i‘ 15-441 Computer Networking

Lecture 19 — TCP Performance

Overview

N

e TCP variants

* TCP modeling

* TCP details

Lecture 19: 03-24-2005

TCP Variations “

» Tahoe, Reno, NewReno, Vegas

+ TCP Tahoe (distributed with 4.3BSD Unix)

+ Original implementation of Van Jacobson’s
mechanisms (VJ paper)
¢ Includes:
+ Slow start
» Congestion avoidance
» Fast retransmit

Lecture 19: 03-24-2005 3

Multiple Losses

"N

HEEE e

. Now what?

. — Retransmission

= .
Sequence No o0 « Duplicate Acks

coocomNEEEENEX
c0o0o0000

commmE

omm

M Packets
©Acks

Time

Lecture 19: 03-24-2005

"

TCP Reno (1990) l‘

* All mechanisms in Tahoe
+ Addition of fast-recovery
* Opening up congestion window after fast retransmit
* Delayed acks
* Header prediction
» Implementation designed to improve performance
* Has common case code inlined

+ With multiple losses, Reno typically timeouts because it
does not see duplicate acknowledgements

Lecture 19: 03-24-2005 6

Tahoe
|]
L}
|} |]
L]
¥ .
L] (=3
X :
|] (<]
L}
3¢ =
|] (<] 0000
Sequence No = o
|] (<]
L} o
|] (<]
L} o
|] (<]
L] o
|] (<]
|] (<]
|] (<]
|] [
|] [
|] (<]
M Packets
@Acks Time
Lecture 19: 03-24-2005 5
Reno ™
|]
|]
|]
|]
|]
X [} .
m Now what? - timeout
W]
|] (<] 0000
Sequence No m °
|] (<]
|] (<]
|] (<]
|] (<]
|] (<]
L] (=}
|] (<]
L] (=}
|] (<]
L} o
|] [
L} o
M Packets
©Acks Time

Lecture 19: 03-24-2005

SACK “

» Basic problem is that cumulative acks provide little
information
» Ack for just the packet received
» What if acks are lost? = carry cumulative also
» This technique is not used
 Bitmask of packets received
« Selective acknowledgement (SACK)
* Implemented as a TCP option
+ Set of received byte ranges (max of 4 ranges/often max of 3)
* When to retransmit?

« Still need to deal with reordering - wait for out of order
by 3pkts

Lecture 19: 03-24-2005 8

SACK N

|]
|]
|}
{]
|]
n
i []
a Now what? — send
M = retransmissions as soon
|] (<] 0000
Sequence No m ° as detected
|] (<]
L} o
|] (<]
L} o
|] (<]
L] o
|] (<]
|] (<]
|] (<]
|] [
|] [
|] (<]
Wl Packets
@©Acks
Time

Lecture 19: 03-24-2005 9

Performance Issues l‘

¢ Timeout >> fast rexmit

Need 3 dupacks/sacks

* Not great for small transfers
« Don’t have 3 packets outstanding

* What are real loss patterns like?

Lecture 19: 03-24-2005 10

How to Change Window “

* When a loss occurs have W packets outstanding

* New cwnd = 0.5 * cwnd
* How to get to new state?

Lecture 19: 03-24-2005 11

Fast Recovery “

« Each duplicate ack notifies sender that single
packet has cleared network
* When < cwnd packets are outstanding

» Allow new packets out with each new duplicate
acknowledgement

« Behavior

+ Sender is idle for some time — waiting for %2 cwnd worth
of dupacks

» Transmits at original rate after wait
» Ack clocking rate is same as before loss

Lecture 19: 03-24-2005 12

Fast Recovery i‘.

LI LI [
©co0o000

/6'

Sent for each dupack after
W/2 dupacks arrive

Sequence No

[]
[selceeeel

CooommmE mE mE
©00o0000

M Packets
@ Acks

Time

Lecture 19: 03-24-2005

N

Overview

* TCP variants

* TCP modeling

* TCP details

Lecture 19: 03-24-2005

TCP Performance “

e Can TCP saturate a link?

