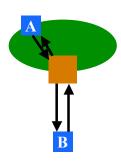
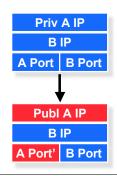
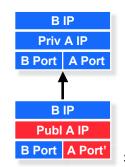
Lecture 14 IP Wrap up

David Andersen
School of Computer Science
Carnegie Mellon University

15-441 Networking, Spring 2005


•


Outline


- NAT.
- IPv6.
- Tunneling / Overlays
- Network Management
 - » Autoconfiguration
 - » SNMP

Network Address Translation

- NAT maps (private source IP, source port) onto (public source IP, unique source port)
 - » reverse mapping on the way back
 - » destination host does not know that this process is happening
- Very simple working solution.
 - » NAT functionality fits well with firewalls

3

Types of NATs

- Bi-directional NAT: 1 to 1 mapping between internal and external addresses.
 - » E.g., 128.237.0.0/16 -> 10.12.0.0/16
 - » External hosts can directly contact internal hosts
 - » Why use?
 - Flexibility. Change providers, don't change internal addrs.
 - Need as many external addresses as you have hosts can use sparse address space internally.
- "Traditional" NAT: Unidirectional
 - » Basic NAT: Pool of external addresses
 - Translate source IP address (+checksum,etc) only
 - Network Address Port Translation (NAPT): What most of us use
 - Also translate ports.
 - E.g., map (10.0.0.5 port 5555 → 18.31.0.114 port 22) to (128.237.233.137 port 5931 → 18.31.0.114 port 22)
 - Lets you share a single IP address among multiple computers

NAT Considerations

- NAT has to be consistent during a session.
 - » Set up mapping at the beginning of a session and maintain it during the session
 - » Recycle the mapping that the end of the session
 - May be hard to detect
- NAT only works for certain applications.
 - » Some applications (e.g. ftp) pass IP information in payload
 - » Need application level gateways to do a matching translation
- NAT has to be consistent with other protocols.
 - » ICMP, routing, ...
- NAT is loved and hated
 - » Breaks a lot of applications. Inhibits new applications like p2p.
 - » Little NAT boxes make home networking simple.
 - » Saves addresses. Makes allocation simple.

5

NAT Research Plug

- Want to play with your own NAT, and help out some researchers who are looking at techniques to communicate from behind NATs?
- http://nutss.gforge.cis.cornell.edu/stuntclient.php

IP_{v6}

- "Next generation" IP.
- Most urgent issue: increasing address space.
 - » 128 bit addresses
- Simplified header for faster processing:
 - » No checksum (why not?)
 - » No fragmentation (?)
- Support for guaranteed services: priority and flow id
- Options handled as "next header"
 - » reduces overhead of handling options

7

IPv6 Addressing

- Do we need more addresses? Probably, long term
 - » Big panic in 90s: "We're running out of addresses!"
 - » Big reality in 2005: We're about 50% used.
 - CIDR
 - Tighter allocation policies; voluntary IP reclamation
 - NAT
 - $\,{}^{>}\hspace{-.2em}$ Big worry: Devices. Small devices. Cell phones, toasters, everything.
- 128 bit addresses provide space for structure (good!)
 - » Hierarchical addressing is much easier
 - » Assign an entire 48-bit sized chunk per LAN -- use Ethernet addresses
 - » Different chunks for geographical addressing, the IPv4 address space,
 - » Perhaps help clean up the routing tables just use one huge chunk per ISP and one huge chunk per customer.

010 Registry Provider Subscriber Sub Net Host

IPv6 Cleanup - Router-friendly

- Recall router architecture:
 - Common case: Switched in silicon ("fast path")
 - Weird cases: Handed to CPU ("slow path", or "process switched")
 - Typical division:
 - Fast path: Almost everything
 - Slow path:

 - Fragmentation
 TTL expiration (traceroute)
 - IP option handling
 - » Slow path is evil in today's environment
 - "Christmas Tree" attack sets weird IP options, bits, and overloads
 - Developers can't (really) use things on the slow path for data flow. • If it became popular, they'd be in the soup
 - Other speed issue: Touching data is expensive. Designers would like to minimize accesses to packet during forwarding.

9

IPv6 Header Cleanup

- No checksum
 - Why checksum just the IP header?
 - Efficiency: If packet corrupted at hop 1, don't waste b/w transmitting on hops 2..N.
 - Useful when corruption frequent, b/w expensive
 - Today: Corruption rare, b/w cheap
- Different options handling
 - » IPv4 options: Variable length header field. 32 different options.

