
L-2 Internet Design Philosophy

1 2

Today’s Lecture

Layers and protocols

Design principles in internetworks

3

Lots of Functions Needed

Link
Multiplexing
Routing
Addressing/naming (locating peers)
Reliability
Flow control
Fragmentation
Etc….

4

What is Layering?

Modular approach to network functionality
Example:

Link hardware

Host-to-host connectivity

Application-to-application channels

Application

5

Protocols

Module in layered structure

An agreement between parties
on how communication should
take place

Protocols define:
Interface to higher layers (API)
Interface to peer (syntax &
semantics)

Actions taken on receipt of a
messages
Format and order of messages
Error handling, termination,
ordering of requests, etc.

Example: Buying airline ticket

Friendly greeting

Muttered reply

Destination?

Pittsburgh

Thank you

6

Layering

Host Host

Application

Transport

Network

Link

User A User B

Layering: technique to simplify complex systems

7

Layering Characteristics

Each layer relies on services from layer
below and exports services to layer above
Interface defines interaction
Hides implementation - layers can change
without disturbing other layers (black box)

8

The Internet Engineering
Task Force

Standardization is key to network interoperability
The hardware/software of communicating parties are often
not built by the same vendor yet they can communicate
because they use the same protocol

Internet Engineering Task Force
Based on working groups that focus on specific issues

Request for Comments
Document that provides information or defines standard
Requests feedback from the community
Can be “promoted” to standard under certain conditions

consensus in the committee
interoperating implementations

Project 1 will look at the Internet Relay Chat (IRC) RFC

9

E.g.: OSI Model: 7 Protocol Layers

Physical: how to transmit bits
Data link: how to transmit frames
Network: how to route packets
Transport: how to send packets end2end
Session: how to tie flows together
Presentation: byte ordering, security
Application: everything else

TCP/IP has been amazingly successful,
and it’s not based on a rigid OSI model.
The OSI model has been very successful
at shaping thought

10

OSI Layers and Locations

Bridge/Switch Router/Gateway Host Host

Application

Transport

Network

Data Link

Presentation

Session

Physical

11

IP Layering

Relatively simple

Bridge/Switch Router/Gateway Host Host

Application

Transport

Network

Link

Physical

12

The Internet Protocol Suite

UDP TCP

Data Link

Physical

Applications

The Hourglass Model

Waist

The waist facilitates interoperability

FTP HTTP TFTP NV

TCP UDP

IP

NET1 NET2 NETn …

13

Layer Encapsulation

Get index.html

Connection ID

Source/Destination

Link Address

User A User B

14

Protocol Demultiplexing

Multiple choices at each layer

FTP HTTP TFTP NV

TCP UDP

IP

NET1 NET2 NETn …

TCP/UDP IP

IPX

Port

Number

Network

Protocol

Field

Type

Field

15

Multiplexing and
Demultiplexing

There may be multiple
implementations of
each layer.

How does the receiver
know what version of a
layer to use?

Each header includes a
demultiplexing field
that is used to identify
the next layer.

Filled in by the sender
Used by the receiver

Multiplexing occurs at
multiple layers. E.g.,
IP, TCP, …

IP

TCP

IP

TCP

V/HL TOS Length

ID Flags/Offset

TTL Prot. H. Checksum

Source IP address

Destination IP address

Options..

16

Is Layering Harmful?

Layer N may duplicate lower level functionality
(e.g., error recovery)
Layers may need same info (timestamp, MTU)
Strict adherence to layering may hurt performance
Some layers are not always cleanly separated.

Inter-layer dependencies in implementations for
performance reasons
Some dependencies in the standards (header checksums)

Interfaces are not really standardized.
It would be hard to mix and match layers from independent
implementations, e.g., windows network apps on unix (w/
out compatibility library)
Many cross-layer assumptions, e.g. buffer management

17

Today’s Lecture

Layers and protocols

Design principles in internetworks

18

Goals [Clark88]

0 Connect existing networks
initially ARPANET and ARPA packet radio network

1.Survivability
ensure communication service even in the

presence of network and router failures

2.Support multiple types of services
3.Must accommodate a variety of networks
4.Allow distributed management
5.Allow host attachment with a low level of effort
6.Be cost effective
7. Allow resource accountability

19

Priorities

The effects of the order of items in that list
are still felt today

E.g., resource accounting is a hard, current research

topic

Let’s look at them in detail

20

0. Connecting Existing Networks

Many differences between networks
Address formats
Performance – bandwidth/latency
Packet size

Loss rate/pattern/handling
Routing

How to internetwork various network
technologies

21

Address Formats

Map one address format to another?
Bad idea many translations needed

Provide one common format
Map lower level addresses to common format

22

Different Packet Sizes

Define a maximum packet size over all
networks?

