i‘ 15-441 Computer Networking

Lecture 18 — More TCP & Congestion
Control

Outline

N

» TCP reliability

* TCP congestion control

Lecture 18: 03-22-2005

Reliability Challenges N

« Congestion related losses
» Variable packet delays

* What should the timeout be?
* Reordering of packets

« How to tell the difference between a delayed packet
and a lost one?

Lecture 18: 03-22-2005 3

TCP = Go-Back-N Variant

"N

 Sliding window with cumulative acks

¢ Receiver can only return a single “ack” sequence number to the

sender.
¢ Acknowledges all bytes with a lower sequence number
¢ Starting point for retransmission
* Duplicate acks sent when out-of-order packet received
e But: sender only retransmits a single packet.

* Reason???

« Only one that it knows is lost

« Network is congested - shouldn’t overload it

 Error control is based on byte sequences, not packets.
* Retransmitted packet can be different from the original lost packet

— Why?

Lecture 18: 03-22-2005

Round-trip Time Estimation i‘.

Wait at least one RTT before retransmitting

Importance of accurate RTT estimators:

e Low RTT estimate
¢ unneeded retransmissions

e High RTT estimate
 poor throughput
e RTT estimator must adapt to change in RTT
* But not too fast, or too slow!
Spurious timeouts

« “Conservation of packets” principle — never more than a
window worth of packets in flight

Lecture 18: 03-22-2005 5

Original TCP Round-trip Estimator l‘.

e Round trip times 2
exponentially .
averaged:

« New RTT = a (old RTT)
+ (1 - o) (new sample)
¢ Recommended value 0s

fora:0.8-0.9

» 0.875 for most TCP’s
¢ Retransmit timer setto (b * RTT), where b =2
« Every time timer expires, RTO exponentially backed-off
» Not good at preventing spurious timeouts
e Why?

Lecture 18: 03-22-2005 6

Jacobson’s Retransmission Timeout “

» Key observation:
» At high loads round trip variance is high

e Solution:
e Base RTO on RTT and standard deviation
e RTO =RTT + 4 * rttvar
e new_rttvar = 3 * dev + (1- B) old_rttvar
* Dev = linear deviation

* Inappropriately named — actually smoothed linear
deviation

Lecture 18: 03-22-2005 7

RTT Sample Ambiguity “

A B A B
O

riginal transm; sion

RTO

Original transmission

IRTO

Sample retrang, Sample
RTT ansmlssion RTT P I
pct

* Karn’s RTT Estimator

* If a segment has been retransmitted:
» Don’t count RTT sample on ACKs for this segment
» Keep backed off time-out for next packet
» Reuse RTT estimate only after one successful transmission

Lecture 18: 03-22-2005 8

Timestamp Extension i‘.

» Used to improve timeout mechanism by more
accurate measurement of RTT

* When sending a packet, insert current timestamp
into option
¢ 4 bytes for timestamp, 4 bytes for echo
* Receiver echoes timestamp in ACK
« Actually will echo whatever is in timestamp
¢ Removes retransmission ambiguity
e Can get RTT sample on any packet

Lecture 18: 03-22-2005 9

Timer Granularity l‘

e Many TCP implementations set RTO in multiples
of 200,500,1000ms
e Why?
* Avoid spurious timeouts — RTTs can vary quickly due to
cross traffic

» Make timers interrupts efficient

* What happens for the first couple of packets?
» Pick a very conservative value (seconds)

Lecture 18: 03-22-2005 10

Fast Retransmit “

» What are duplicate acks (dupacks)?
* Repeated acks for the same sequence
* When can duplicate acks occur?
e Loss
¢ Packet re-ordering
* Window update — advertisement of new flow control window
e Assume re-ordering is infrequent and not of large
magnitude
¢ Use receipt of 3 or more duplicate acks as indication of loss
« Don't wait for timeout to retransmit packet

Lecture 18: 03-22-2005 11

Fast Retransmit “

. .— Retransmission

Sequence No %% «— pyplicate Acks

coocommmmmmmE
c0o0o0000

commmE

omm

M Packets
@ Acks

Time

Lecture 18: 03-22-2005 12

Outline “

* TCP reliability

* TCP congestion control

Lecture 18: 03-22-2005 13

TCP Congestion Control l‘,

» Changes to TCP motivated by ARPANET
congestion collapse
 Basic principles
* AIMD
» Packet conservation
» Reaching steady state quickly
» ACK clocking

Lecture 18: 03-22-2005 14

AIMD “

 Distributed, fair and efficient

» Packet loss is seen as sign of congestion and results in a
multiplicative rate decrease
e Factor of 2

» TCP periodically probes for available bandwidth by
increasing its rate

Rate

Timé

Lecture 18: 03-22-2005 15

Implementation Issue “.

e Operating system timers are very coarse — how to pace
packets out smoothly?

