Today’s Lecture

• Administrivia

• Whirlwind tour of networking

Instructors

• Instructors.
 • Srini Seshan
 • srini@cs.cmu.edu, Gates Hall 8123
 • Seth Goldstein
 • seth@cs.cmu.edu, Gates Hall 7111

• Teaching assistants.
 • Kaushik Lakshminarayanan
 • Rui Meireles
 • Dae Gun Won

Course Goals

• Become familiar with the principles and practice of data networking
 • Routing, transport protocols, naming, ...

• Learn how to write applications that use the network
 • An IRC server
 • A peer-to-peer file transfer program

• Get some understanding about network internals in a hands-on way
 • You’ll implement a routing protocol for your IRC server
 • TCP-style congestion control
Course Format

- ~30 lectures
 - Cover the “principles and practice”
 - Complete readings before lecture
- 4 homework assignments
 - "Paper": Do you understand and can you apply the material?
 - "Lab": Illustrate networking concepts
 - Loosely tied to lecture materials
 - Teach networking concepts/tools
- 3 programming projects
 - How to use and build networks / networked applications
 - Application-layer programming; include key ideas from kernel
 - Larger, open-ended group projects. Start early!
- Midterm and final
 - Covers each of the above 3 parts of class

Recitation Sections

- Key 441 objective: system programming
- Different from what you’ve done before!
 - Low level (C)
 - Often designed to run indefinitely. Handle all errors!
 - Must be secure
 - Interfaces specified by documented protocols
 - Concurrency involved (inter and intra-machine)
 - Must have good test methods
- Recitations address this
 - “A system hackers’ view of software engineering”
 - Practical techniques designed to save you time & pain!

Sounds Great! How Do I Get In?

- Currently 76 people are enrolled, and 33 people are on the waiting list.
 - If you do not plan to take the course, please drop it ASAP so somebody else can take your place!
- We give preference to:
 1. Students attending class (sign in sheet)

Administrative Stuff

- Watch the course web page
 - Handouts, readings, ..
- Read bboards
 - academic.cs.15-441[announce] for official announcements
 - cyrus.academic.cs.15-441.discuss for questions/answers
- Office hours posted on web page
 - By appointment this week
- Course secretary
 - Angela Miller, Gates 9118
Grading

- Roughly equal weight in projects and testing
 - 45% for Project I, II and III
 - 15% for Project II
 - 15% for Midterm exam
 - 25% for Final exam
 - 15% for Homework
- You MUST demonstrate competence in both projects and tests to pass the course
 - Fail either and you fail the class!

Policy on Collaboration

- Working together is important
 - Discuss course material in general terms
 - Work together on program debugging, ...
 - Final submission must be your own work
 - Homeworks, midterm, final
- Projects: Solo (P1) + Teams of two (P2,P3)
 - Collaboration, group project skills
 - Both students should understand the entire project
- Web page has details
 - Things we don’t want to have to say: We run projects through several cheat-checkers against all previously and concurrently handed in versions...

Late Work and Regrading

- Late work will receive a 15% penalty/day
 - No assignment can be more than 2 days late
 - No penalty for a limited number of handins - see web page
 - Only exception is documented illness and family emergencies
- Requests for regrading must be submitted in writing to course secretary within 2 weeks.
 - Regrading will be done by original grader
- No assignments with a “short fuse”
 - Homeworks: ~1-2 weeks
 - Projects: ~5 weeks
 - Start on time!
 - Every year some students discover that a 5 week project cannot be completed in a week

This Week

- Intro – what’s this all about?
- Protocol stacks and layering
- Recitations start this week: Socket programming (213 review++)
- On to the good stuff…Whirlwind tour of networking
 - Course outline:
 - Low-level (physical, link, circuits, etc.)
 - Internet core concepts (addressing, routing, DNS)
 - Advanced topics
What is the Objective of Networking?

- Enable communication between applications on different computers
 - Web (Lecture 22)
 - Peer to Peer (Lecture 23)
 - Audio/Video (Lecture 20)
 - Funky research stuff (Lecture 27)
- Must understand application needs/demands (Lecture 3)
 - Traffic data rate
 - Traffic pattern (bursty or constant bit rate)
 - Traffic target (multipoint or single destination, mobile or fixed)
 - Delay sensitivity
 - Loss sensitivity

What Is a Network?

- Collection of nodes and links that connect them
- This is vague. Why? Consider different networks:
 - Internet
 - Andrew
 - Telephone
 - Your house
 - Others – sensor nets, cell phones, …
- Class focuses on Internet, but explores important common issues and challenges

Networks Juggle Many Goals

- Efficiency – resource use; cost
- The “ilities”:
 - Evolvability
 - Managability
 - Security (securability, if you must)
- Ease of:
 - Creation
 - Deployment
 - Creating useful applications
- Scalability

Challenges for Networks

- Geographic scope
 - The Internet vs. Andrew
- Scale
 - The Internet vs. your home network
- Application types
 - Email vs. video conferencing
- Trust and Administration
 - Corporate network – one network “provider”
 - Internet – 17,000 network providers
How to Draw a Network

Basic Building Block: Links

• Electrical questions
 • Voltage, frequency, …
 • Wired or wireless?

• Link-layer issues: How to send data?
 • When to talk – can either side talk at once?
 • What to say – low-level format?
 • Lecture 5

• Okay… what about more nodes?

