
L-9 Logical Time

1

Announcements

Project 1 update – Thursday
Due 2/26

HW 1 – due Thursday

2

Last Lecture – Clock Sync
Important Lessons

Clocks on different systems will always behave
differently

Skew and drift between clocks

Time disagreement between machines can
result in undesirable behavior

Two paths to solution: synchronize clocks or
ensure consistent clocks

Clock synchronization
Rely on a time-stamped network messages
Estimate delay for message transmission
Can synchronize to UTC or to local source

3

Today's Lecture

Lamport Clocks

Vector Clocks

Mutual Exclusion

Election

4

Example: Totally Ordered Multicasting

Updating a replicated database and leaving it in
an inconsistent state

5

Logical time and logical clocks
(Lamport 1978)

Events at three processes

6

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

Logical time and logical clocks
(Lamport 1978)

Instead of synchronizing clocks, event ordering can be
used

1. If two events occurred at the same process pi (i = 1, 2, … N) then
they occurred in the order observed by pi, that is

2. when a message, m is sent between two processes, send(m)
happened before receive(m)

3. The happened before relation is transitive

the happened before relation is the relation of causal
ordering

7

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

Logical time and logical clocks
(Lamport 1978)

a b (at p1) c d (at p2)
b c because of m1
also d f because of m2

8

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

Logical time and logical clocks
(Lamport 1978)

Not all events are related by
Consider a and e (different processes and
no chain of messages to relate them)

they are not related by ; they are said to be
concurrent
written as a || e

9

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

Lamport Clock (1)

A logical clock is a monotonically increasing software
counter

It need not relate to a physical clock.

Each process pi has a logical clock, Li which can be used
to apply logical timestamps to events

Rule 1: Li is incremented by 1 before each event at process pi
Rule 2:

(a) when process pi sends message m, it piggybacks t = Li
(b) when pj receives (m,t) it sets Lj := max(Lj, t) and applies LC1 before
timestamping the event receive (m)

10

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

Lamport Clock (1)

each of p1, p2, p3 has its logical clock initialised to zero,
the clock values are those immediately after the event.
e.g. 1 for a, 2 for b.

for m1, 2 is piggybacked and c gets max(0,2)+1 = 3

11

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

Lamport Clock (1)

e e implies L(e)<L(e)

The converse is not true, that is L(e)<L(e') does
not imply e e

e.g. L(b) > L(e) but b || e

12

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

Today's Lecture

Lamport Clocks

Vector Clocks

Mutual Exclusion

Election

13

Vector Clocks

Vector clocks overcome the shortcoming of
Lamport logical clocks

L(e) < L(e) does not imply e happened before e

Vector timestamps are used to timestamp local
events
They are applied in schemes for replication of
data

14

Vector Clocks

Vi [i] is the number of events that pi has timestamped
Vi [j] (j i) is the number of events at pj that pi has
been affected by

Vector clock Vi at process pi is an array of N
integers

1. initially Vi[j] = 0 for i, j = 1, 2, …N
2. before pi timestamps an event it sets Vi[i] :=

Vi[i] +1
3. pi piggybacks t = Vi on every message it

sends
4. when pi receives (m,t) it sets Vi[j] :=

max(Vi[j] , t[j]) j = 1, 2, …N (then before next
event adds 1 to own element using rule 2)

15

Vector Clocks

At p1
a occurs at (1,0,0); b occurs at (2,0,0)
piggyback (2,0,0) on m1

At p2 on receipt of m1 use max ((0,0,0), (2,0,0)) = (2,
0, 0) and add 1 to own element = (2,1,0)
Meaning of =, <=, max etc for vector timestamps

compare elements pairwise

16

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical
time

Vector Clocks

Note that e e’ implies L(e)<L(e’). The
converse is also true
Can you see a pair of parallel events?

 c || e(parallel) because neither V(c) <= V(e) nor V(e) <= V(c)

17

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical
time

Today's Lecture

Lamport Clocks

Vector Clocks

Mutual Exclusion

Election

18

Mutual Exclusion
A Centralized Algorithm

1. Process 1 asks the coordinator for permission to
access a shared resource Permission is granted

2. Process 2 then asks permission to access the
same resource The coordinator does not reply

3. When process 1 releases the resource, it tells the
coordinator, which then replies to 2

19

A Distributed Algorithm (1)

Three different cases:
1. If the receiver is not accessing the resource

and does not want to access it, it sends back
an OK message to the sender.

2. If the receiver already has access to the
resource, it simply does not reply. Instead, it
queues the request.

3. If the receiver wants to access the resource
as well but has not yet done so, it compares
the timestamp of the incoming message with
the one contained in the message that it has
sent everyone. The lowest one wins.

20

A Distributed Algorithm (2)

Two processes want to access a
shared resource at the same moment.
Process 0 has the lowest timestamp, so it wins
When process 0 is done, it sends an OK also,
so 2 can now go ahead.

21

Accesses

Resource

Accesses

Resource

A Token Ring Algorithm

An unordered group of processes on a
network A logical ring constructed in
software

Use ring to pass right to access resource
22

A Comparison of the Four Algorithms

23

Today's Lecture

Lamport Clocks

Vector Clocks

Mutual Exclusion

Election

24

Election Algorithms

The Bully Algorithm:
1. P sends an ELECTION message to all

processes with higher numbers.
2. If no one responds, P wins the election and

becomes coordinator.
3. If one of the higher-ups answers, it takes

over. P’s job is done.

25

The Bully Algorithm (1)

(a) Process 4 holds an election
(b) Processes 5 and 6 respond, telling 4 to
stop.
(c) Now 5 and 6 each hold an election.

26

The Bully Algorithm (2)

(d) Process 6 tells 5 to stop
(e) Process 6 wins and tells everyone.

27

A Ring Algorithm

28

Elections in Wireless Environments
(1)

node a as the source
The build-tree phase

29

Elections in Wireless Environments
(2)

Figure 6-22. Election algorithm in a wireless
network, with node a as the source. (a)
Initial network. (b)–(e) The build-tree phase

30

Elections in Wireless Environments
(3)

Reporting of best node to source.

31

Important Lessons

Lamport & vector clocks both give a logical
timestamps

Total ordering vs. causal ordering

Other issues in coordinating node activities
Exclusive access to resources
Choosing a single leader

32

