

15-441: Computer Networking

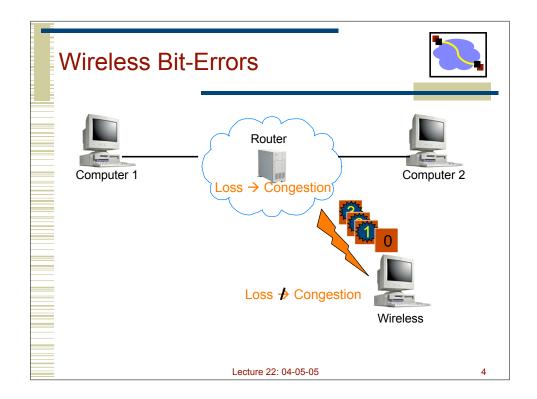
Lecture 22: Sensors and Ad-Hoc Networks

Scenarios and Roadmap

- · Point to point wireless networks
 - · Example: Your laptop to CMU wireless
 - · Challenges:
 - Poor and variable link quality (makes TCP unhappy)
 - · Many people can hear when you talk
 - · Pretty well defined.
- Ad hoc networks (wireless++)
 - Rooftop networks (multi-hop, fixed position)
 - · Mobile ad hoc networks
 - Adds challenges: routing, mobility
 - Some deployment + some research
- Sensor networks (ad hoc++)
 - Scatter 100s of nodes in a field / bridge / etc.
 - · Adds challenge: Serious resource constraints
 - · Current, popular, research.

Lecture 22: 04-05-05

2


Wireless Challenges (review)

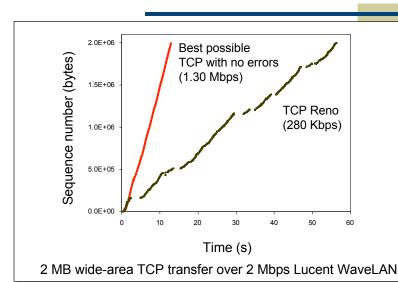
- Need to share airwaves rather than wire
 - Don't know what hosts are involved
 - Host may not be using same link technology
 - No fixed topology of interconnection
 - Interference
 - · Other hosts: collisions, capture, interference
 - The environment (e.g., microwaves + 802.11)
- Mobility -> Things change often
 - · Environmental changes do too
 - How do microwaves work? Relate to 802.11 absorption.
- Other characteristics of wireless
 - Noisy → lots of losses
 - Slow
 - · Multipath interference

Lecture 22: 04-05-05

3

TCP Problems Over Noisy Links

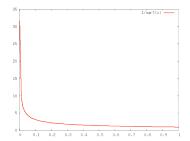
- · Wireless links are inherently error-prone
 - Fading, interference, attenuation -> Loss & errors
 - · Errors often happen in bursts
- TCP cannot distinguish between corruption and congestion
 - TCP unnecessarily reduces window, resulting in low throughput and high latency
- Burst losses often result in timeouts
 - · What does fast retransmit need?
- Sender retransmission is the only option
 - · Inefficient use of bandwidth


Lecture 22: 04-05-05

5

•3

Performance Degradation



Lecture 22: 04-05-05

Performance Degredation 2

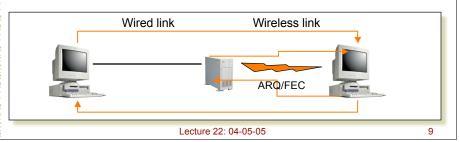
- Recall TCP throughput / loss / RTT rel:
 - BW = MSS / (rtt * sqrt(2p/3))
 - = proportional to 1 / rtt * sqrt(p)
 - == ouch!
 - Normal TCP operating range: < 2% loss Internet loss usually < 1%

Lecture 22: 04-05-05

7

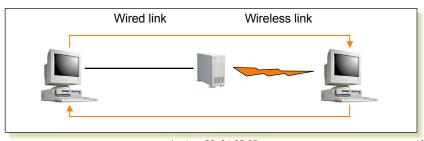
Proposed Solutions

- · Incremental deployment
 - · Solution should not require modifications to fixed hosts
 - · If possible, avoid modifying mobile hosts
- Reliable link-layer protocols
 - Error-correcting codes (or just send data twice)
 - · Local retransmission
- End-to-end protocols
 - Selective ACKs, Explicit loss notification
- Split-connection protocols
 - Separate connections for wired path and wireless hop


