Lecture 7 Datalink – Ethernet, Home

David Andersen
School of Computer Science
Carnegie Mellon University

15-441 Networking, Spring 2005 http://www.cs.cmu.edu/~srini/15-441/S05

•

Ethernet Physical Refresher

- 10Mhz signal (baseband modulation)
- Nyquist limit says we should be able to get 20 Mbits/s from that.
- Manchester encoding solves runs of 1s and 0s problem
 - » Wastes 1/2 of the possible data rate back to 10Mbps

Ethernet Physical Layer

- 10Base2 standard based on thin coax.
 - » Thick coax no longer used
 - » Nodes are connected using thin coax cables and "T" connectors in a bus topology
- 10-BaseT uses twisted pair and hubs.
 - » Hub acts as a concentrator
- The two designs have the same protocol properties.
 - » Key: electrical connectivity between all nodes
 - » Deployment is different

Datalink Layer Architectures

- 4444
- Packet forwarding.
- Error and flow control.
- Media access control.
- Scalability.

5

Multiple Access Protocols

- Prevent two or more nodes from transmitting at the same time over a broadcast channel.
 - » If they do, we have a collision, and receivers will not be able to interpret the signal
- Several classes of multiple access protocols.
 - » Partitioning the channel, e.g. frequency-division or time division multiplexing
 - With fixed partitioning of bandwidth not flexible
 - » Taking turns, e.g. token-based, reservation-based protocols, polling based
 - » Contention based protocols, e.g. Aloha, Ethernet

Contention-Based Protocol

- Goal: share the communication channel among multiple hosts sharing it.
- Problem: how to arbitrate between the connected hosts.
- Desired properties:
 - » High bandwidth utilization
 - » Avoid starvation, achieve fairness
 - » Simple solution
- Idea: access the channel in a random way when collisions occur, recover.
 - » Collision: two or more nodes transmitting at the same time

7

Aloha

- Node sends the message when it has data to send.
- If it receives an ack, it considers the transmission completed, otherwise it retransmits after a random delay.
- Simple, distributed protocol, but not very efficient
 - » 18% maximum utilization
- Slotted Aloha: more efficient.
 - » Transmit only in specific time slot
 - » Reduces chances of collision
 - » 37% maximum utilization

802.3 Ethernet

Broadcast technology

- Carrier-sense multiple access with collision detection (CSMA/CD).
 - » MA = multiple access
 - » CS = carrier sense
 - » CD = collision detection
- Base Ethernet standard is 10 Mbs.
 - » Original design was ~2 Mbs
 - » Faster versions discussed later

9

CSMA/CD Algorithm

- Sense for carrier.
- If carrier present, wait until carrier ends.
 - » Sending would force a collision and waste time
- Send packet and sense for collision.
- If no collision detected, consider packet delivered.
- Otherwise, abort immediately, perform "exponential back off" and send packet again.
 - » Start to send at a random time picked from an interval
 - » Length of the interval increases with every retransmission

Minimum Packet Size

- Give a host enough time to detect a collision.
- In Ethernet, the minimum packet size is 64 bytes.
 - » 18 bytes of header and 46 data bytes
 - » If the host has less than 46 bytes to send, the adaptor (pads) bytes to increase the length to 46 bytes
- What is the relationship between the minimum packet size and the size of LAN?

LAN = $(\min frame size) * light speed / (2 * bandwidth)$

• How did they pick the minimum packet size?

13

CSMA/CD: Some Details

- Successive frames are separated by an "interframe" gap.
 - » Nodes must switch from "send" to "receive" mode
 - » Set to 9.6 µsec or 96 bit times
- When a sender detects a collision, it sends a "jam signal".
 - » Make sure that all nodes are aware of the collision
 - » Length of the jam signal is 32 bit times
 - » Permits early abort don't waste max transmission time
- Exponential backoff operates in multiples of 512 bit times.
 - » Longer than a roundtrip time
 - » Guarantees that nodes that back off longer will notice the earlier retransmission before starting to send

Ethernet Frame Format

- Preamble marks the beginning of the frame.
 - » Also provides clock synchronization
- Source and destination are 48 bit IEEE MAC addresses.
 - » Flat address space
 - » Hardwired into the network interface
- Type field is a demultiplexing field.
 - » What network layer (layer 3) should receive this packet?
 - » Is actually a length field in the 802.3 standard
- CRC for error checking.

