<inf,8,P> 
<inf,10,A> 

<inf,1,B> 

<inf,5,B> 
<inf,9,B> 

[0,0,9] 
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P Commits More Writes 

P 

<1,1,P> 

<2,2,A> 
<3,3,A> 

<4,1,B> 

<5,4,P> 
<6,5,B> 

<7,8,P> 
<inf,9,B> 

<inf,10,A> 

[8,10,9] 

P 

<1,1,P> 

<2,2,A> 
<3,3,A> 

<inf,1,B> 

<inf,4,P> 
<inf,5,B> 

<inf,8,P> 
<inf,9,B> 

<inf,10,A> 

[8,10,9] 
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Bayou Summary 

Simple gossip based design 
Key difference  exploits knowledge of 
application semantics 

To identify conflicts 
To handle merges 

Greater complexity for the programmer 
Might be useful in ubicomp context 
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Important Lessons 

ACID vs. BASE 
Understand the tradeoffs you are making 
ACID makes things better for programmer/system 
designed 
BASE often preferred by users 

Client-centric consistency 
Different guarantees than data-centric 

Eventual consistency 
BASE-like design  better performance/availability 
Must design system to tolerate 
Bayou a good example of making tolerance explicit 
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