Lecture 8 Virtual Circuits, ATM, MPLS

David Andersen
School of Computer Science
Carnegie Mellon University

15-441 Networking, Spring 2005 http://www.cs.cmu.edu/~srini/15-441/S05/

1

Outline

- Layering review (bridges, routers, etc.)
 - » Exam section C.
- Circuit switching refresher
- Virtual Circuits general
 - » Why virtual circuits?
 - » How virtual circuits? -- tag switching!
- Two modern implementations
 - » ATM teleco-style virtual circuits
 - » MPLS IP-style virtual circuits

Packet Switching

- Source sends information as self-contained packets that have an address.
 - » Source may have to break up single message in multiple
- Each packet travels independently to the destination host.
 - » Routers and switches use the address in the packet to determine how to forward the packets
- Destination recreates the message.
- Analogy: a letter in surface mail.

•

Circuit Switching

- Source first establishes a connection (circuit) to the destination.
 - » Each router or switch along the way may reserve some bandwidth for the data flow
- Source sends the data over the circuit.
 - » No need to include the destination address with the data since the routers know the path
- The connection is torn down.
- Example: telephone network.

Circuit Switching Discussion

- Traditional circuits: on each hop, the circuit has a dedicated wire or slice of bandwidth.
 - » Physical connection clearly no need to include addresses with the data
- Advantages, relative to packet switching:
 - » Implies guaranteed bandwidth, predictable performance
 - » Simple switch design: only remembers connection information, no longest-prefix destination address look up
- Disadvantages:
 - » Inefficient for bursty traffic (wastes bandwidth)
 - » Delay associated with establishing a circuit
- Can we get the advantages without (all) the disadvantages?

5

Virtual Circuits

- Each wire carries many "virtual" circuits.
 - » Forwarding based on virtual circuit (VC) identifier
 - IP header: src, dst, etc.
 - Virtual circuit header: just "VC"
 - » A path through the network is determined for each VC when the VC is established
 - » Use statistical multiplexing for efficiency
- Can support wide range of quality of service.
 - » No guarantees: best effort service
 - » Weak guarantees: delay < 300 msec, ...
 - » Strong guarantees: e.g. equivalent of physical circuit

Packet Switching and Virtual Circuits: Similarities

- "Store and forward" communication based on an address.
 - » Address is either the destination address or a VC identifier
- Must have buffer space to temporarily store packets.
 - » E.g. multiple packets for some destination arrive simultaneously
- Multiplexing on a link is similar to time sharing.
 - » No reservations: multiplexing is statistical, i.e. packets are interleaved without a fixed pattern
 - » Reservations: some flows are guaranteed to get a certain number of "slots"

7

Virtual Circuits Versus Packet Switching

Circuit switching:

- » Uses short connection identifiers to forward packets
- » Switches know about the connections so they can more easily implement features such as quality of service
- » Virtual circuits form basis for traffic engineering: VC identifies long-lived stream of data that can be scheduled

Packet switching:

- » Use full destination addresses for forwarding packets
- » Can send data right away: no need to establish a connection first
- » Switches are stateless: easier to recover from failures
- » Adding QoS is hard
- » Traffic engineering is hard: too many packets!

Connections and Signaling

- Permanent vs. switched virtual connections (PVCs, SVCs)
 - » static vs. dynamic. PVCs last "a long time"
 - E.g., connect two bank locations with a PVC that looks like a circuit
 - SVCs are more like a phone call
 - PVCs administratively configured (but not "manually")
 - » SVCs dynamically set up on a "per-call" basis
- Topology
 - » point to point
 - » point to multipoint
 - » multipoint to multipoint
- Challenges:
 - » How to configure these things?
 - What VCI to use?
 - Setting up the path

Virtual Circuit Switching: Label ("tag") Swapping

 Global VC ID allocation -- ICK! Solution: Per-link uniqueness. Change VCI each hop.