Lecture 22: 04-05-05

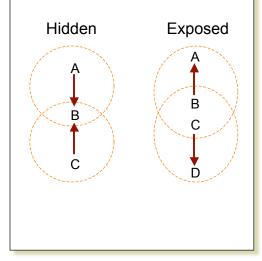
8

Approach Styles (Link Layer)


- · More aggressive local rexmit than TCP
 - 802.11 protocols all do this. Receiver sends ACK after last bit of data.
 - · Faster; Bandwidth not wasted on wired links. Recover in a few milliseconds.
- Possible adverse interactions with transport layer
 - Interactions with TCP retransmission
 - · Large end-to-end round-trip time variation
 - · Recall TCP RTO estimation. What does this do?
- FEC used in some networks (e.g., 802.11a)
 - · But does not work well with burst losses

Approach Styles (End-to-End)

- Improve TCP implementations
 - · Not incrementally deployable
 - Improve loss recovery (SACK, NewReno)
 - Help it identify congestion
 - Explicit Loss/Congestion Notification (ELN, ECN),
 - ACKs include flag indicating wireless loss
 - Trick TCP into doing right thing → E.g. send extra dupacks if you know the network just burped (e.g., if you moved)



Lecture 22: 04-05-05

Next: CSMA/CD Does Not Work

- Recall Aloha from many lectures ago
 - Wireless precursor to Ethernet.
- Carrier sense problems
 - Relevant contention at the receiver, not sender
 - Hidden terminal
 - Exposed terminal
- Collision detection problems
 - Hard to build a radio that can transmit and receive at same time

Lecture 22: 04-05-05

11

RTS/CTS Approach

- Before sending data, send Ready-to-Send (RTS)
- Target responds with Clear-to-Send (CTS)
- Others who hear CTS defer transmission
 - · Packet length in RTS and CTS messages
 - Why not defer on RTS alone?
- If CTS is not heard, or RTS collides
 - Retransmit RTS after binary exponential backoff
 - (There are lots of cool details embedded in this last part that went into the design of 802.11 - if you're curious, look up the "MACAW" protocol).

Lecture 22: 04-05-05

12

Ad Hoc Networks

- All the challenges of wireless, plus some of:
 - · No fixed infrastructure
 - Mobility (on short time scales)
 - Chaotically decentralized (:-)
 - Multi-hop!
- Nodes are both traffic sources/sinks and forwarders
- The big challenge: Routing

Lecture 22: 04-05-05

13

Ad Hoc Routing

- Find multi-hop paths through network
 - Adapt to new routes and movement / environment changes
 - Deal with interference and power issues
 - Scale well with # of nodes
 - · Localize effects of link changes

Lecture 22: 04-05-05

14

Traditional Routing vs Ad Hoc

- Traditional network:
 - Well-structured
 - ~O(N) nodes & links
 - All links work ~= well
- Ad Hoc network
 - N^2 links but many stink!
 - Topology may be really weird
 - Reflections & multipath cause strange interference
 - · Change is frequent

Lecture 22: 04-05-05

15

Problems using DV or LS

- DV loops are very expensive
 - Wireless bandwidth << fiber bandwidth...
- LS protocols have high overhead
- N² links cause very high cost
- Periodic updates waste power
- Need fast, frequent convergence

Lecture 22: 04-05-05

16

Proposed protocols

- Destination-Sequenced Distance Vector (DSDV)
- Dynamic Source Routing (DSR)
- Ad Hoc On-Demand Distance Vector (AODV)
- Let's look at DSR

Lecture 22: 04-05-05

17

DSR

- Source routing
 - Intermediate nodes can be out of date
- On-demand route discovery
 - Don't need periodic route advertisements
- (Design point: on-demand may be better or worse depending on traffic patterns...)

