## Lecture 5 Transmission

David Andersen

Department of Computer Science

Carnegie Mellon University

15-441 Networking, Spring 2005 http://www.cs.cmu.edu/~srini/15-441/S05

## Physical and Datalink Layers: 3 Lectures

- Physical layer.
- Datalink layer introduction, framing, error coding, switched networks.
- Broadcast-networks, home networking.

**Application** 

**Presentation** 

**Session** 

**Transport** 

**Network** 

**Datalink** 

**Physical** 

#### From Signals to Packets



#### Today's Lecture

- Modulation.
- Bandwidth limitations.
- Frequency spectrum and its use.
- Multiplexing.
- Media: Copper, Fiber, Optical, Wireless.
- Coding.
- Framing.

#### **Modulation**

- Sender changes the nature of the signal in a way that the receiver can recognize.
  - » Similar to radio: AM or FM
- Digital transmission: encodes the values 0 or 1 in the signal.
  - » It is also possible to encode multi-valued symbols
- Amplitude modulation: change the strength of the signal, typically between on and off.
  - » Sender and receiver agree on a "rate"
  - » On means 1, Off means 0
- Similar: frequency or phase modulation.
- Can also combine method modulation types.

#### Amplitude and Frequency Modulation





#### The Frequency Domain

- A (periodic) signal can be viewed as a sum of sine waves of different strengths.
  - » Corresponds to energy at a certain frequency
- Every signal has an equivalent representation in the frequency domain.
  - » What frequencies are present and what is their strength (energy)
- Again: Similar to radio and TV signals.





#### Signal = Sum of Waves



#### Why Do We Care?

- How much bandwidth can I get out of a specific wire (transmission medium)?
- What limits the physical size of the network?
- How can multiple hosts communicate over the same wire at the same time?
- How can I manage bandwidth on a transmission medium?
- How do the properties of copper, fiber, and wireless compare?

#### **Transmission Channel Considerations**

- Every medium supports transmission in a certain frequency range.
  - » Outside this range, effects such as attenuation, .. degrade the signal too much
- Transmission and receive hardware will try to maximize the useful bandwidth in this frequency band.
  - » Tradeoffs between cost. distance, bit rate
- As technology improves, these parameters change, even for the same wire.
  - » Thanks to our EE friends



#### The Nyquist Limit

- A noiseless channel of width H can at most transmit a binary signal at a rate 2 x H.
  - » E.g. a 3000 Hz channel can transmit data at a rate of at most 6000 bits/second
  - » Assumes binary amplitude encoding



#### Past the Nyquist Limit

- More aggressive encoding can increase the channel bandwidth.
  - » Example: modems
    - Same frequency number of symbols per second
    - Symbols have more possible values



- Every transmission medium supports transmission in a certain frequency range.
  - The channel bandwidth is determined by the transmission medium and the quality of the transmitter and receivers
  - » Channel capacity increases over time

#### Capacity of a Noisy Channel

- Can't add infinite symbols you have to be able to tell them apart. This is where noise comes in.
- Shannon's theorem:
  - $\rightarrow$  C = B x log(1 + S/N)
  - » C: maximum capacity (bps)
  - » B: channel bandwidth (Hz)
  - » S/N: signal to noise ratio of the channel
    - Often expressed in decibels (db). 10 log(S/N).
- Example:
  - » Local loop bandwidth: 3200 Hz
  - » Typical S/N: 1000 (30db)
  - » What is the upper limit on capacity?
    - Modems: Teleco internally converts to 56kbit/s digital signal, which sets a limit on B and the S/N.

### **Example: Modem Rates**



#### Limits to Speed and Distance

- Noise: "random" energy is added to the signal.
- Attenuation: some of the energy in the signal leaks away.
- Dispersion: attenuation and propagation speed are frequency dependent.
  - » Changes the shape of the signal



- Effects limit the data rate that a channel can sustain.
  - » But affects different technologies in different ways
- Effects become worse with distance.
  - » Tradeoff between data rate and distance

#### Supporting Multiple Channels

- Multiple channels can coexist if they transmit at a different frequency, or at a different time, or in a different part of the space.
  - » Three dimensional space: frequency, space, time
- Space can be limited using wires or using transmit power of wireless transmitters.
- Frequency multiplexing means that different users use a different part of the spectrum.
  - » Again, similar to radio: 95.5 versus 102.5 station
- Controlling time is a datalink protocol issue.
  - » Media Access Control (MAC): who gets to send when?