» Congestion control
* Increase utilization until... link becomes congested

» React by decreasing window by 50%
* Window is proportional to rate * RTT
* Doesn’t this mean that the network oscillates
between 50 and 100% utilization?
» Average utilization = 75%7??
* No...this is *not* right!

Lecture 19: 03-24-2005

TCP Congestion Control “.

Rule for adjusting W

Only W packets « Ifan ACKis received: W — W+1/W
may be outstanding « If a packet is lost: W «— W/2
Dest

Source T

=

Window size
max //;::>\//////\//////\//////\
x

Lecture 19: 03-24-2005

=

N

t

Single TCP Flow N

Router without buffers

util = 0%

time

Lecture 19: 03-24-2005 17

Summary Unbuffered Link l‘

W Minimum window

\/\/\/\ & for full utilization

* The router can't fully utilize the link
« If the window is too small, link is not full
« If the link is full, next window increase causes drop
« With no buffer it still achieves 75% utilization

Lecture 19: 03-24-2005 18

TCP Performance “

* In the real world, router queues play important
role
* Window is proportional to rate * RTT
» But, RTT changes as well the window

» Window to fill links = propagation RTT * bottleneck
bandwidth
« If window is larger, packets sit in queue on bottleneck link

Lecture 19: 03-24-2005 19

TCP Performance “

* If we have a large router queue - can get 100%
utilization
» But, router qgueues can cause large delays

* How big does the queue need to be?

* Windows vary from W > W/2
* Must make sure that link is always full
« W/2>RTT *BW
« W=RTT * BW + Qsize
* Therefore, Qsize > RTT * BW
* Ensures 100% utilization
 Delay?
* Varies between RTT and 2 * RTT

Lecture 19: 03-24-2005 20

Single TCP Flow “

Router with large enough buffers for full link utilization

oy !

util = 0%

time

Lecture 19: 03-24-2005 21

Summary Buffered Link l‘

w
Bqufer Minimum window
i & for full utilization

t

» With sufficient buffering we achieve full link utilization
« The window is always above the critical threshold
< Buffer absorbs changes in window size
« Buffer Size = Height of TCP Sawtooth
* Minimum buffer size needed is 2T*C
< This is the origin of the rule-of-thumb

Lecture 19: 03-24-2005 22

TCP Modeling “

» Given the congestion behavior of TCP can we
predict what type of performance we should get?
* What are the important factors
* Loss rate: Affects how often window is reduced
RTT: Affects increase rate and relates BW to window
RTO: Affects performance during loss recovery
MSS: Affects increase rate

Lecture 19: 03-24-2005 23

Overall TCP Behavior “

» Let’s concentrate on steady state behavior
with no timeouts and perfect loss recovery

» Packets transferred = area under curve

Window
/V\ddd

Time

Lecture 19: 03-24-2005 24

Transmission Rate i‘.

* What is area under curve?
« W =pkts/RTT, T=RTTs
* A =avg window * time = %
W*T
* What was bandwidth? W

BW=A/T=%W VW
* In packets per RTT
* Need to convert to bytes per Wi2

second
- BW=3%W*MSS/RTT

+ What is W? Time
* Depends on loss rate

Lecture 19: 03-24-2005 25

Simple TCP Model l‘

* Some additional assumptions
* Fixed RTT
* No delayed ACKs
* In steady state, TCP losses packet each time
window reaches W packets
* Window drops to W/2 packets

» Each RTT window increases by 1 packet>W/2 * RTT
before next loss

Lecture 19: 03-24-2005 26

Simple Loss Model “

* What was the loss rate?
» Packets transferred = (34 W/RTT) * (W/2 * RTT) = 3W2/8
1 packet lost > loss rate = p = 8/3W?2

s BW=%*W*MSS/RTT

we [8_4 [3
3p 3 \2p
BW — MSS

) RTT Xm

Lecture 19: 03-24-2005 27

Fairness “

* BW proportional to 1/RTT?

» Do flows sharing a bottleneck get the same
bandwidth?
* NO!

* TCP is RTT fair

« If flows share a bottleneck and have the same RTTs
then they get same bandwidth

» Otherwise, in inverse proportion to the RTT

Lecture 19: 03-24-2005 28

TCP Friendliness i‘.

