
15-446 Distributed Systems

Homework 1

Due: Beginning of Class, Feb, 12. 2009

February 11, 2009

A Ethernet exponential backoff

1. This problem illustrates possible danger of incorporating randomization in design.

Let A and B be two stations attempting to transmit on an Ethernet. Each has a steady queue of frames
ready to send; A’s frames will be numbered A1, A2 and so on, and B’s similarly. Let T = 51.2 us be the
exponential backoff base unit. Suppose A and B simultaneously attempt to send frame 1, collide, and
happen to choose backoff times of 0 x T and 1 x T, respectively. As a result, A transmits A1 while B
waits. At the end of this transmission, B will attempt to retransmit B1 while A will attempt to transmit
A2. These first attempts will collide, but now A backs off for either 0 x T or 1 x T, while B bakcs off
for time equal to one of 0 x T, ..., 3 X T.

a) Give the probability that A wins this second backoff race immediately after his first collision.

b) Suppose A wins this second backoff race. A transmits A3 and when it is finished, A and B collide
again as A tries to transmit A4 and B tries once more to transmit B1. Give the probability that A wins
this third backoff race immediately after the first collision.

c) Give a reasonable lower bound for the probability that A wins all the remaining backoff races.

d) What then happens to the frame B1?

This scenario is known as the Ethernet capture effect.

1

B DNS

Elisa wants to listen to the National Public Radio news over the Internet. She starts her favorite audio
player and points it to ra1.streaming.npr.org. The audio player calls gethostbyname() with the given
name to obtain the IP address of the server. As a result of the gethostbyname() call, the local resolver
in Elisa’s machine contacts the local DNS server to translate the host name into an IP address. The
local DNS server performs an iterative lookup. The table below contains the DNS distributed database.
A row corresponds to a DNS record. The records are grouped by DNS server.

Record Name TTL IN Type Value
(sec)

localdns.localdomain.com

R1 . 262542 IN NS E.ROOT-SERVERS.NET.

R2 E.ROOT-SERVERS.NET. 348942 IN A 192.203.230.10
E.ROOT-SERVERS.NET

R3 org. 172800 IN NS F.GTLD-SERVERS.NET

R4 F.GTLD-SERVERS.NET 172800 IN A 192.35.51.30
F.GTLD-SERVERS.NET

R5 npr.org 172800 IN NS watson.npr.org.

R6 watson.npr.org. 172800 IN A 205.153.37.175
watson.npr.org

R7 streaming.npr.org. 172800 IN NS ns.streaming.npr.org.

R8 ns.streaming.npr.org 172800 IN A 205.153.36.175
ns.streaming.npr.org

R9 audio.streaming.npr.org. 172800 IN CNAME ra1.streaming.npr.org.

R10 ra1.streaming.npr.org. 10 IN A 205.153.36.175

2. In the figure below, draw arrows to indicate the sequence of queries and responses exchanged among the
different machines. Label each arrow with a sequence number, and fill in the table below to indicate the
following information:

• Sequence number indicating the ordering of the message exchanges.

• Message Type: use Q for Query or R for Response.

• Data: For queries use the value of the question data. For responses, specify the record ID(s)
returned, if any, from the first column in Figure 1, e.g., R1, R2

• You may use abbreviations for host names, e.g. “ra1” rather than ra1.streaming.npr.org.

The figure already contains an arrow indicating the first message from the local resolver to the local
DNS server. The sequence number is 1 (first message), type = Q (query) and the data is the host name
the application wants to resolve (ra1.streaming.npr.org). To make your sequence as simple as possible,
assume the server includes both the A and NS records when applicable, so include both of them in the
corresponding message.

Page 2

R3

R9

R8
R1

1

Eliza’s Computer

E.ROOT−SERVERS.NET

R10

localdns.localdomain.com

F.GTLD−SERVERS.NET

watson.npr.org

ns.streaming.npr.org

R7

R4

R6
R5

R2

Seq Type Data
1 Q ra1.streaming.npr.org(A)

Page 3

3. Eliza repeats her query two minutes later. Show what happens for this subsequent query.

R3

R9

R8
R1

1

Eliza’s Computer

E.ROOT−SERVERS.NET

R10

localdns.localdomain.com

F.GTLD−SERVERS.NET

watson.npr.org

ns.streaming.npr.org

R7

R4

R6
R5

R2

Seq Type Data
1 Q ra1.streaming.npr.org(A)

Page 4

C RPC details

4. a) Below is the summarized steps of an RPC from a call to return. Order them in sequential order of
execution.

• The client stub builds a message and calls the local operating system.

• The remote OS gives the message to the server stub.

• The stub unpacks the result and returns to the client.

• The server’s OS sends the message to the client’s OS.

• The client’s OS gives the message to the client stub.

• The client procedure calls the client stub in the normal way.

• The client’s OS sens the message to the remote OS.

• The server stub unpacks the parameters and calls the server.

• The server does the work and returns the result to the stub.

• The server stub packs it in a message and calls its local OS.

b) Time outs in RPC.
TCP uses timeout estimate (RTO) based on round-trip time. Can we use similair mechanism for RPC
timeouts? Why or why not? Is there anything you would have to consider?

D Time synchronization with NTP

5. An NTP server B receives server A’s message at 16:34:23.480 bearing a timestamp 16:34:13:430 and
replies to it. A receives the message at 16:34:15:725, bearing B’s timestamp 16:34:25.7. Estimate the
offset between B and A and the accuracy of the estimate.

[This is based on problem 10.7 from CDK, 3rd edition]

E TCP Timeout Estimation: Now and Then

6. Suppose that TCP is consistently observing RTTs of 1.0 second, with a mean deviation of 0.1 second.
Suddenly, the RTT jumps to 5.0 seconds with no deviation. Compare the behavior of the original RTO
estimator with the Jacobson/Karels algorithm:

(a) How many timeouts are encountered with each algorithm?

(b) What is the largest value of RTO calcuated? (How does the RTO change over time?)

Assume that α, the srtt EWMA parameter, = 1

8
, and that γ, the sdev EWMA parameter, = 1

4
.

[Hint]
Recall that the original RTO estimator used an EWMA with constant 0.9:

α = 0.9

R = αR + (1 − α)M

and computing the RTO as βR, with β = 2. R is Estimated RTT and M is the SampleRTT.

For the Jacobson/Karels, we assume a gain of 0.875 for the RTT and 0.75 for the error term, as suggested
in the paper.

Page 5

EstimatedRTT = rgain * EstimatedRTT + (1-rgain) * SampleRTT
DEV = DEV * errgain + |SampleRTT-EstimatedRTT| * (1-errgain)
RTO = EstimatedRTT + 4* DEV

Page 6

