
L-9 Logical Time 
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Announcements 

Project 1 update – Thursday 
Due 2/26 

HW 1 – due Thursday 
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Last Lecture – Clock Sync 
Important Lessons 

Clocks on different systems will always behave 
differently 

Skew and drift between clocks 

Time disagreement between machines can 
result in undesirable behavior 

Two paths to solution: synchronize clocks or 
ensure consistent clocks 

Clock synchronization 
Rely on a time-stamped network messages 
Estimate delay for message transmission 
Can synchronize to UTC or to local source 

3 

Today's Lecture 

Lamport Clocks 

Vector Clocks 

Mutual Exclusion 

Election 
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Example: Totally Ordered Multicasting 

Updating a replicated database and leaving it in 
an inconsistent state 
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Logical time and logical clocks 
(Lamport 1978) 

Events at three processes 
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Logical time and logical clocks 
(Lamport 1978) 

Instead of synchronizing clocks, event ordering can be 
used 

1. If two events occurred at the same process pi (i = 1, 2, … N) then 
they occurred in the order observed by pi, that is     

2. when a message, m is sent between two processes, send(m) 
happened before receive(m) 

3. The happened before relation is transitive 

the happened before relation is the relation of causal 
ordering 
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Logical time and logical clocks 
(Lamport 1978) 

a  b (at p1) c d  (at p2) 
b   c because of m1 
also d  f because of m2 
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Logical time and logical clocks 
(Lamport 1978) 

Not all events are related by   
Consider a and e (different processes and 
no chain of messages to relate them) 

they are not related by  ; they are said to be 
concurrent 
written as a || e 
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Lamport Clock (1) 

A logical clock is a monotonically increasing software 
counter 

It need not relate to a physical clock. 

Each process pi has a logical clock, Li which can be used 
to apply logical timestamps to events 

Rule 1: Li  is incremented by 1 before each event at process pi  
Rule 2:  

(a) when process pi sends message m, it piggybacks t =  Li  
(b) when pj receives (m,t) it sets Lj := max(Lj, t) and applies LC1 before 
timestamping the event receive (m) 
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Lamport Clock (1) 

each of p1, p2, p3 has its logical clock initialised to zero, 
the clock values are those immediately after the event.
e.g. 1 for a, 2 for b. 

for m1, 2 is piggybacked and c gets max(0,2)+1 = 3 
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Lamport Clock (1) 

e e  implies L(e)<L(e )

The converse is not true, that is L(e)<L(e') does 
not imply e e

e.g. L(b) > L(e) but b || e
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Vector Clocks 

Vector clocks overcome the shortcoming of 
Lamport logical clocks

L(e) < L(e ) does not imply e happened before e

Vector timestamps are used to timestamp local 
events
They are applied in schemes  for replication of 
data
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Vector Clocks 

Vi [ i ] is the number of events that pi has timestamped
Vi [ j ] ( j  i) is the number of events at pj that pi has 
been affected by

Vector clock Vi at process pi is an array of N 
integers 

1. initially Vi[j] = 0 for i, j = 1, 2, …N 
2. before pi timestamps an event it sets Vi[i] := 

Vi[i] +1 
3.  pi piggybacks t = Vi on every message it 

sends 
4. when pi receives (m,t) it sets Vi[j] := 

max(Vi[j] , t[j]) j = 1, 2, …N   ( then before next 
event adds 1 to own element using rule 2) 
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Vector Clocks 

At p1 
a occurs at (1,0,0); b occurs at (2,0,0) 
piggyback  (2,0,0) on m1

At p2 on receipt of m1 use max ((0,0,0), (2,0,0)) = (2, 
0, 0) and add 1 to own element = (2,1,0) 
Meaning of =, <=, max etc for vector timestamps

compare elements pairwise 

16 

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical 
time



Vector Clocks 

Note that e e’ implies L(e)<L(e’). The 
converse is also true 
Can you see a pair of parallel events?

 c || e( parallel) because neither V(c) <= V(e) nor V(e) <= V(c)
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Mutual Exclusion 
A Centralized Algorithm 

1. Process 1 asks the coordinator for permission to 
access a shared resource  Permission is granted 

2. Process 2 then asks permission to access the 
same resource  The coordinator does not reply 

3. When process 1 releases the resource, it tells the 
coordinator, which then replies to 2 
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A Distributed Algorithm (1) 

Three different cases: 
1. If the receiver is not accessing the resource 

and does not want to access it, it sends back 
an OK message to the sender. 

2. If the receiver already has access to the 
resource, it simply does not reply. Instead, it 
queues the request. 

3. If the receiver wants to access the resource 
as well but has not yet done so, it compares 
the timestamp of the incoming message with 
the one contained in the message that it has 
sent everyone. The lowest one wins.  
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A Distributed Algorithm (2) 

Two processes want to access a  
shared resource at the same moment.  
Process 0 has the lowest timestamp, so it wins 
When process 0 is done, it sends an OK also, 
so 2 can now go ahead. 
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A Token Ring Algorithm 

An unordered group of processes on a 
network  A logical ring constructed in 
software 

Use ring to pass right to access resource 
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A Comparison of the Four Algorithms 
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Election Algorithms  

The Bully Algorithm: 
1. P sends an ELECTION message to all 

processes with higher numbers. 
2. If no one responds, P wins the election and 

becomes coordinator. 
3. If one of the higher-ups answers, it takes 

over. P’s job is done. 
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The Bully Algorithm (1) 

(a) Process 4 holds an election 
(b) Processes 5 and 6 respond, telling 4 to 
stop.  
(c) Now 5 and 6 each hold an election. 
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The Bully Algorithm (2) 

(d) Process 6 tells 5 to stop 
(e) Process 6 wins and tells everyone. 
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A Ring Algorithm 
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Elections in Wireless Environments 
(1) 

node a as the source  
The build-tree phase 

29 

Elections in Wireless Environments 
(2) 

Figure 6-22. Election algorithm in a wireless 
network, with node a as the source. (a) 
Initial network. (b)–(e) The build-tree phase 
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Elections in Wireless Environments 
(3) 

Reporting of best node to source. 
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Important Lessons 

Lamport & vector clocks both give a logical 
timestamps 

Total ordering vs. causal ordering 

Other issues in coordinating node activities 
Exclusive access to resources 
Choosing a single leader 
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