15

Traditional IEEE 802 Networks: MAC in the LAN and MAN

- Ethernet defined as IEEE 802.3.
- The IEEE 802.* set of standards defines a common framing and addressing format for LAN protocols.
 - » Simplifies interoperability
 - » Addresses are 48 bit strings, with no structure
- 802.3 (Ethernet)
- 802.4 (Token bus)
- 802.5 (Token ring)
- 802.6 (Distributed queue dual bus)
- 802.11 (Wireless LAN)
- 802.14 (Cable Modem)
- 802.15 (Wireless Personal Area networks based on bluetooth)
- 802.16 (Broadband wireless access "WiMAX")

LAN Properties

- Exploit physical proximity.
 - » Often a limitation on the physical distance
 - » E.g. to detect collisions in a contention based network
 - » E.g. to limit the overhead introduced by token passing
- Relies on single administrative control and some level of trust.
 - » Broadcasting packets to everybody and hoping everybody (other than the receiver) will ignore the packet
 - » Token-based protocols: everybody plays by the rules
- Broadcast: nodes can send messages that can be heard by all nodes on the network.
 - » Almost essential for network administration
 - » Can also be used for applications, e.g. video conferencing
- But broadcast fundamentally does not scale.

17

How Do We Go Faster?

- How about FDDI?
 - » Too complex
- How about switching, e.g. ATM?
 - » Too expensive and complicated
- How about a faster Ethernet?

Or How about switching Ethernet?

- » It is simple
- » It inter-operates with a large installed base
- » It is Ethernet
- » Fast Ethernet and Gigabit Ethernet

Why Ethernet?

- Easy to manage.
 - » You plug in the host and it basically works
 - » No configuration at the datalink layer
- Broadcast-based.
 - » In part explains the easy management
 - » Some of the LAN protocols (e.g. ARP) rely on broadcast
 - Networking would be harder without ARP
 - Address Resolution Protocol ("who-has 18.31.0.114?" -> MAC address).
 - » Not having natural broadcast capabilities adds a lot of complexity to a LAN
 - Example: ATM
- Drawbacks.
 - » Broadcast-based: limits bandwidth since each packets consumes the bandwidth of the entire network
 - » Distance (if shared)

19

802.3u Fast Ethernet

- Apply original CSMA/CD medium access protocol at 100Mbps
- Must change either minimum frame or maximum diameter: change diameter
- Requires
 - » 2 UTP5 pairs (4B5B) or
 - » 4 UTP3 pairs (8B6T) or
 - » 1 fiber pair
- No more "shared wire" connectivity.
 - » Hubs and switches only

802.3z Gigabit Ethernet

- Same frame format and size as Ethernet.
 - » This is what makes it Ethernet
- Full duplex point-to-point links in the backbone are likely the most common use.
 - » Added flow control to deal with congestion
- Alternative is half-duplex shared-medium access.
 - » Cannot cut the diameter any more (set to 200m)
 - » Raise the min frame time (256 bytes), but not frame size
- Choice of a range of fiber and copper transmission media.
- Defining "jumbo frames" for higher efficiency.

21

Building Larger LANs: Bridges

- Bridges connect multiple IEEE 802 LANs at layer 2.
 - » Only forward packets to the right port
 - » Reduce collision domain compared with single LAN
- In contrast, hubs rebroadcast packets.

Transparent Bridges

- Design goals:
 - » "Plug and play" capability
 - » Self-configuring without hardware or software changes
 - » Bridge do not impact the operation of the individual
- Three parts to making bridges transparent:
 - **□**Forwarding of frames
 - Learning of addresses
 - √Spanning tree algorithm

23

Frame Forwarding

Each switch maintains a forwarding database:

```
<MAC address, port, age>
   MAC address: host or group address
   Port: port number on the bridge
   Age: age of the entry
```

- Meaning: A machine with <u>MAC address</u> lies in the direction of number <u>port</u> of the bridge
- For every packet, the bridge "looks up" the entry for the packets destination MAC address and forwards the packet on that port.
 - » Other packets are broadcasted why?