Input Port		Input VCI	Output Port	Output VCI	
R1:	1	5	3	9	
R2:	2	9	4	2	
R4:	1	2	3	5	13

Label ("tag") Swapping

- Result: Signalling protocol must only find per-link unused VCIs.
 - » "Link-local scope"
 - » Connection setup can proceed hop-by-hop.
 - Good news for our setup protocols!

PVC connection setup

- Manual?
 - » Configure each switch by hand. Ugh.
- Dedicated signalling protocol
 - » E.g., what ATM uses
- Piggyback on routing protocols
 - » Used in MPLS. E.g., use BGP to set up

15

Calling network called party SETUP CONNECT CONNECT CONNECT CONNECT ACK CONNECT CONN

Virtual Circuits In Practice

- ATM: Teleco approach
 - » Kitchen sink. Based on voice, support file transfer, video, etc., etc.
 - » Intended as IP replacement. That didn't happen. :)
 - » Today: Underlying network protocol in many teleco networks. E.g., DSL speaks ATM. IP over ATM in some cases.
- MPLS: The "IP Heads" answer to ATM
 - » Stole good ideas from ATM
 - » Integrates well with IP
 - » Today: Used inside some networks to provide VPN support, traffic engineering, simplify core.
- Other nets just run IP.
- Older tech: Frame Relay
 - » Only provided PVCs. Used for quasi-dedicated 56k/T1 links between offices, etc. Slower, less flexible than ATM.

17

Asynchronous Transfer Mode: ATM

- Connection-oriented, packet-switched
 - » (e.g., virtual circuits).
- Teleco-driven. Goals:
 - » Handle voice, data, multimedia
 - » Support both PVCs and SVCs
 - » Replace IP. (didn't happen...)
- Important feature: Cell switching

Cell Switching

- Small, fixed-size cells
 [Fixed-length data][header]
- Why?
 - » Efficiency: All packets the same
 - Easier hardware parallelism, implementation
 - » Switching efficiency:
 - Lookups are easy -- table index.
 - » Result: Very high cell switching rates.
 - » Initial ATM was 155Mbit/s. Ethernet was 10Mbit/s at the same time. (!)
- How do you pick the cell size?

19

ATM Features

- Fixed size cells (53 bytes).
 - » Why 53?
- Virtual circuit technology using hierarchical virtual circuits (VP,VC).
- PHY (physical layer) processing delineates cells by frame structure, cell header error check.
- Support for multiple traffic classes by adaptation layer.
 - » E.g. voice channels, data traffic
- Elaborate signaling stack.
 - » Backwards compatible with respect to the telephone standards
- Standards defined by ATM Forum.
 - » Organization of manufacturers, providers, users

Why 53 Bytes?

- Small cells favored by voice applications
 - » delays of more than about 10 ms require echo cancellation
 - » each payload byte consumes 125 μs (8000 samples/sec)
- Large cells favored by data applications
 - » Five bytes of each cell are overhead
- France favored 32 bytes
 - » 32 bytes = 4 ms packetization delay.
 - » France is 3 ms wide.
 - » Wouldn't need echo cancellers!
- USA, Australia favored 64 bytes
 - » 64 bytes = 8 ms
 - » USA is 16 ms wide
 - » Needed echo cancellers anyway, wanted less overhead
- Compromise

2

ATM Adaptation Layers

1	2	3	4	5	
synchronous		asynchronous			
constant	variable bit rate				
conn	ection-ori	connectionless			

- AAL 1: audio, uncompressed video
- AAL 2: compressed video
- AAL 3: long term connections
- AAL 4/5: data traffic
 - AAL5 is most relevant to us...

Pertinent part: Packets are spread across multiple ATM cells. Each packet is delimited by EOF flag in cell.