* What does it mean to be TCP friendly?
* TCP is not going away
» Any new congestion control must compete with TCP flows
+ Should not clobber TCP flows and grab bulk of link

+ Should also be able to hold its own, i.e. grab its fair share, or it will
never become popular

* How is this quantified/shown?
+ Has evolved into evaluating loss/throughput behavior
« Ifit shows 1/sqrt(p) behavior it is ok
* But s this really true?

Lecture 19: 03-24-2005 29

Overview l‘

* TCP variants

* TCP modeling

* TCP details

Lecture 19: 03-24-2005 30

Delayed ACKS “

* Problem:
* In request/response programs, you send separate ACK
and Data packets for each transaction
» Solution:
* Don’t ACK data immediately
+ Wait 200ms (must be less than 500ms — why?)
* Must ACK every other packet
* Must not delay duplicate ACKs

Lecture 19: 03-24-2005 31

TCP ACK Generation [RFc 1122, RFC 2581] “

Event TCP Receiver action
In-order segment arrival, Delayed ACK. Wait up to 500ms
No gaps, for next segment. If no next segment,

Everything else already ACKed send ACK

In-order segment arrival, Immediately send single

No gaps, cumulative ACK

One delayed ACK pending

Out-of-order segment arrival Send duplicate ACK, indicating seq. #
Higher-than-expect seq. # of next expected byte

Gap detected

Arrival of segment that Immediate ACK

partially or completely fills gap

Lecture 19: 03-24-2005 32

Delayed Ack Impact i‘.

» TCP congestion control triggered by acks
* If receive half as many acks = window grows half as
fast
» Slow start with window = 1
+ Will trigger delayed ack timer
 First exchange will take at least 200ms

» Start with > 1 initial window
* Bug in BSD, now a “feature”/standard

Lecture 19: 03-24-2005 33

Nagel’s Algorithm l‘

» Small packet problem:
» Don’t want to send a 41 byte packet for each keystroke
* How long to wait for more data?

+ Solution:

 Allow only one outstanding small (not full sized)
segment that has not yet been acknowledged

» Can be disabled for interactive applications

Lecture 19: 03-24-2005 34

Large Windows “

» Delay-bandwidth product for 100ms delay
+ 1.5Mbps: 18KB
* 10Mbps: 122KB
+ 45Mbps: 549KB
+ 100Mbps: 1.2MB
* 622Mbps: 7.4MB
+ 1.2Gbps: 14.8MB
* Why is this a problem?
* 10Mbps > max 16bit window
» Scaling factor on advertised window
» Specifies how many bits window must be shifted to the left
+ Scaling factor exchanged during connection setup

Lecture 19: 03-24-2005 35

Window Scaling: “

Example Use of Options

+ “Large window” option (RFC
1323) .) TCP syn

» Negotiated by the hosts during
connection establishment

» Option 3 specifies the number
of bits by which to shift the \
value in the 16 bit window field

* Independently set for the two M/
transmit directions

* The scaling factor specifies bit -
shift of the window field in the -
TCP header

. Scalin? value of 2 translates
into a factor of 4

+ Old TCP implementations will

simply ignore the option

« Definition of an option \

Lecture 19: 03-24-2005 36

Maximum Segment Size (MSS) i‘.

* Problem: what packet size should a connection
use?
» Exchanged at connection setup
» Uses a TCP option
» Typically pick MTU of local link
* What all does this effect?
« Efficiency
« Congestion control
* Retransmission
» Path MTU discovery
* Why should MTU match MSS?

Lecture 19: 03-24-2005 37

TCP (Summary)

N

General loss recovery

» Stop and wait

» Selective repeat

TCP sliding window flow control
TCP state machine

TCP loss recovery

* Timeout-based
* RTT estimation

» Fast retransmit
+ Selective acknowledgements

Lecture 19: 03-24-2005

38

TCP (Summary) “

» Congestion collapse
* Definition & causes
» Congestion control
« Why AIMD?
+ Slow start & congestion avoidance modes
* ACK clocking
» Packet conservation
» TCP performance modeling

* How does TCP fully utilize a link?
* Role of router buffers

Lecture 19: 03-24-2005 39

N EXTRA SLIDES

The rest of the slides are FYI

10

NewReno i‘.