#### Time Division Multiplexing

- Different users use the wire at different points in time.
- Aggregate bandwidth also requires more spectrum.





## Baseband versus Carrier Modulation

- Baseband modulation: send the "bare" signal.
- Carrier modulation: use the signal to modulate a higher frequency signal (carrier).
  - » Can be viewed as the product of the two signals
  - » Corresponds to a shift in the frequency domain
- Same idea applies to frequency and phase modulation.
  - » E.g. change frequency of the carrier instead of its amplitude

#### **Amplitude Carrier Modulation**



### Frequency Division Multiplexing: Multiple Channels



# Frequency versus Time-division Multiplexing

- With frequency-division multiplexing different users use different parts of the frequency spectrum.
  - » I.e. each user can send all the time at reduced rate
  - » Example: roommates
- With time-division multiplexing different users send at different times.
  - » I.e. each user can sent at full speed some of the time
  - » Example: a time-share condo
- The two solutions can be combined.





#### **Copper Wire**

#### Unshielded twisted pair

- » Two copper wires twisted avoid antenna effect
- » Grouped into cables: multiple pairs with common sheath
- » Category 3 (voice grade) versus category 5
- » 100 Mbit/s up to 100 m, 1 Mbit/s up to a few km
- » Cost: ~ 10cents/foot

#### Coax cables.

- » One connector is placed inside the other connector
- » Holds the signal in place and keeps out noise
- » Gigabit up to a km
- Signaling processing research pushes the capabilities of a specific technology.
  - » E.g. modems, use of cat 5

#### Light Transmission in Fiber



## Ray Propagation



(note: minimum bend radius of a few cm)

#### Fiber Types

#### Multimode fiber.

- » 62.5 or 50 micron core carries multiple "modes"
- » used at 1.3 microns, usually LED source
- » subject to mode dispersion: different propagation modes travel at different speeds
- » typical limit: 1 Gbps at 100m

#### Single mode

- » 8 micron core carries a single mode
- » used at 1.3 or 1.55 microns, usually laser diode source
- » typical limit: 1 Gbps at 10 km or more
- » still subject to chromatic dispersion

## Gigabit Ethernet: Physical Layer Comparison

| Medium         | Transmit/receive | Distance     | Comment                                        |
|----------------|------------------|--------------|------------------------------------------------|
| Copper         | 1000BASE-CX      | 25 m         | machine room use                               |
| Twisted pair   | 1000BASE-T       | 100 m        | not yet defined; cost?<br>Goal:4 pairs of UTP5 |
| MM fiber 62 μm | 1000BASE-SX      | 260 m        | •                                              |
|                | 1000BASE-LX      | <b>500 m</b> |                                                |
| MM fiber 50 μm | 1000BASE-SX      | 525 m        |                                                |
|                | 1000BASE-LX      | 550 m        |                                                |
| SM fiber       | 1000BASE-LX      | 5000 m       |                                                |
| Twisted pair   | 100BASE-T        | 100 m        | 2p of UTP5/2-4p of UTP3                        |
| MM fiber       | 100BASE-SX       | 2000m        |                                                |

#### Regeneration and Amplification

- At end of span, either regenerate electronically or amplify.
- Electronic repeaters are potentially slow, but can eliminate noise.
- Amplification over long distances made practical by erbium doped fiber amplifiers offering up to 40 dB gain, linear response over a broad spectrum. Ex: 10 Gbps at 500 km.



