15-441 Computer Networking

15 - Switching, Tunnels, VPN

Based on slides from Peter Steenkiste and David Anderson

Overview

- · Circuit switching refresher
- Virtual Circuits general
 - · Why virtual circuits?
 - · How virtual circuits? -- tag switching!
- · Two modern implementations
 - ATM telco-style virtual circuits
 - MPLS IP-style virtual circuits
- Tunneling
- VPN

2 2

Packet Switching

- Source sends information as self-contained packets that have an address.
 - · Source may have to break up single message in multiple
- · Each packet travels independently to the destination host.
 - Routers and switches use the address in the packet to determine how to forward the packets
- Destination recreates the message.
- Analogy: a letter in surface mail.

Circuit Switching

- Source first establishes a connection (circuit) to the destination.
 - Each router or switch along the way may reserve some bandwidth for the data flow
- Source sends the data over the circuit.
 - No need to include the destination address with the data since the routers know the path
- · The connection is torn down.
- · Example: telephone network.

Circuit Switching Discussion

- · Consider traditional circuits: on each hop, the circuit has a dedicated wire or slice of bandwidth.
 - · Physical connection clearly no need to include addresses with the
- Advantages, relative to packet switching:
 - · Implies guaranteed bandwidth, predictable performance
 - · Simple switch design: only remembers connection information, no longest-prefix destination address look up
- Disadvantages:
 - Inefficient for bursty traffic (wastes bandwidth)
 - Delay associated with establishing a circuit
- Can we get the advantages without (all) the disadvantages?

Virtual Circuits

- Each wire carries many "virtual" circuits.
- Forwarding based on virtual circuit (VC) identifier
 - · IP header: src, dst, etc.
 - · Virtual circuit header: just a small index number
 - A path through the network is determined for each VC when the VC is established
 - · Use statistical multiplexing for efficiency
- Can support wide range of quality of service.
 - · No quarantees: best effort service
 - Weak guarantees: delay < 300 msec, ...
 - · Strong guarantees: e.g. equivalent of physical circuit

Packet Switching and Virtual Circuits: Šimilarities

- · "Store and forward" communication based on an address.
 - Address is either the destination address or a VC identifier
- Must have buffer space to temporarily store packets.
 - E.g. multiple packets for some destination arrive simultaneously
- Multiplexing on a link is similar to time sharing.
 - No reservations: multiplexing is statistical, i.e. packets are interleaved without a fixed pattern
 - · Reservations: some flows are guaranteed to get a certain number of "slots"

Virtual Circuits Versus **Packet Switching**

- Circuit switching:
 - · Uses short connection identifiers to forward packets
 - Switches know about the connections so they can more easily implement features such as quality of service
 - · Virtual circuits form basis for traffic engineering: VC identifies longlived stream of data that can be scheduled
- Packet switching:
 - Use full destination addresses for forwarding packets
 - Can send data right away: no need to establish a connection first
 - · Switches are stateless: easier to recover from failures
 - Adding QoS is hard
 - · Traffic engineering is hard: too many packets!

Label ("tag") Swapping

- Result: Signalling protocol must only find per-link unused VCIs.
 - "Link-local scope"
 - · Connection setup can proceed hop-by-hop.
 - · Good news for our setup protocols!

13

SVC Connection Setup calling network called party SETUP CONNECT CONNECT ACK CONNECT ACK 15

PVC connection setup

- Manual?
 - · Configure each switch by hand. Ugh.
- Dedicated signaling protocol
 - . E.g., what ATM uses
- · Piggyback on routing protocols
 - · Used in MPLS. E.g., use BGP to set up

14

Virtual Circuits In Practice

- ATM: Telco approach
 - Kitchen sink. Based on voice, support file transfer, video, etc., etc.
 - Intended as IP replacement. That didn't happen. :)
 - Today: Underlying network protocol in many telco networks. E.g., DSL speaks ATM. IP over ATM in some cases.
- MPLS: The "IP Heads" answer to ATM
 - · Stole good ideas from ATM
 - · Integrates well with IP
 - Today: Used inside some networks to provide VPN support, traffic engineering, simplify core.
- · Other nets just run IP.
- Older tech: Frame Relay
 - Only provided PVCs. Used for quasi-dedicated 56k/T1 links between offices, etc. Slower, less flexible than ATM.

Asynchronous Transfer Mode: ATM

- · Connection-oriented, packet-switched
 - (e.g., virtual circuits).
- · Telco-driven. Goals:
 - · Handle voice, data, multimedia
 - Support both PVCs and SVCs
 - Replace IP. (didn't happen...)
- · Important feature: Cell switching

17

Cell Switching

- Small, fixed-size cells
 - [Fixed-length data][header]
- Why?
 - · Efficiency: All packets the same
 - · Easier hardware parallelism, implementation
 - · Switching efficiency:
 - · Lookups are easy -- table index.
 - · Result: Very high cell switching rates.
 - Initial ATM was 155Mbit/s. Ethernet was 10Mbit/s at the same time. (!)
- How do you pick the cell size?