Lecture 22: 04-05-05

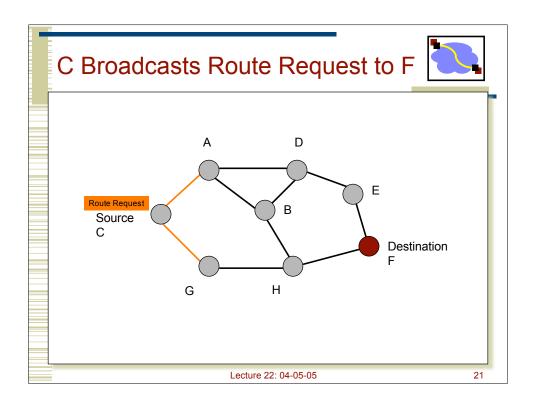
18

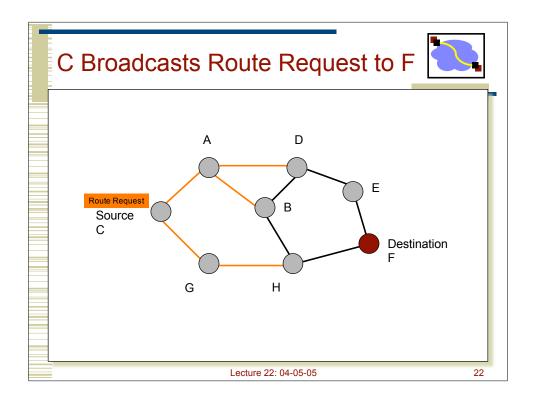
DSR Components

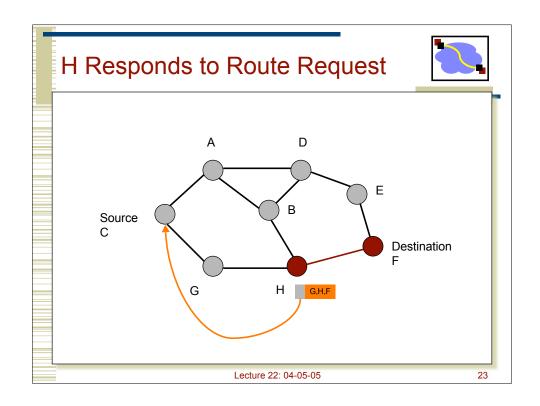
- Route discovery
 - The mechanism by which a sending node obtains a route to destination
- Route maintenance
 - The mechanism by which a sending node detects that the network topology has changed and its route to destination is no longer valid

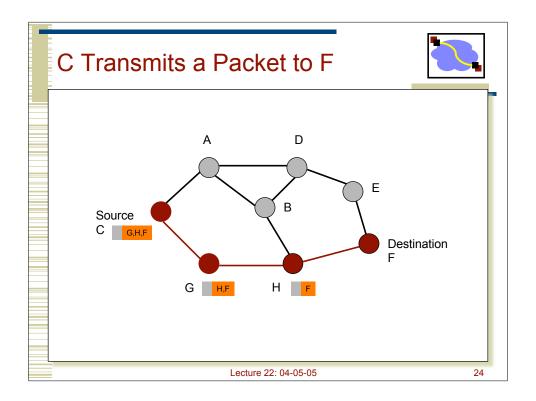
Lecture 22: 04-05-05

19


DSR Route Discovery




- Route discovery basic idea
 - Source broadcasts route-request to Destination
 - Each node forwards request by adding own address and re-broadcasting
 - Requests propagate outward until:
 - Target is found, or
 - A node that has a route to Destination is found


Lecture 22: 04-05-05

20

Forwarding Route Requests

- A request is forwarded if:
 - Node is not the destination
 - Node not already listed in recorded source route
 - Node has not seen request with same sequence number
 - · IP TTL field may be used to limit scope
- Destination copies route into a Route-reply packet and sends it back to Source

Lecture 22: 04-05-05

25

Route Cache

- All source routes learned by a node are kept in Route Cache
 - · Reduces cost of route discovery
- If intermediate node receives RR for destination and has entry for destination in route cache, it responds to RR and does not propagate RR further
- Nodes overhearing RR/RP may insert routes in cache

Lecture 22: 04-05-05

26

Sending Data

- Check cache for route to destination
- If route exists then
 - · If reachable in one hop
 - Send packet
 - Else insert routing header to destination and send
- If route does not exist, buffer packet and initiate route discovery

Lecture 22: 04-05-05

27

Discussion

- Source routing is good for on demand routes instead of a priori distribution
- Route discovery protocol used to obtain routes on demand
 - Caching used to minimize use of discovery
- · Periodic messages avoided
- But need to buffer packets
- · How do you decide between links?

