
1

15-441 Computer Networking

Lecture 18 – More TCP & Congestion
Control

Lecture 18: 03-22-2005 2

Outline

• TCP reliability

• TCP congestion control

Lecture 18: 03-22-2005 3

Reliability Challenges

• Congestion related losses
• Variable packet delays

• What should the timeout be?
• Reordering of packets

• How to tell the difference between a delayed packet
and a lost one?

Lecture 18: 03-22-2005 4

TCP = Go-Back-N Variant

• Sliding window with cumulative acks
• Receiver can only return a single “ack” sequence number to the

sender.
• Acknowledges all bytes with a lower sequence number
• Starting point for retransmission
• Duplicate acks sent when out-of-order packet received

• But: sender only retransmits a single packet.
• Reason???

• Only one that it knows is lost
• Network is congested shouldn’t overload it

• Error control is based on byte sequences, not packets.
• Retransmitted packet can be different from the original lost packet

– Why?

2

Lecture 18: 03-22-2005 5

Round-trip Time Estimation

• Wait at least one RTT before retransmitting
• Importance of accurate RTT estimators:

• Low RTT estimate
• unneeded retransmissions

• High RTT estimate
• poor throughput

• RTT estimator must adapt to change in RTT
• But not too fast, or too slow!

• Spurious timeouts
• “Conservation of packets” principle – never more than a

window worth of packets in flight

Lecture 18: 03-22-2005 6

Original TCP Round-trip Estimator

• Round trip times
exponentially
averaged:
• New RTT = α (old RTT)

+ (1 - α) (new sample)
• Recommended value

for α: 0.8 - 0.9
• 0.875 for most TCP’s

0

0.5

1

1.5

2

2.5

• Retransmit timer set to (b * RTT), where b = 2
• Every time timer expires, RTO exponentially backed-off

• Not good at preventing spurious timeouts
• Why?

Lecture 18: 03-22-2005 7

Jacobson’s Retransmission Timeout

• Key observation:
• At high loads round trip variance is high

• Solution:
• Base RTO on RTT and standard deviation

• RTO = RTT + 4 * rttvar
• new_rttvar = β * dev + (1- β) old_rttvar

• Dev = linear deviation
• Inappropriately named – actually smoothed linear

deviation

Lecture 18: 03-22-2005 8

RTT Sample Ambiguity

• Karn’s RTT Estimator
• If a segment has been retransmitted:

• Don’t count RTT sample on ACKs for this segment
• Keep backed off time-out for next packet
• Reuse RTT estimate only after one successful transmission

A B

ACK

Sample
RTT

Original transmission

retransmission

RTO

A B
Original transmission

retransmission
Sample
RTT

ACKRTO
X

3

Lecture 18: 03-22-2005 9

Timestamp Extension

• Used to improve timeout mechanism by more
accurate measurement of RTT

• When sending a packet, insert current timestamp
into option
• 4 bytes for timestamp, 4 bytes for echo

• Receiver echoes timestamp in ACK
• Actually will echo whatever is in timestamp

• Removes retransmission ambiguity
• Can get RTT sample on any packet

Lecture 18: 03-22-2005 10

Timer Granularity

• Many TCP implementations set RTO in multiples
of 200,500,1000ms

• Why?
• Avoid spurious timeouts – RTTs can vary quickly due to

cross traffic
• Make timers interrupts efficient

• What happens for the first couple of packets?
• Pick a very conservative value (seconds)

Lecture 18: 03-22-2005 11

Fast Retransmit

• What are duplicate acks (dupacks)?
• Repeated acks for the same sequence

• When can duplicate acks occur?
• Loss
• Packet re-ordering
• Window update – advertisement of new flow control window

• Assume re-ordering is infrequent and not of large
magnitude
• Use receipt of 3 or more duplicate acks as indication of loss
• Don’t wait for timeout to retransmit packet

Lecture 18: 03-22-2005 12

Fast Retransmit

Time

Sequence No Duplicate Acks
RetransmissionX

Packets

Acks

4

Lecture 18: 03-22-2005 13

Outline

• TCP reliability

• TCP congestion control

Lecture 18: 03-22-2005 14

TCP Congestion Control

• Changes to TCP motivated by ARPANET
congestion collapse

• Basic principles
• AIMD
• Packet conservation
• Reaching steady state quickly
• ACK clocking

Lecture 18: 03-22-2005 15

AIMD

• Distributed, fair and efficient
• Packet loss is seen as sign of congestion and results in a

multiplicative rate decrease
• Factor of 2

• TCP periodically probes for available bandwidth by
increasing its rate

Time

Rate

Lecture 18: 03-22-2005 16

Implementation Issue

• Operating system timers are very coarse – how to pace
packets out smoothly?

