
L-6 Naming

1

Today's Lecture

Naming overview

DNS

Service location

Server selection

2

Names

Names are associated with objects
Enables passing of references to objects
Indirection
Deferring decision on meaning/binding

Examples
Registers R5
Memory 0xdeadbeef

Host names srini.com
User names sseshan
Email srini@cmu.edu

File name /usr/srini/foo.txt
URLs http://www.srini.com/index.html

3

Naming Model

3 key elements

1) Name space
Alphabet of symbols + syntax that specify names

2) Name-mapping
Associates each name to some value in…

3) Universe of values
Typically an object or another name from original
name space (or another name space)

Name-to-value mapping is called a
“binding” i.e. name is bound to value

4

Naming Model (cont.)

Uniqueness
One-to-one mapping
One-to-many or many-to-one (name-to-value)
mappings

Context sensitive resolution

Stable binding
Names that are never reused
Values that can only have one name

E.g. using MD5 of file contents, bank account
numbers

Reverse lookup support

5

Name Mapping

Names are mapped to values within some
context

 E.g., different lookup tables for names in different

settings

Two sources for context
Resolver can supply default context
Name can specify an explicit context to use

qualified name
E.g. working directory vs. absolute path name

6

Context

Common problem what context to use for
names without context
Consider email from CMU

To: srini, dongsu@gmail.com
What happens when dongsu replies to all?

What context will he email srini

Solutions:
Sendmail converts all address to qualified names

Not in body of message

Provide context information in email header
E.g. like base element in HTML

7

Name Lookup Styles

Table lookup
Simple, table per context

Recursive
Names consist of context + name
E.g. path + filename, hostname + domain name

Context name must also be resolved
Need special context such as “root” built into resolver

Multiple lookup
Try multiple contexts to resolve name search paths

8

Recursive Name Spaces

A general naming graph with a single root
node.

9

Name Discovery

Well-known name
www.google.com, port 80…

Broadcast
Advertise name e.g. 802.11 Beacons

Query
Use google

Broadcast query
802.11 probes

Use another naming system
DNS returns IP addresses

Introductions
Web page hyperlinks

Physical rendezvous
Exchange info in the real world

10

Today's Lecture

Naming overview

DNS

Service location

Server selection

11 12

Naming

How do we efficiently locate resources?
DNS: name IP address

Challenge
How do we scale these to the wide area?

13

Obvious Solutions (1)

Why not centralize DNS?
Single point of failure
Traffic volume
Distant centralized database
Single point of update

Doesn’t scale!

14

Obvious Solutions (2)

Why not use /etc/hosts?
Original Name to Address Mapping

Flat namespace
/etc/hosts
SRI kept main copy
Downloaded regularly

Count of hosts was increasing: machine per
domain machine per user

Many more downloads
Many more updates

15

Domain Name System Goals

Basically a wide-area distributed database
Scalability
Decentralized maintenance
Robustness
Global scope

Names mean the same thing everywhere

Don’t need
Atomicity
Strong consistency

16

Typical Resolution

Steps for resolving www.cmu.edu
Application calls gethostbyname() (RESOLVER)
Resolver contacts local name server (S1)
S1 queries root server (S2) for (www.cmu.edu)
S2 returns NS record for cmu.edu (S3)
What about A record for S3?

This is what the additional information section is for
(PREFETCHING)

S1 queries S3 for www.cmu.edu
S3 returns A record for www.cmu.edu

Can return multiple A records what does this
mean?

17

Lookup Methods

Recursive query:
Server goes out and
searches for more info
(recursive)
Only returns final
answer or “not found”

Iterative query:
Server responds with
as much as it knows
(iterative)
“I don’t know this
name, but ask this
server”

Workload impact on
choice?
Local server typically
does recursive
Root/distant server
does iterative requesting host

surf.eurecom.fr
gaia.cs.umass.edu

root name server

local name server
dns.eurecom.fr

1

2

3
4

5 6 authoritative name

server
dns.cs.umass.edu

intermediate name server
dns.umass.edu

7

8

iterated query

18

Workload and Caching

Are all servers/names likely to be equally popular?
Why might this be a problem? How can we solve this
problem?

DNS responses are cached
Quick response for repeated translations
Other queries may reuse some parts of lookup

NS records for domains

DNS negative queries are cached
Don’t have to repeat past mistakes
E.g. misspellings, search strings in resolv.conf

Cached data periodically times out
Lifetime (TTL) of data controlled by owner of data
TTL passed with every record

19

Typical Resolution

Client
Local

DNS server

root & edu

DNS server

ns1.cmu.edu

DNS server

www.cs.cmu.edu

NS ns1.cmu.edu www.cs.cmu.edu

NS ns1.cs.cmu.edu

A www=IPaddr

ns1.cs.cmu.edu

DNS

server

20

Subsequent Lookup Example

Client
Local

DNS server

root & edu

DNS server

cmu.edu

DNS server

cs.cmu.edu

DNS

server

ftp.cs.cmu.edu

ftp=IPaddr

ftp.cs.cmu.edu

21

Reverse DNS

Task
Given IP address, find its name

Method
Maintain separate hierarchy
based on IP names
Write 128.2.194.242 as
242.194.128.2.in-addr.arpa

Why is the address reversed?