Spanning Tree Bridges

- More complex topologies can provide redundancy.
 - » But can also create loops.
- What is the problem with loops?

27

Spanning Tree Protocol Overview

Embed a tree that provides a single unique path to each destination:

- Elect a single bridge as a root bridge
- Each bridge calculates the distance of the shortest path to the root bridge
- Each LAN identifies a designated bridge, the bridge closest to the root. It will forward packets to the root.
- ✓ Each bridge determines a root port, which will be used to send packets to the root
- **№** Identify the ports that form the spanning tree

Spanning Tree Algorithm Steps

- Root of the spanning tree is the bridge with the lowest identifier.
 - » All ports are part of tree
- Each bridge finds shortest path to the root.
 - » Remembers port that is on the shortest path
 - » Used to forward packets
- Select for each LAN the designated bridge that has the shortest path to the root.
 - » Identifier as tie-breaker
 - » Responsible for that LAN

Spanning Tree Algorithm

- Each node sends configuration message to all neighbors.
 - » Identifier of the sender
 - » Id of the presumed root
 - » Distance to the presumed root
 - » E.g. B5 sends (B5, B5, 0)
- When B receive a message, it decide whether the solution is better than their local solution.
 - » A root with a lower identifier?
 - » Same root but lower distance?
 - » Same root, distance but sender has lower identifier?
- After convergence, each bridge knows the root, distance to root, root port, and designated bridge for each LAN.

Spanning Tree Algorithm (part 2)

- Each bridge B can now select which of its ports make up the spanning tree:
 - » B's root port
 - » All ports for which B is the designated bridge on the LAN
- Bridges can not configure their ports.
 - » Forwarding state or blocked state, depending on whether the port is part of the spanning tree
- Root periodically sends configuration messages and bridges forward them over LANs they are responsible for.

Spanning Tree Algorithm Example

- Node B2:
 - » Sends (B2, B2, 0)
 - » Receives (B1, B1, 0) from B1
 - » Sends (B2, B1, 1) "up"
 - » Continues the forwarding forever
- Node B1:
 - » Will send notifications forever
- Node B7:
 - » Sends (B7, B7, 0)
 - » Receives (B1, B1, 0) from B1
 - » Sends (B7, B1, 1) "up" and "right"
 - » Receives (B5, B5, 0) ignored
 - » Receives (B5, B1, 1) better
 - » Continues forwarding the B1 messages forever to the "right"

Ethernet Switches

- Bridges make it possible to increase LAN capacity.
 - » Packets are no longer broadcasted they are only forwarded on selected links
 - » Adds a switching flavor to the broadcast LAN
 - » Some packets still sent to entire tree (e.g., ARP)
- Ethernet switch is a special case of a bridge: each bridge port is connected to a single host.
 - » Can make the link full duplex (really simple protocol!)
 - » Simplifies the protocol and hardware used (only two stations on the link) – no longer full CSMA/CD
 - » Can have different port speeds on the same switch
 - Unlike in a hub, packets can be stored
 - An alternative is to use cut through switching

33

Virtual LANs

- Single physical LAN infrastructure that carries multiple "virtual" LANs simultaneously.
- Each virtual LAN has a LAN identifier in the packet.
 - » Switch keeps track of what nodes are on each segment and what their virtual LAN id is
- Can bridge and route appropriately.
- Broadcast packets stay within the virtual LAN.
 - » Limits the collision domain for the packet

Example LAN Configuration

- 10 or 100 Mbit/second connectivity to the desk top using switch or hubs in wiring closets.
- 100 or 1000 Mbit/second switch fabric between wiring closets or floors.
- Management simplified by having wiring based on star topology with wiring closet in the center.
- Network manager can manage capacity in two ways:
 - » speed of individual links
 - » hub/bridge/switch tradeoff