• Implemented using a congestion window that limits how
much data can be in the network.
• TCP also keeps track of how much data is in transit

• Data can only be sent when the amount of outstanding
data is less than the congestion window.
• The amount of outstanding data is increased on a “send” and

decreased on “ack”
• (last sent – last acked) < congestion window

• Window limited by both congestion and buffering
• Sender’s maximum window = Min (advertised window, cwnd)

5

Lecture 18: 03-22-2005 17

Congestion Avoidance

• If loss occurs when cwnd = W
• Network can handle 0.5W ~ W segments
• Set cwnd to 0.5W (multiplicative decrease)

• Upon receiving ACK
• Increase cwnd by (1 packet)/cwnd

• What is 1 packet? 1 MSS worth of bytes
• After cwnd packets have passed by approximately increase

of 1 MSS

• Implements AIMD

Lecture 18: 03-22-2005 18

Congestion Avoidance Sequence Plot

Time

Sequence No

Packets

Acks

Lecture 18: 03-22-2005 19

Congestion Avoidance Behavior

Time

Congestion
Window

Packet loss
+ Timeout

Grabbing
back

Bandwidth

Cut
Congestion

Window
and Rate

Lecture 18: 03-22-2005 20

Packet Conservation

• At equilibrium, inject packet into network only
when one is removed
• Sliding window and not rate controlled
• But still need to avoid sending burst of packets

would overflow links
• Need to carefully pace out packets
• Helps provide stability

• Need to eliminate spurious retransmissions
• Accurate RTO estimation
• Better loss recovery techniques (e.g. fast retransmit)

6

Lecture 18: 03-22-2005 21

TCP Packet Pacing

• Congestion window helps to “pace” the transmission of
data packets

• In steady state, a packet is sent when an ack is received
• Data transmission remains smooth, once it is smooth
• Self-clocking behavior

Pr

Pb

ArAb

ReceiverSender

As

Lecture 18: 03-22-2005 22

Reaching Steady State

• Doing AIMD is fine in steady state but slow…
• How does TCP know what is a good initial rate to

start with?
• Should work both for a CDPD (10s of Kbps or less) and

for supercomputer links (10 Gbps and growing)
• Quick initial phase to help get up to speed (slow

start)

Lecture 18: 03-22-2005 23

Slow Start Packet Pacing

• How do we get this
clocking behavior to start?
• Initialize cwnd = 1
• Upon receipt of every ack,

cwnd = cwnd + 1
• Implications

• Window actually increases to
W in RTT * log2(W)

• Can overshoot window and
cause packet loss

Lecture 18: 03-22-2005 24

Slow Start Example

1

One RTT

One pkt time

0R

2
1R

3

4
2R

5
6
7

8
3R

9
10
11

12
13

14
15

1

2 3

4 5 6 7

7

Lecture 18: 03-22-2005 25

Slow Start Sequence Plot

Time

Sequence No

.

.

.

Packets

Acks

Lecture 18: 03-22-2005 26

Return to Slow Start

• If packet is lost we lose our self clocking as well
• Need to implement slow-start and congestion

avoidance together
• When timeout occurs set ssthresh to 0.5w

• If cwnd < ssthresh, use slow start
• Else use congestion avoidance

Lecture 18: 03-22-2005 27

TCP Saw Tooth Behavior

Time

Congestion
Window

Initial
Slowstart

Fast
Retransmit

and Recovery

Slowstart
to pace
packets

Timeouts
may still

occur

Lecture 18: 03-22-2005 28

Important Lessons

• TCP timeout calculation how is RTT estimated

• Modern TCP loss recovery
• Why are timeouts bad?
• How to avoid them? e.g. fast retransmit

• How does TCP implement AIMD?
• Sliding window, slow start & ack clocking
• How to maintain ack clocking during loss recovery

fast recovery