Basic Building Block: Links

• … But what if we want more hosts? (Lectures 6 & 7)

 One wire

 Wires for everybody!

• Scalability?!

Multiplexing

• Need to share network resources

 How? Switched network
 • Party “A” gets resources sometimes
 • Party “B” gets them sometimes
 • Interior nodes act as “Switches”

• What mechanisms to share resources?
Back in the Old Days…

• Source first establishes a connection (circuit) to the destination
 • Each switch along the way stores info about connection (and possibly allocates resources)
• Source sends the data over the circuit
 • No need to include the destination address with the data since the switches know the path
• The connection is explicitly torn down
• Example: telephone network (analog)

Circuit Switching Discussion

• Circuits have some very attractive properties.
 • Fast and simple data transfer, once the circuit has been established
 • Predictable performance since the circuit provides isolation from other users
 • E.g. guaranteed bandwidth
• But it also has some shortcomings.
 • How about bursty traffic
 • circuit will be idle for significant periods of time
 • How about users with different bandwidth needs
 • do they have to use multiple circuits
• Alternative: packet switching.

Packet Switching (our emphasis)

• Source sends information as self-contained packets that have an address.
 • Source may have to break up single message in multiple
• Each packet travels independently to the destination host.
 • Switches use the address in the packet to determine how to forward the packets
 • Store and forward
• Analogy: a letter in surface mail.
Packet Switching – Statistical Multiplexing

- Switches arbitrate between inputs
- Can send from any input that’s ready
 - Links never idle when traffic to send
 - (Efficiency!)

Packet Switching Discussion

- Efficient
 - Can send from any input that is ready
- General
 - Multiple types of applications
 - Accommodates bursty traffic
 - Addition of queues
- Store and forward
 - Packets are self contained units
 - Can use alternate paths – reordering
- Contention (i.e. no isolation)
 - Congestion
 - Delay

Local Area Networks (LANs)

- Benefits of being “local”:
 - Lower cost
 - Short distance = faster links, low latency
 - Efficiency less pressing
 - One management domain
 - More homogenous

- Examples:
 - Ethernet (Lecture 6)
 - Token ring, FDDI
 - 802.11 wireless (Lecture 25)

Internet

 - Networks are connected using routers that support communication in a hierarchical fashion
 - Often need other special devices at the boundaries for security, accounting, ...

- The Internet: the interconnected set of networks of the Internet Service Providers (ISPs)
 - About 17,000 different networks make up the Internet
Challenges of the Internet

- Heterogeneity
 - Address formats
 - Performance – bandwidth/latency
 - Packet size
 - Loss rate/pattern/handling
 - Routing
 - Diverse network technologies → satellite links, cellular links, carrier pigeons

- Scale
 - 100,000,000s of hosts
 - 18,000+ administrative domains,
 - Thousands of applications
 - Adversarial environment
 - Oh, and let’s make it easy to use…

 - How to translate between various network technologies?

Internet Design

- In order to inter-operate, all participating networks have to follow a common set of rules

- E.g., requirements for packets:
 - Header information: Addresses, etc. (Lecture 9)
 - Data. What is packet size limit? (Lectures 5—9)

How To Find Nodes?

Need naming and routing
Lectures 8-13
Naming

What’s the IP address for www.cmu.edu?

It is 128.2.11.43

Computer 1
Local DNS Server

Translates human readable names to logical endpoints

Routing

Routers send packet towards destination

H: Hosts
R: Routers

Network Service Model

- What is the service model?
 - Ethernet/Internet: best-effort – packets can get lost, etc.
- What if you want more?
 - Performance guarantees (QoS)
 - Reliability
 - Corrupt
 - Lost packets
 - Flow and congestion control
 - Fragmentation
 - In-order delivery
 - Etc…

What if the Data gets Corrupted?

Problem: Data Corruption

Solution: Add a checksum

0,9 → 6,7,8,21 → 4,5,7 → 1,2,3
What if Network is Overloaded?

Problem: Network Overload
- Short bursts: buffer
- What if buffer overflows?
 - Packets dropped
 - Sender adjusts rate until load = resources → "congestion control"

Solution: Buffering and Congestion Control

What if the Data gets Lost?

Problem: Lost Data

Solution: Timeout and Retransmit

What if the Data Doesn't Fit?

Problem: Packet size
- On Ethernet, max IP packet is 1.5kbytes
- Typical web page is 10kbytes

Solution: Fragment data across packets

What if the Data is Out of Order?

Problem: Out of Order

Solution: Add Sequence Numbers
Networks Implement Many Functions

- Link
- Multiplexing
- Routing
- Addressing/naming (locating peers)
- Reliability
- Flow control
- Fragmentation
- Etc….

Meeting Application Demands

- Sometimes interior of the network can do it
 - E.g., Quality of Service
 - Benefits of circuit switching in packet-switched net
 - Hard in the Internet, easy in restricted contexts
 - Lecture 21
 - OR hosts can do it
 - E.g., end-to-end *Transport protocols*
 - TCP performs end-to-end retransmission of lost packets to give the illusion of a reliable underlying network.
 - Lectures 16-19

Next Lecture

- How to determine split of functionality
 - Across protocol layers
 - Across network nodes

- Read two papers on the motivations for the Internet architecture:
 - "The design philosophy of the DARPA Internet Protocols", Dave Clark, SIGCOMM 88
 - "End-to-end arguments in system design", Saltzer, Reed, and Clark, ACM Transactions on Computer Systems, November 1984