Managing
Authority manages IP
addresses assigned to it
E.g., CMU manages name space
128.2.in-addr.arpa

edu

cmu

cs

kittyhawk
128.2.194.242

cmcl

unnamed root

arpa

in-addr

128

2

194

242 22

.arpa Name Server Hierarchy

At each level of hierarchy, have
group of servers that are authorized

to handle that region of hierarchy

128

2

194

kittyhawk
128.2.194.242

in-addr.arpa a.root-servers.net • • • m.root-servers.net

chia.arin.net
(dill, henna, indigo, epazote, figwort, ginseng)

cucumber.srv.cs.cmu.edu,
t-ns1.net.cmu.edu
t-ns2.net.cmu.edu

mango.srv.cs.cmu.edu
(peach, banana, blueberry)

23

Prefetching

Name servers can add additional data to
response
Typically used for prefetching

CNAME/MX/NS typically point to another host name
Responses include address of host referred to in

“additional section”

24

Mail Addresses

MX records point to mail exchanger for a
name

E.g. mail.acm.org is MX for acm.org

Addition of MX record type proved to be a
challenge

How to get mail programs to lookup MX record for
mail delivery?

Needed critical mass of such mailers

25

DNS (Summary)

Motivations large distributed database
Scalability
Independent update
Robustness

Hierarchical database structure
Zones
How is a lookup done

Caching/prefetching and TTLs
Reverse name lookup
What are the steps to creating your own
domain?

Today's Lecture

Naming overview

DNS

Service location

Server selection

26

L -13; 2-26-01 © Srinivasan Seshan, 2001 27

Service Location

What if you want to lookup services with
more expressive descriptions than DNS
names

E.g. please find me printers in cs.cmu.edu
instead of laserjet1.cs.cmu.edu

What do descriptions look like?
How is the searching done?
How will it be used?

Search for particular service?
Browse available services?
Composing multiple services into new service?

L -13; 2-26-01 © Srinivasan Seshan, 2001 28

Service Descriptions

Typically done as hierarchical value-
attribute pairs

Type = printer memory = 32MB, lang = PCL
Location = CMU building = WeH

Hierarchy based on attributes or attributes-
values?

E.g. Country state or country=USA state=PA and
country=Canada province=BC?

Can be done in something like XML

L -13; 2-26-01 © Srinivasan Seshan, 2001 29

Service Discovery (Multicast)

Services listen on well known discovery
group address
Client multicasts query to discovery group
Services unicast replies to client
Tradeoffs

Not very scalable effectively broadcast search
Requires no dedicated infrastructure or bootstrap
Easily adapts to availability/changes
Can scope request by multicast scoping and by
information in request

L -13; 2-26-01 © Srinivasan Seshan, 2001 30

Service Discovery (Directory
Based)

Services register with central directory
agent

Soft state registrations must be refreshed or
the expire

Clients send query to central directory
replies with list of matches
Tradeoffs

How do you find the central directory service?
Typically using multicast based discovery!
SLP also allows directory to do periodic advertisements

Need dedicated infrastructure
How do directory agents interact with each other?
Well suited for browsing and composition
knows full list of services

L -13; 2-26-01 © Srinivasan Seshan, 2001 31

Other Issues

Dynamic attributes
Many queries may be based on attributes such as
load, queue length
E.g., print to the printer with shortest queue

Bind to value as late as possible

Security
Don’t want others to serve/change queries
Also, don’t want others to know about existance of

services
Srini’s home SLP server is advertising the $50,000 MP3
stereo system (come steal me!)

Today's Lecture

Naming overview

DNS

Service location

Server selection

32

L -13; 2-26-01 © Srinivasan Seshan, 2001 33

Server Selection

Service is replicated in many places in
network
How do direct clients to a particular server?

As part of routing anycast, cluster load
balancing
As part of application HTTP redirect
As part of naming DNS

Which server?
Lowest load to balance load on servers
Best performance to improve client
performance

Based on Geography? RTT? Throughput? Load?

Any alive node to provide fault tolerance

L -13; 2-26-01 © Srinivasan Seshan, 2001 34

Routing Based

Anycast
Give service a single IP address
Each node implementing service advertises route to
address

Packets get routed routed from client to “closest”
service node

Closest is defined by routing metrics
May not mirror performance/application needs

What about the stability of routes?

L -13; 2-26-01 © Srinivasan Seshan, 2001 35

Routing Based

Cluster load balancing
Router in front of cluster of nodes directs packets
to server
Must be done on connection by connection basis
– why?

Forces router to keep per connection state

How to choose server
Easiest to decide based on arrival of first packet in
exchange
Primarily based on local load
Can be based on later packets (e.g. HTTP Get request)
but makes system more complex

L -13; 2-26-01 © Srinivasan Seshan, 2001 36

Application Based

HTTP support simple way to indicate that Web
page has moved
Server gets Get request from client

Decides which server is best suited for particular
client and object
Returns HTTP redirect to that server

Can make informed application specific decision
May introduce additional overhead multiple
connection setup, name lookups, etc.
While good solution in general HTTP Redirect
has some design flaws – especially with current
browsers

L -13; 2-26-01 © Srinivasan Seshan, 2001 37

Naming Based

Client does name lookup for service
Name server chooses appropriate server address
What information can it base decision on?

Server load/location must be collected
Name service client

Typically the local name server for client

Round-robin
Randomly choose replica
Avoid hot-spots

[Semi-]static metrics
Geography
Route metrics
How well would these work?

L -13; 2-26-01 © Srinivasan Seshan, 2001 38

Naming Based

Predicted application performance
How to predict?
Only have limited info at name resolution

Multiple techniques
Static metrics to get coarse grain answer
Current performance among smaller group

How does this affect caching?
Typically want low TTL to adapt to load changes
What does the first and subsequent lookup do?

Summary

Naming is a powerful tool in system design
A layer of indirection can solve many problems

Wide range of naming styles, resolution
techniques

Must choose the one appropriate to system needs/
tradeoffs

39

Next Lecture

RPC
Read original Birrell & Nelson paper on RPC

40