Lecture 22: 04-05-05

28

Forwarding Packets is expensive

- Throughput of 802.11b =~ 11Mbits/s
 - In reality, you can get about 5.
- What is throughput of a chain?
 - A -> B -> C
 - A -> B -> C -> D ?
 - Assume minimum power for radios.
- Routing metric should take this into account

Lecture 22: 04-05-05

29

ETX

- Measure each link's delivery probability with broadcast probes (& measure reverse)
- P(delivery) = 1 / (df * dr) (ACK must be delivered too)
- Link ETX = 1 / P(delivery)
- Route ETX = sum of link ETX
- (Assumes all hops interfere not true, but seems to work okay so far)

Lecture 22: 04-05-05

30

Capacity of multi-hop network

- Assume N nodes, each wants to talk to everyone else. What total throughput (ignore previous slide to simplify things)
 - O(n) concurrent transmissions. Great! But:
 - Each has length O(sqrt(n)) (network diameter)
 - So each Tx uses up sqrt(n) of the O(n) capacity.
 - Per-node capacity scales as 1/sqrt(n)
 - Yes it goes down! More time spent Tx'ing other peoples packets...
- But: If communication is local, can do much better, and use cool tricks to optimize
 - Like multicast, or multicast in reverse (data fusion)
 - Hey, that sounds like ... a sensor network!

Lecture 22: 04-05-05

31

Sensor Networks - smart devices

- First introduced in late 90's by groups at UCB/UCLA/USC
- Small, resource limited devices
 - CPU, disk, power, bandwidth, etc.
- Simple scalar sensors temperature, motion
- Single domain of deployment
 - farm, battlefield, bridge, rain forest
- for a targeted task
 - find the tanks, count the birds, monitor the bridge
- Ad-hoc wireless network

Lecture 22: 04-05-05

32

Sensor System Types – Smart-Dust/Motes

- Hardware
 - UCB motes
 - 4 MHz CPU
 - 4 kB data RAM
 - 128 kB code
 - 50 kb/sec 917 Mhz radio
 - · Sensors: light, temp.,
 - · Sound, etc.,
 - And a battery.

Lecture 22: 04-05-05

33

Sensors and power and radios

- Limited battery life drives most goals
- · Radio is most energy-expensive part.
- 800 instructions per bit. 200,000 instructions per packet. (!)
- That's about one message per second for ~2 months if no CPU.
- Listening is expensive too. :(

Lecture 22: 04-05-05

34

Sensor nets goals

- Replace communication with computation
- Turn off radio receiver as often as possible
- Keep little state (4 KB isn't your pentium 4 ten bazillion gigahertz with five ottabytes of DRAM).

Lecture 22: 04-05-05

35

Power

- Which uses less power?
 - Direct sensor -> base station Tx
 - Total Tx power: distance^2
 - Sensor -> sensor -> base station?
 - Total Tx power: n * (distance/n) ^2 =~ d^2 / n
 - Why? Radios are omnidirectional, but only one direction matters. Multi-hop approximates directionality.
- Power savings often makes up for multi-hop capacity
 - These devices are *very* power constrained!
- Reality: Many systems don't use adaptive power control.
 This is active research, and fun stuff.

Lecture 22: 04-05-05

36

Example: Aggregation

- · Find avg temp in 8th floor of Wean.
- Strawman:
 - Flood query, let a collection point compute avg.
 - Huge overload near the CP. Lots of loss, and local nodes use lots of energy!
- Better:
 - · Take local avg. first, & forward that.
 - Send average temp + # of samples
 - · Aggregation is the key to scaling these nets.
- The challenge: How to aggregate.
 - · How long to wait?
 - · How to aggregate complex queries?
 - How to program?

 Lecture 22: 04-05-05

37