 - No development / many hosts/routers do not support
 - Processed in "slow path".
 - » IPv6 options: "Next header" pointer
 - Combines "protocol" and "options" handling
 - Next header: "TCP", "UDP", etc
 - Extensions header: Chained together
 - Makes it easy to implement host-based options
 - One value "hop-by-hop" examined by intermediate routers
 Things like "source route" implemented only at intermediate hops

IPv6 Fragmentation Cleanup

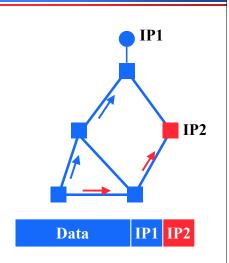
Large Small
MTU Router must fragment

- IPv6
 - » Discard packets, send ICMP "Packet Too Big"
 - Similar to IPv4 "Don't Fragment" bit handling
 - Sender must support Path MTU discovery
 - Receive "Packet too Big" messages and send smaller packets
 - » Increased minimum packet size
 - Link must support 1280 bytes;
 - 1500 bytes if link supports variable sizes
- Reduced packet processing and network complexity.
- Increased MTU a boon to application writers
- Hosts can still fragment using fragmentation header. Routers don't deal with it any more.

11

Migration from IPv4 to IPv6

- Interoperability with IP v4 is necessary for gradual deployment.
- Two complementary mechanisms:
 - » dual stack operation: IP v6 nodes support both address types
 - » tunneling: tunnel IP v6 packets through IP v4 clouds
- Alternative is to create IPv6 islands, e.g. corporate networks, ...
 - » Use of form of NAT to connect to the outside world
 - » NAT must not only translate addresses but also translate between IPv4 and IPv6 protocols


IPv6 Discussion

- IPv4 Infrastructure got better
 - » Address efficiency
 - » Co-opted IPv6 ideas: IPSec, diffserv, autoconfiguration via DHCP, etc.
- Massive challenge
 - » Huge installed base of IPv4-speaking devices
 - » Chicken & Egg problem
 - Who's the first person to go IPv6-only?
- Steady progress in deployment.
 - » Most hosts & big routers support.
 - » Long-term: The little devices will probably force IPv6

13

Tunneling

- Force a packet to go to a specific point in the network.
 - Path taken is different from the regular routing
- Achieved by adding an extra IP header to the packet with a new destination address.
 - » Similar to putting a letter in another envelope
 - » preferable to using IP source routing option
- Used increasingly to deal with special routing requirements or new features.
 - » Mobile IP,..
 - » Multicast, IPv6, research, ..

IP-in-IP Tunneling

- Described in RFC 1993.
- IP source and destination address identify tunnel endpoints.
- Protocol id = 4.
 - » IP
- Several fields are copies of the inner-IP header.
 - » TOS, some flags, ..
- Inner header is not modified, except for decrementing TTL.

V/HL	TOS	Length
ID		Flags/Offset
TTL	4	H. Checksum
Tunnel Entry IP		
Tunnel Exit IP		
V/HL	TOS	Length
ID		Flags/Offset
TTL	Prot.	H. Checksum
Source IP address		
Destination IP address		
Payload		
15		

Tunneling Example tunnel A B C D E F G F H I J K

Tunneling Considerations

- Implementation diversity.
 - » Some diversity in the implementation
 - » Sometimes merged with multicast code (early versions)
- Performance.
 - » Tunneling adds (of course) processing overhead
 - » Tunneling increases the packet length, which may cause fragmentation
 - BIG hit in performance in most systems
 - Tunneling in effect reduces the MTU of the path, but end-points often do not know this
- Security issues.
 - » Should verify both inner and outer header

17

Tunneling Applications

- Virtual private networks.
 - » Connect subnets of a corporation using IP tunnels
 - » Often combined with IP Sec
- Support for new or unusual protocols.
 - » Routers that support the protocols use tunnels to "bypass" routers that do not support it
 - » E.g. multicast
- Force packets to follow non-standard routes.
 - » Routing is based on outer-header
 - » E.g. mobile IP

Overlay Networks

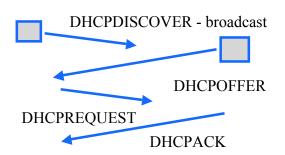
- A network "on top of the network".
 - » E.g., initial Internet deployment
 - Internet routers connected via phone lines
 - An overlay on the phone network
 - » Tunnels between nodes on a current network
- Examples:
 - » The IPv6 "6bone", the multicast "Mbone" ("multicast backbone").
- But not limited to IP-layer protocols...
 - » Can do some pretty cool stuff:

19

Overlay Networks 2

- Application-layer Overlays
 - » Application Layer multicast (last week)
 - Transmit data stream to multiple recipients
 - » Peer-to-Peer networks
 - Route queries (Gnutella search for "briney spars")
 - Route answers (Bittorrent, etc. -- project 2)
 - » Anonymizing overlays
 - Route data through lots of peers to hide source
 - (google for "Tor" "anonymous")
 - » Improved routing (Resilient Overlay Networks)
 - (Shameless plug of my own research)
 - Detect and route around failures faster than the underlying network does.
- Overlays provide a way to build interesting services / ideas without changing the (huge, hard to change) IP infrastructure.