23

ATM Packet Shredder Effect

- Cell loss results in packet loss.
 - » Cell from middle of packet: lost packet
 - » EOF cell: lost two packets
 - » Just like consequence of IP fragmentation, but VERY small fragments!
- Even low cell loss rate can result in high packet loss rate.
 - » E.g. 0.2% cell loss -> 2 % packet loss
 - » Disaster for TCP
- Solution: drop remainder of the packet, i.e. until EOF cell.
 - » Helps a lot: dropping useless cells reduces bandwidth and lowers the chance of later cell drops
 - » Slight violation of layers
 - » Discovered after early deployment experience with IP over ATM.

IP over ATM

- When sending IP packets over an ATM network, set up a VC to destination.
 - » ATM network can be end to end, or just a partial path
 - » ATM is just another link layer
- Virtual connections can be cached.
 - » After a packet has been sent, the VC is maintained so that later packets can be forwarded immediately
 - » VCs eventually times out
- Properties.
 - Overhead of setting up VCs (delay for first packet)
 - Complexity of managing a pool of VCs
 - + Flexible bandwidth management
 - + Can use ATM QoS support for individual connections (with appropriate signaling support)

25

IP over ATM Static VCs

- Establish a set of "ATM pipes" that defines connectivity between routers.
- Routers simply forward packets through the pipes.
 - » Each statically configured VC looks like a link
- Properties.
 - Some ATM benefits are lost (per flow QoS)
 - + Flexible but static bandwidth management
 - + No set up overheads

ATM Discussion

- At one point, ATM was viewed as a replacement for IP.
 - » Could carry both traditional telephone traffic (CBR circuits) and other traffic (data, VBR)
 - » Better than IP, since it supports QoS
- Complex technology.
 - » Switching core is fairly simple, but
 - » Support for different traffic classes
 - » Signaling software is very complex
 - » Technology did not match people's experience with IP
 - deploying ATM in LAN is complex (e.g. broadcast)
 - supporting connection-less service model on connection-based technology
 - » With IP over ATM, a lot of functionality is replicated
- Currently used as a datalink layer supporting IP.

27

Multi Protocol Label Switching - MPLS

- Selective combination of VCs + IP
 - » Today: MPLS useful for traffic engineering, reducing core complexity, and VPNs
- Core idea: Layer 2 carries VC label
 - » Could be ATM (which has its own tag)
 - » Could be a "shim" on top of Ethernet/etc.:
 - » Existing routers could act as MPLS switches just by examining that shim -- no radical re-design. Gets flexibility benefits, though not cell switching advantages

Layer 3 (IP) header

Layer 2 header

Layer 3 (IP) header

MPLS label

Layer 2 header

MPLS + IP

- Map packet onto Forward Equivalence Class (FEC)
 - » Simple case: longest prefix match of destination address
 - » More complex if QoS of policy routing is used
- In MPLS, a label is associated with the packet when it enters the network and forwarding is based on the label in the network core.
 - » Label is swapped (as ATM VCIs)
- Potential advantages.
 - » Packet forwarding can be faster
 - » Routing can be based on ingress router and port
 - » Can use more complex routing decisions
 - » Can force packets to followed a pinned route

29

MPLS core, IP interface

MPLS tags can differentiate green VPN from orange VPN.

31

MPLS use case #2: Reduced State Core

MPLS use case #3: Traffic Engineering

- As discussed earlier -- can pick routes based upon more than just destination
- Used in practice by many ISPs, though certainly not all.

33

34

MPLS Mechanisms

- MPLS packet forwarding: implementation of the label is technology specific.
 - » Could be ATM VCI or a short extra "MPLS" header
- Supports stacked labels.
 - » Operations can be "swap" (normal label swapping), "push" and "pop" labels.
 - VERY flexible! Like creating tunnels, but much simpler -- only adds a small label.