# Wavelength Division Multiplexing

- Send multiple wavelengths through the same fiber.
  - » Multiplex and demultiplex the optical signal on the fiber
- Each wavelength represents an optical carrier that can carry a separate signal.
  - » E.g., 16 colors of 2.4 Gbit/second
- Like radio, but optical and much faster



#### Wireless Technologies

- Great technology: no wires to install, convenient mobility, ..
- High attenuation limits distances.
  - » Wave propagates out as a sphere
  - » Signal strength reduces quickly (1/distance)<sup>3</sup>
- High noise due to interference from other transmitters.
  - » Use MAC and other rules to limit interference
  - » Aggressive encoding techniques to make signal less sensitive to noise
- Other effects: multipath fading, security, ...
- Ether has limited bandwidth.
  - » Try to maximize its use
  - » Government oversight to control use

#### Things to Remember

- Bandwidth and distance of networks is limited by physical properties of media.
  - » Attenuation, noise, ...
- Network properties are determined by transmission medium and transmit/receive hardware.
  - » Nyquist gives a rough idea of idealized throughput
  - » Can do much better with better encoding
    - Low b/w channels: Sophisticated encoding, multiple bits per wavelength.
    - High b/w channels: Simpler encoding (FM, PCM, etc.), many wavelengths per bit.
- Multiple users can be supported using space, time, or frequency division multiplexing.
- Properties of different transmission media.

#### From Signals to Packets



### **Analog versus Digital Encoding**

- Digital transmissions.
  - » Interpret the signal as a series of 1's and 0's
  - » E.g. data transmission over the Internet
- Analog transmission
  - » Do not interpret the contents
  - » E.g broadcast radio
- Why digital transmission?

#### Why Do We Need Encoding?

- Meet certain electrical constraints.
  - » Receiver needs enough "transitions" to keep track of the transmit clock
  - » Avoid receiver saturation
- Create control symbols, besides regular data symbols.
  - » E.g. start or end of frame, escape, ...
- Error detection or error corrections.
  - » Some codes are illegal so receiver can detect certain classes of errors
  - » Minor errors can be corrected by having multiple adjacent signals mapped to the same data symbol
- Encoding can be very complex, e.g. wireless.

### **Encoding**

- Use two discrete signals, high and low, to encode 0 and 1.
- Transmission is synchronous, i.e., a clock is used to sample the signal.
  - » In general, the duration of one bit is equal to one or two clock ticks
  - » Receiver's clock must be synchronized with the sender's clock
- Encoding can be done one bit at a time or in blocks of, e.g., 4 or 8 bits.

#### Non-Return to Zero (NRZ)



- 1 -> high signal; 0 -> low signal
- Long sequences of 1's or 0's can cause problems:
  - » Sensitive to clock skew, i.e. hard to recover clock
  - » Difficult to interpret 0's and 1's

# Non-Return to Zero Inverted (NRZI)



- 1 -> make transition; 0 -> signal stays the same
- Solves the problem for long sequences of 1's, but not for 0's.

#### **Ethernet Manchester Encoding**



- Positive transition for 0, negative for 1
- Transition every cycle communicates clock (but need 2 transition times per bit)
- DC balance has good electrical properties

#### 4B/5B Encoding

- Data coded as symbols of 5 line bits => 4 data bits, so 100 Mbps uses 125 MHz.
  - » Uses less frequency space than Manchester encoding
- Uses NRI to encode the 5 code bits
- Each valid symbol has at least two 1s: get dense transitions.
- 16 data symbols, 8 control symbols
  - » Data symbols: 4 data bits
  - » Control symbols: idle, begin frame, etc.
- Example: FDDI.

## 4B/5B Encoding

| Data | Code  | Data | Code  |
|------|-------|------|-------|
| 0000 | 11110 | 1000 | 10010 |
| 0001 | 01001 | 1001 | 10011 |
| 0010 | 10100 | 1010 | 10110 |
| 0011 | 10101 | 1011 | 10111 |
| 0100 | 01010 | 1100 | 11010 |
| 0101 | 01011 | 1101 | 11011 |
| 0110 | 01110 | 1110 | 11100 |
| 0111 | 01111 | 1111 | 11101 |
|      |       |      |       |

#### Other Encodings

- 8B/10B: Fiber Channel and Gigabit Ethernet
  - » DC balance
- 64B/66B: 10 Gbit Ethernet
- B8ZS: T1 signaling (bit stuffing)