* The ack that arrives after retransmission (partial
ack) could indicate that a second loss occurred
* When does NewReno timeout?
* When there are fewer than three dupacks for first loss
* When partial ack is lost
* How fast does it recover losses?
* One per RTT

Lecture 19: 03-24-2005 41

NewReno l‘

|]
L}
|}
L}
%] °
u o
i []
. ® Now what? — partial ack
X = recovery
|] (<] 0000
Sequence No = °
|] (<]
L} o
|] (<]
L} o
|] (<]
L} o
|] (<]
|] (<]
|] (<]
|] <]
|] (<]
|] (<]
M Packets
©Acks Time

Lecture 19: 03-24-2005 42

Changing Workloads “

* New applications are changing the way TCP is used

* 1980’s Internet
* Telnet & FTP - long lived flows
* Well behaved end hosts
» Homogenous end host capabilities
* Simple symmetric routing
» 2000’s Internet
* Web & more Web - large number of short xfers
+ Wild west — everyone is playing games to get bandwidth
+ Cell phones and toasters on the Internet
+ Policy routing

Lecture 19: 03-24-2005 43

Short Transfers “

» Fast retransmission needs at least a window of 4
packets
» To detect reordering

+ Short transfer performance is limited by slow start
2> RTT

Lecture 19: 03-24-2005 44

11

Short Transfers “

+ Start with a larger initial window
* What is a safe value?

» TCP already burst 3 packets into network during slow
start

* Large initial window = min (4*MSS, max (2*MSS, 4380
bytes)) [rfc2414]
* Not a standard yet

» Enables fast retransmission

* Only used in initial slow start not in any subsequent
slow start

Lecture 19: 03-24-2005 45

Well Behaved vs. Wild West i‘

* How to ensure hosts/applications do proper
congestion control?

* Who can we trust?
* Only routers that we control

« Can we ask routers to keep track of each flow
 Per flow information at routers tends to be expensive
» Fair-queuing later in the semester

Lecture 19: 03-24-2005 46

TCP Fairness Issues “

* Multiple TCP flows sharing the same bottleneck
link do not necessarily get the same bandwidth.

» Factors such as roundtrip time, small differences in
timeouts, and start time, ... affect how bandwidth is
shared

* The bandwidth ratio typically does stabilize
» Users can grab more bandwidth by using parallel
flows.

+ Each flow gets a share of the bandwidth to the user
gets more bandwidth than users who use only a single
flow

Lecture 19: 03-24-2005 47

Silly Window Syndrome N

* Problem: (Clark, 1982)

* If receiver advertises small increases in the receive
window then the sender may waste time sending
lots of small packets

» Solution

* Receiver must not advertise small window increases
¢ Increase window by min(MSS,RecvBuffer/2)

Lecture 19: 03-24-2005 48

12

Protection From Wraparound i‘.

* Wraparound time vs. Link speed
* 1.5Mbps: 6.4 hours
* 10Mbps: 57 minutes
* 45Mbps: 13 minutes
* 100Mbps: 6 minutes
* 622Mbps: 55 seconds
* 1.2Gbps: 28 seconds
* Why is this a problem?
+ 55seconds < MSL!

» Use timestamp to distinguish sequence number
wraparound

Lecture 19: 03-24-2005 49

Example

N

* 10Gb/s linecard

» Requires 300Mbytes of buffering.

* Read and write 40 byte packet every 32ns.
* Memory technologies

* DRAM: require 4 devices, but too slow.

» SRAM: require 80 devices, 1kW, $2000.
* Problem gets harder at 40Gb/s

* Hence RLDRAM, FCRAM, etc.

Lecture 19: 03-24-2005

Rule-of-thumb “

e Rule-of-thumb makes sense for one flow
» Typical backbone link has > 20,000 flows

e Does the rule-of-thumb still hold?

» Key assumption = losses are synchronized across all
flows

+ All TCP connections halve windows nearly
simultaneously

» Not necessarily true!

Lecture 19: 03-24-2005 51

13