Label	CoS S	TTL
20	3 1	8

MPLS Discussion

- Original motivation.
 - » Fast packet forwarding:
 - Use of ATM hardware
 - Avoid complex "longest prefix" route lookup
 - Limitations of routing table sizes
 - » Quality of service
- Currently mostly used for traffic engineering and network management.
 - » LSPs can be thought of as "programmable links" that can be set up under software control
 - » on top of a simple, static hardware infrastructure

35

Take Home Points

- Costs/benefits/goals of virtual circuits
- Cell switching (ATM)
 - » Fixed-size pkts: Fast hardware
 - » Packet size picked for low voice jitter. Understand tradeoffs.
 - » Beware packet shredder effect (drop entire pkt)
- Tag/label swapping
 - » Basis for most VCs.
 - » Makes label assignment link-local. Understand mechanism.
- MPLS IP meets virtual circuits
 - » MPLS tunnels used for VPNs, traffic engineering, reduced core routing table sizes

--- Extra Slides ---

Extra information if you're curious.

37

ATM Traffic Classes

- Constant Bit Rate (CBR) and Variable Bit Rate (VBR).
 - » Guaranteed traffic classes for different traffic types.
- Unspecified Bit Rate (UBR).
 - » Pure best effort with no help from the network
- Available Bit Rate (ABR).
 - » Best effort, but network provides support for congestion control and fairness
 - » Congestion control is based on explicit congestion notification
 - Binary or multi-valued feedback
 - » Fairness is based on Max-Min Fair Sharing.

(small demands are satisfied, unsatisfied demands share equally)

LAN Emulation

- Motivation: making a non-broadcast technology work as a LAN.
 - » Focus on 802.x environments
- Approach: reuse the existing interfaces, but adapt implementation to ATM.
 - » MAC ATM mapping
 - » multicast and broadcast
 - » bridging
 - » ARP
- Example: Address Resolution "Protocol" uses an ARP server instead of relying on broadcast.

39

Further reading - MPLS

- MPLS isn't in the book sorry. Juniper has a few good presentations at NANOG (the North American Network Operators Group; a big collection of ISPs):
 - » http://www.nanog.org/mtg-0310/minei.html
 - » http://www.nanog.org/mtg-0402/minei.html
 - » Practical and realistic view of what people are doing _today_ with MPLS.

IP Switching

- How to use ATM hardware without the software.
 - » ATM switches are very fast data switches
 - » software adds overhead, cost
- The idea is to identify flows at the IP level and to create specific VCs to support these flows.
 - » flows are identified on the fly by monitoring traffic
 - » flow classification can use addresses, protocol types, ...
 - » can distinguish based on destination, protocol, QoS
- Once established, data belonging to the flow bypasses level 3 routing.
 - » never leaves the ATM switch
- Interoperates fine with "regular" IP routers.
 - » detects and collaborates with neighboring IP switches

41

IP Switching Example

IP Switching Discussion

- IP switching selectively optimizes the forwarding of specific flows.
 - » Offloads work from the IP router, so for a given size router, a less powerful forwarding engine can be used
 - » Can fall back on traditional IP forwarding if there are failures
- IP switching couples a router with an ATM switching using the GSMP protocol.
 - » General Switch Management Protocol
- IP switching can be used for flows with different granularity.
 - » Flows belonging to an application .. Organization
 - » Controlled by the classifier

An Alternative Tag Switching

- Instead of monitoring traffic to identify flows to optimize, use routing information to guide the creation of "switched" paths.
 - » Switched paths are set up as a side effect of filling in forwarding tables
- Generalize to other types of hardware.
- Also introduced stackable tags.
 - » Made it possible to temporarily merge flows and to demultiplex them without doing an IP route lookup
 - » Requires variable size field for tag

IP Switching versus Tag Switching

- Flows versus routes.
 - » tags explicitly cover groups of routes
 - » tag bindings set up as part of route establishment
 - » flows in IP switching are driven by traffic and detected by "filters"
 - Supports both fine grain application flows and coarser grain flow groups
- Stackable tags.
 - » provides more flexibility
- Generality
 - » IP switching focuses on ATM
 - » not clear that this is a fundamental difference

Packets over SONET

- Same as statically configured ATM pipes, but pipes are SONET channels.
- Properties.
 - Bandwidth management is much less flexible
 - + Much lower transmission overhead (no ATM headers)