Network Management


- Two sub-issues:
 - » Configuration management
 - How do I deal with all of these hosts?!
 - » Network monitoring
 - What the heck is going on on those links?

21

Autoconfiguration

- IP address, netmask, gateway, hostname, etc., etc.
 - » Typing by hand: Ugh!
- IPv4 option 1: RARP (Reverse ARP)
 - » Data-link protocol
 - » Uses ARP format. New opcodes: "Request reverse", "reply reverse"
 - » Send query: Request-reverse [ether addr], server responds with IP
- IPv4 option 2: DHCP
 - » Dynamic Host Configuration Protocol
 - » ARP is fine for assigning an IP, but is very limited
 - » DHCP can provide the kitchen sink

DHCP

DHCPOFFER

- IP addressing information
- Boot file/server information (for network booting)
- DNS name servers
- Lots of other stuff protocol is extensible; half of the options reserved for local site definition and use.

23

DHCP Features

Lease-based assignment

» Clients can renew. Servers really should preserve this information across client & server reboots.

Provide host configuration information

- » Not just IP address stuff.
- » NTP servers, IP config, link layer config,
- » X window font server (wow)

Use:

- » Generic config for desktops/dialin/etc.
 - Assign IP address/etc., from pool
- » Specific config for particular machines
 - Central configuration management

IPv6 Autoconfiguration

- Serverless ("Stateless"). No manual config at all.
 - » Only configures addressing items, NOT other host things
 - If you want that, use DHCP.
- Link-local address
 - » 1111 1110 10 :: 64 bit interface ID (usually from Ethernet addr)
 - (fe80::/64 prefix)
 - » Uniqueness test ("anyone using this address?")
 - » Router contact (solicit, or wait for announcement)
 - Contains globally unique prefix
 - Usually: Concatenate this prefix with local ID -> globally unique IPv6 ID

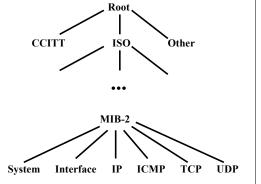
25

Management: Monitoring

- What to do when there is a problem?
 - » Loss of connectivity, complaints of slow throughput, ..
- How do you know how busy your network is?
 - » Where are the bottlenecks, is it time for an upgrade, redirect traffic, ..
- How can you spot unusual activity?
 - » Somebody attacking a subnet, ..
- These are all hard problems that are typically addressed using multiple tools, but the ability to monitor network status is a common requirement.
 - » "Static" information: what is connected to what?
 - » Dynamic information: what is the throughput on that link?

Common Monitoring Tools

- SNMP
 - » Simple Network Management Protocol
 - Device status
 - 5 minute traffic average on outbound links
 - Amount of disk space used on server
 - . Number of users logged in to modem bank
 - Etc.
 - Device alerts
 - Line 5 just went down!
 - » Netflow
 - Detailed traffic monitoring
 - Break down by protocol/source/etc.
 - ("Who's serving 5 terabytes of briney spars photos??")


27

Simple Network Management Protocol (SNMP)

- Protocol that allows clients to read and write management information on network elements.
 - » Routers, switches, ...
 - » Network element is represented by an SNMP agent
- Information is stored in a management information base (MIB).
 - » Have to standardize the naming, format, and interpretation of each item of information
 - » Ongoing activity: MIB entries have to be defined as new technologies are introduced
- Different methods of interaction supported.
 - » Query response interaction: SNMP agent answers questions
 - » traps: agent notifies registered clients of events
- Need security: authentication and encryption.

MIB

- Information is represented in an object tree.
 - » To identify information you specify a path to a leaf
 - » Can extend MIB by adding subtrees
 - » Different standard bodies can expand different subtrees
 - E.g. Ethernet and ATM groups are independent
- Uses ASN.1 standard for data representation.
 - » Existing standard
 - » How is information stored?
 - » How is information encoded on the wire (transfer syntax)