Either inefficient or high threshold to support

Implement fragmentation/re-assembly
Who is doing fragmentation?

Who is doing re-assembly?

23

Gateway Alternatives

Translation
Difficulty in dealing with different features supported
by networks
Scales poorly with number of network types (N^2

conversions)

Standardization
“IP over everything”
Minimal assumptions about network

Hourglass design

24

1. Survivability

If network disrupted and reconfigured:
Communicating entities should not care!
No higher-level state reconfiguration

How to achieve such reliability?
Where can communication state be stored?

Network Host

Failure handing Replication “Fate sharing”

Switches Maintain state Stateless

Host trust Less More

25

Fate Sharing

Lose state information for an entity if (and
only if?) the entity itself is lost.
Examples:

OK to lose TCP state if one endpoint crashes
NOT okay to lose if an intermediate router reboots

Is this still true in today’s network?
NATs and firewalls

Connection
State State No State

26

Soft-State

Basic behavior
Announce state
Refresh state
Timeout state

Penalty for timeout – poor performance
Robust way to identify communication flows

Possible mechanism to provide non-best effort service

Helps survivability

27

End-to-End Argument

Deals with where to place functionality
Inside the network (in switching elements)
At the edges

Argument:
There are functions that can only be correctly
implemented by the endpoints – do not try to

completely implement these elsewhere

28

Example: Reliable File Transfer

Solution 1: make each step reliable, and
then concatenate them
Solution 2: end-to-end check and retry

OS

Appl.

OS

Appl.

Host A Host B

OK

29

E2E Example: File Transfer

If network guaranteed reliable delivery
The receiver has to do the check anyway!

E.g., network card may malfunction

Full functionality can only be entirely
implemented at application layer; no need
for reliability from lower layers
Is there any need to implement reliability at
lower layers?

30

Discussion

Yes, but only to improve performance
If network is highly unreliable

Adding some level of reliability helps performance, not

correctness
Don’t try to achieve perfect reliability!
Implementing a functionality at a lower level should

have minimum performance impact on the
applications that do not use the functionality

31

2. Types of Service

Best effort delivery
All packets are treated the same
Relatively simple core network elements
Building block from which other services
(such as reliable data stream) can be built
Contributes to scalability of network

No QoS support assumed from below
Accommodates more networks
Hard to implement without network support
QoS is an ongoing debate…

32

Types of Service

TCP vs. UDP
Elastic apps that need reliability: remote login or
email
Inelastic, loss-tolerant apps: real-time voice or
video
Others in between, or with stronger requirements
Biggest cause of delay variation: reliable delivery

Today’s net: ~100ms RTT
Reliable delivery can add seconds.

Original Internet model: “TCP/IP” one layer
First app was remote login…
But then came debugging, voice, etc.
These differences caused the layer split, added
UDP

33

3. Varieties of Networks

Minimum set of assumptions for underlying
net

Minimum packet size
Reasonable delivery odds, but not 100%
Some form of addressing unless point to point

Important non-assumptions:
Perfect reliability
Broadcast, multicast
Priority handling of traffic
Internal knowledge of delays, speeds, failures,
etc.

Much engineering then only has to be done
once

34

The “Other” goals

4. Management
Each network owned and managed separately
Will see this in BGP routing especially

5. Attaching a host
Not awful; DHCP and related autoconfiguration
technologies helping.

6. Cost effectiveness
Economies of scale won out
Internet cheaper than most dedicated networks
Packet overhead less important by the year

But…

35

7. Accountability

Huge problem.
Accounting

Billing? (mostly flat-rate. But phones are moving that way
too - people like it!)
Inter-provider payments

Hornet’s nest. Complicated. Political. Hard.
Accountability and security

Huge problem.
Worms, viruses, etc.

Partly a host problem. But hosts very trusted.
Authentication

Purely optional. Many philosophical issues of privacy vs.
security.

Greedy sources aren’t handled well

36

Other IP Design Weaknesses

Weak administration and management tools
Incremental deployment difficult at times

Result of no centralized control

No more “flag” days
Are active networks the solution?

37

Summary: Internet Architecture

Packet-switched
datagram network
IP is the
“compatibility layer”

Hourglass
architecture
All hosts and routers
run IP

Stateless
architecture

No per flow state
inside network

IP

TCP UDP

ATM

Satellite

Ethernet

38

Summary: Minimalist Approach

Dumb network
IP provide minimal functionalities to support connectivity

Addressing, forwarding, routing

Smart end system
Transport layer or application performs more sophisticated
functionalities

Flow control, error control, congestion control
Advantages

Accommodate heterogeneous technologies (Ethernet,
modem, satellite, wireless)
Support diverse applications (telnet, ftp, Web, X windows)
Decentralized network administration

Beginning to show age
Unclear what the solution will be probably IPv6

Discussion: what are the implications for
distributed system design?