» Implemented using a congestion window that limits how
much data can be in the network.
* TCP also keeps track of how much data is in transit

e Data can only be sent when the amount of outstanding
data is less than the congestion window.

¢ The amount of outstanding data is increased on a “send” and
decreased on “ack”

* (last sent — last acked) < congestion window
* Window limited by both congestion and buffering
¢ Sender's maximum window = Min (advertised window, cwnd)

Lecture 18: 03-22-2005 16

"

Congestion Avoidance

e If loss occurs when cwnd = W
¢ Network can handle 0.5W ~ W segments
¢ Set cwnd to 0.5W (multiplicative decrease)

» Upon receiving ACK

* Increase cwnd by (1 packet)/cwnd
¢ What is 1 packet? - 1 MSS worth of bytes
« After cwnd packets have passed by - approximately increase

of 1 MSS
* Implements AIMD

17

Congestion Avoidance Sequence Plot l‘.

000000000 EEpyEemmmm

Sequence No

00000000 pEEEEEEEE

00000OO NNEEEEER

M Packets

@ Acks
Time

Lecture 18: 03-22-2005

Lecture 18: 03-22-2005

Congestion Avoidance Behavior “

Congestion
Window
a

! —
Cut)\ . Time
Packet loss . Grabbing
+ Timeout Congestion back
Window Bandwidth

and Rate

Lecture 18: 03-22-2005 19

Packet Conservation

"N

e At equilibrium, inject packet into network only

when one is removed
* Sliding window and not rate controlled
* But still need to avoid sending burst of packets >
would overflow links
» Need to carefully pace out packets
* Helps provide stability
* Need to eliminate spurious retransmissions

» Accurate RTO estimation
 Better loss recovery techniques (e.g. fast retransmit)

Lecture 18: 03-22-2005

20

TCP Packet Pacing i‘.

» Congestion window helps to “pace” the transmission of
data packets

* In steady state, a packet is sent when an ack is received
» Data transmission remains smooth, once it is smooth
¢ Self-clocking behavior

P —

=y D

[

Sender Receiver

'S — Af
— A, —

Lecture 18: 03-22-2005 21

Reaching Steady State l‘.

* Doing AIMD is fine in steady state but slow...
* How does TCP know what is a good initial rate to
start with?

» Should work both for a CDPD (10s of Kbps or less) and
for supercomputer links (10 Gbps and growing)

¢ Quick initial phase to help get up to speed (slow
start)

Lecture 18: 03-22-2005 22

Slow Start Packet Pacing “

* How do we get this

Slow Start Example “

clocking behavior to start?

« Initialize cwnd = 1

< Upon receipt of every ack,
cwnd =cwnd + 1

e Implications

* Window actually increases to
W in RTT * log,(W)

« Can overshoot window and
cause packet loss

Lecture 18: 03-22-2005 23

One RTT

OR

2R @_®
2416]

3R @ _ 6 6 @
(8 1[10][1271[14]
(9 I[111[131[15]

Lecture 18: 03-22-2005 24

Slow Start Sequence Plot

"

W
L]
]
L}
L}
L}
L}
L]
L}
L} o
L} (<]
Sequence No u °
|] (<]
] o
L} (<]
L} (<]
L} (<]
L} o
L} (<]
L} o
] (<]
L} o
L} =]
| o
Ml Packets
Acks -
© Time

25

Lecture 18: 03-22-2005

N

« If packet is lost we lose our self clocking as well
» Need to implement slow-start and congestion
avoidance together
* When timeout occurs set ssthresh to 0.5w
e |If cwnd < ssthresh, use slow start
» Else use congestion avoidance

Return to Slow Start

Lecture 18: 03-22-2005 26

TCP Saw Tooth Behavior

L

Congestion '
Window Timeouts
'y may still
occur
[\s
iti lowstart Fast
Initial .
Slowstart to pace Retransmit
packets and Recovery

Lecture 18: 03-

22-2005

27

"N

Important Lessons

e TCP timeout calculation - how is RTT estimated

e Modern TCP loss recovery
* Why are timeouts bad?
* How to avoid them? > e.g. fast retransmit

e How does TCP implement AIMD?
« Sliding window, slow start & ack clocking
» How to maintain ack clocking during loss recovery -

fast recovery

Lecture 18: 03-22-2005

28