18

ATM Features

- Fixed size cells (53 bytes).
 - Why 53?
- · Virtual circuit technology using hierarchical virtual circuits.
- · Support for multiple traffic classes by adaptation layer.
 - · E.g. voice channels, data traffic
- Elaborate signaling stack.
 - · Backwards compatible with respect to the telephone standards
- Standards defined by ATM Forum.
 - · Organization of manufacturers, providers, users

ATM Discussion

- · At one point, ATM was viewed as a replacement for IP.
 - Could carry both traditional telephone traffic (CBR circuits) and other traffic (data, VBR)
 - Better than IP, since it supports QoS
- Complex technology.
 - · Switching core is fairly simple, but
 - · Support for different traffic classes
 - · Signaling software is very complex
 - · Technology did not match people's experience with IP
 - · deploying ATM in LAN is complex (e.g. broadcast)
 - · supporting connection-less service model on connection-based technology
 - · With IP over ATM, a lot of functionality is replicated
- · Currently used as a datalink layer supporting IP.

20

IP Switching

- How to use ATM hardware without the software.
 - · ATM switches are very fast data switches
 - · software adds overhead, cost
- The idea is to identify flows at the IP level and to create specific VCs to support these flows.
 - · flows are identified on the fly by monitoring traffic
 - flow classification can use addresses, protocol types, ...
 - · can distinguish based on destination, protocol, QoS
- Once established, data belonging to the flow bypasses level 3 routing.
 - · never leaves the ATM switch
- · Interoperates fine with "regular" IP routers.
 - · detects and collaborates with neighboring IP switches

IP Switching Discussion

- IP switching selectively optimizes the forwarding of specific flows.
 - Offloads work from the IP router, so for a given size router, a less powerful forwarding engine can be used
 - · Can fall back on traditional IP forwarding if there are failures
- IP switching couples a router with an ATM switching using the GSMP protocol.
 - · General Switch Management Protocol
- IP switching can be used for flows with different granularity.
 - · Flows belonging to an application .. Organization
 - · Controlled by the classifier
- IP switching can be set up quickly, e.g. before a TCP connection starts sending data!

Tunneling Considerations

- · Performance.
 - · Tunneling adds (of course) processing overhead
 - Tunneling increases the packet length, which may cause fragmentation
 - · BIG hit in performance in most systems
 - Tunneling in effect reduces the MTU of the path, but end-points often do not know this
- Security issues.
 - · Should verify both inner and outer header
 - E.g., one-time flaw: send an ip-in-ip packet to a host. Inner packet claimed to come from "trusted" host. Bypass firewalls.

30

Tunneling Applications

- Virtual private networks.
 - · Connect subnets of a corporation using IP tunnels
 - · Often combined with IP Sec
 - (Amusing note: IPSec itself an IPv6 spinoff that was backported into IPv4)
- Support for new or unusual protocols.
 - Routers that support the protocols use tunnels to "bypass" routers that do not support it
 - · E.g. multicast
- Force packets to follow non-standard routes.
 - · Routing is based on outer-header
 - · E.g. mobile IP

Supporting VPN by Tunneling

- Concept
 - · Appears as if two hosts connected directly
- Usage in VPN
 - · Create tunnel between road warrior & firewall
 - Remote host appears to have direct connection to internal network

32

- Today: MPLS useful for traffic engineering, reducing core complexity, and VPNs
- Core idea: Layer 2 carries VC label
 - Could be ATM (which has its own tag)
 - · Could be a "shim" on top of Ethernet/etc.:
 - Existing routers could act as MPLS switches just by examining that shim -- no radical re-design. Gets flexibility benefits, though not cell switching advantages

Layer 3 (IP) header

Layer 2 header

Layer 3 (IP) header

MPLS label

Layer 2 header

MPLS + IP

37

- Map packet onto Forward Equivalence Class (FEC)
 - Simple case: longest prefix match of destination address
 - · More complex if QoS of policy routing is used
- In MPLS, a label is associated with the packet when it enters the network and forwarding is based on the label in the network core.
 - Label is swapped (as ATM VCIs)
- · Potential advantages.
 - · Packet forwarding can be faster
 - · Routing can be based on ingress router and port
 - · Can use more complex routing decisions
 - · Can force packets to followed a pinned route

MPLS tag assigned MPLS tag stripped

MPLS tag assigned stripped

MPLS tag assigned stripped

MPLS tag stripped

MPLS tag stripped

MPLS tag stripped

MPLS forwarding in core

MPLS use case #3: Traffic Engineering

- As discussed earlier -- can pick routes based upon more than just destination
- Used in practice by many ISPs, though certainly not all.

41

MPLS Mechanisms

- MPLS packet forwarding: implementation of the label is technology specific.
 - · Could be ATM VCI or a short extra "MPLS" header
- Supports stacked labels.
 - Operations can be "swap" (normal label swapping), "push" and "pop" labels.
 - VERY flexible! Like creating tunnels, but much simpler -- only adds a small label.

