
L-4 RPC

1

Last Lecture
Important Lessons - Naming

Naming is a powerful tool in system design
A layer of indirection can solve many problems

Name+context to value translation
binding
How to determine context?

Implicit from environment
Explicit e.g., recursive names
Search paths

Structure of names
Implications on lookup, flexibility

Late binding
How DNS works

2

Today's Lecture

RPC overview

RPC transparency

RPC implementation issues

3

Client-server architecture

Client sends a request, server replies w. a
response

Interaction fits many applications
Naturally extends to distributed computing

Why do people like client/server
architecture?

Provides fault isolation between modules
Scalable performance (multiple servers)
Central server:

Easy to manage
Easy to program

4

Remote procedure call

A remote procedure call makes a call to a
remote service look like a local call

RPC makes transparent whether server is local or

remote
RPC allows applications to become distributed
transparently

RPC makes architecture of remote machine
transparent

5

Developing with RPC

1. Define APIs between modules
• Split application based on function, ease of

development, and ease of maintenance
• Don’t worry whether modules run locally or

remotely

2. Decide what runs locally and remotely
• Decision may even be at run-time

3. Make APIs bullet proof
• Deal with partial failures

6

Stubs: obtaining transparency

Compiler generates from API stubs for a
procedure on the client and server
Client stub

Marshals arguments into machine-independent
format
Sends request to server
Waits for response
Unmarshals result and returns to caller

Server stub
Unmarshals arguments and builds stack frame
Calls procedure
Server stub marshalls results and sends reply

7

Conventional Procedure Call

(a) Parameter passing in a local procedure call: the
stack before the call to read
(b) The stack while the called procedure – read(fd,
buf, nbytes) - is active.

8

Client and Server Stubs

Principle of RPC between a client and server
program.

9

Remote Procedure Calls (1)

A remote procedure call occurs in the following
steps:

1. The client procedure calls the client stub in the
normal way.

2. The client stub builds a message and calls the
local operating system.

3. The client’s OS sends the message to the remote
OS.

4. The remote OS gives the message to the server
stub.

5. The server stub unpacks the parameters and calls
the server.

 Continued …

10

Remote Procedure Calls (2)

A remote procedure call occurs in the following
steps (continued):

6. The server does the work and returns the
result to the stub.

7. The server stub packs it in a message and
calls its local OS.

8. The server’s OS sends the message to the
client’s OS.

9. The client’s OS gives the message to the
client stub.

10. The stub unpacks the result and returns to
the client.

11

Passing Value Parameters (1)

The steps involved in a doing a
remote computation through RPC.

12

Passing Value Parameters (2)

a) Original message on the Pentium
b) The message after receipt on the SPARC
c) The message after being inverted. The little

numbers in boxes indicate the address of each
byte

Parameter Specification
and Stub Generation

(a) A procedure
(b) The corresponding
 message.

14

Asynchronous RPC (1)

The interaction between client and
server in a traditional RPC.

15

Asynchronous RPC (2)

The interaction using asynchronous RPC.

16

Asynchronous RPC (3)

A client and server interacting through
two asynchronous RPCs.

17

Binding a Client to a Server

Registration of a server makes it possible for a
client to locate the server and bind to it
Server location is done in two steps:

Locate the server’s machine.
Locate the server on that machine.

18

Distributed Objects

Common organization of a remote object with client-side proxy.
19

Today's Lecture

RPC overview

RPC transparency

RPC implementation issues

20

RPC vs. LPC

4 properties of distributed computing that
make achieving transparency difficult:

Partial failures

Latency
Memory access

21

Passing Reference Parameters

Replace with pass by copy/restore
Need to know size of data to copy

Difficult in some programming languages

Solves the problem only partially
What about data structures containing pointers?
Access to memory in general?

22

Partial failures

In local computing:
if machine fails, application fails

In distributed computing:
if a machine fails, part of application fails
one cannot tell the difference between a machine
failure and network failure

How to make partial failures transparent to
client?

23

Strawman solution

Make remote behavior identical to local
behavior:

Every partial failure results in complete failure
You abort and reboot the whole system

You wait patiently until system is repaired

Problems with this solution:
Many catastrophic failures
Clients block for long periods

System might not be able to recover

24

Real solution: break transparency

Possible semantics for RPC:
Exactly-once

Impossible in practice

At least once:
Only for idempotent operations

At most once
Zero, don’t know, or once

Zero or once
Transactional semantics

At-most-once most practical
But different from LPC

25

Summary:
expose remoteness to client

Expose RPC properties to client, since you
cannot hide them

Application writers have to decide how to
deal with partial failures

Consider: E-commerce application vs. game

26

Today's Lecture

RPC overview

RPC transparency

RPC implementation issues

27

RPC implementation

Stub compiler
Generates stubs for client and server
Language dependent
Compile into machine-independent format

E.g., XDR
Format describes types and values

RPC protocol
RPC transport

28

Writing a Client and a Server (1)

The steps in writing a
client and a server in
DCE RPC.

29

Writing a Client and a Server (2)

Three files output by the IDL compiler:

A header file (e.g., interface.h, in C terms).
The client stub.
The server stub.

30

RPC protocol

Guarantee at-most-once semantics by
tagging requests and response with a nonce
RPC request header:

Request nonce
Service Identifier
Call identifier

Protocol:
Client resends after time out
Server maintains table of nonces and replies

31

RPC transport

Use reliable transport layer
Flow control
Congestion control
Reliable message transfer

Combine RPC and transport protocol
Reduce number of messages

RPC response can also function as acknowledgement for
message transport protocol

32

Important Lessons

Procedure calls
Simple way to pass control and data
Elegant transparent way to distribute application
Not only way…

Hard to provide true transparency
Failures
Performance
Memory access
Etc.

How to deal with hard problem give up and
let programmer deal with it

“Worse is better”

33

Next Lecture

Time Synchronization
NTP

34