Label	CoS	S	TTL
20	3	1	8

42

MPLS Discussion

- · Original motivation.
- Fast packet forwarding:
 - · Use of ATM hardware
 - · Avoid complex "longest prefix" route lookup
 - · Limitations of routing table sizes
 - · Quality of service
- Currently mostly used for traffic engineering and network management.
 - LSPs can be thought of as "programmable links" that can be set up under software control
 - on top of a simple, static hardware infrastructure

Important Concepts

- Ideas in the Internet
 - Base-level protocol (IP) provides minimal service level
 - Allows highly decentralized implementation
 - · Each step involves determining next hop
 - · Most of the work at the endpoints
 - · Use ICMP for low-level control functions
- · Changes to Addressing Model
 - Have moved away from "everyone knows everybody" model of original Internet
 - · Firewalls + NAT hide internal networks
 - VPN / tunneling build private networks on top of commodity network

44

Take Home Points

- · Costs/benefits/goals of virtual circuits
- Cell switching (ATM)
 - · Early high-speed, general-purpose networking
 - · Fixed-size small pkts and virtual circuits: Fast hardware
 - · Packet size picked for low voice latency and jitter.
- Tag/label swapping
 - · Basis for most VCs.
 - · Makes label assignment link-local. Understand mechanism.
- MPLS IP meets virtual circuits; MPLS tunnels used for
 - VPNs,
 - · traffic engineering,
 - · reduced core routing table sizes

45

--- Extra Slides ---

Extra information if you're curious.

16

LAN Emulation

- Motivation: making a non-broadcast technology work as a LAN.
 - · Focus on 802.x environments
- Approach: reuse the existing interfaces, but adapt implementation to ATM.
 - · MAC ATM mapping
 - · multicast and broadcast
 - bridging
 - ARE
- Example: Address Resolution "Protocol" uses an ARP server instead of relying on broadcast.

Further reading - MPLS

- Juniper has a few good presentations at NANOG (the North American Network Operators Group; a big collection of ISPs):
 - http://www.nanog.org/mtg-0310/minei.html
 - http://www.nanog.org/mtg-0402/minei.html
 - Practical and realistic view of what people are doing _today_ with MPLS.

48

An Alternative Tag Switching

- Instead of monitoring traffic to identify flows to optimize, use routing information to guide the creation of "switched" paths.
 - Switched paths are set up as a side effect of filling in forwarding tables
- Generalize to other types of hardware.
- Also introduced stackable tags.
 - Made it possible to temporarily merge flows and to demultiplex them without doing an IP route lookup
 - · Requires variable size field for tag

49

IP Switching versus Tag Switching

- · Flows versus routes.
 - · tags explicitly cover groups of routes
 - · tag bindings set up as part of route establishment
 - · flows in IP switching are driven by traffic and detected by "filters"
 - Supports both fine grain application flows and coarser grain flow groups
- Stackable tags.
 - · provides more flexibility
- Generality
 - · IP switching focuses on ATM
 - · not clear that this is a fundamental difference

50

Packets over SONET

Properties.

- Bandwidth
 management is
 much less flexible
- + Much lower transmission overhead (no ATM headers)

Why 53 Bytes?

- Small cells favored by voice applications
 - delays of more than about 10 ms require echo cancellation
 - each payload byte consumes 125 ms (8000 samples/sec)
- Large cells favored by data applications
 - · Five bytes of each cell are overhead
- France favored 32 bytes
 - 32 bytes = 4 ms packetization delay.
 - · France is 3 ms wide.
 - · Wouldn't need echo cancellers!
- USA, Australia favored 64 bytes
 - 64 bytes = 8 ms
 - · USA is 16 ms wide
 - · Needed echo cancellers anyway, wanted less overhead
- Compromise

ATM Packet Shredder Effect

- · Cell loss results in packet loss.
 - Cell from middle of packet: lost packet
 - · EOF cell: lost two packets
 - Just like consequence of IP fragmentation, but VERY small fragments!
- Even low cell loss rate can result in high packet loss rate.
 - E.g. 0.2% cell loss -> 2 % packet loss
 - · Disaster for TCP
- Solution: drop remainder of the packet, i.e. until EOF cell.
 - Helps a lot: dropping useless cells reduces bandwidth and lowers the chance of later cell drops
 - · Slight violation of layers
 - Discovered after early deployment experience with IP over ATM.

ATM Traffic Classes

- · Constant Bit Rate (CBR) and Variable Bit Rate (VBR).
 - · Guaranteed traffic classes for different traffic types.
- Unspecified Bit Rate (UBR).
 - · Pure best effort with no help from the network
- Available Bit Rate (ABR).
 - Best effort, but network provides support for congestion control and fairness
 - · Congestion control is based on explicit congestion notification
 - · Binary or multi-valued feedback
 - · Fairness is based on Max-Min Fair Sharing.
 - (small demands are satisfied, unsatisfied demands share equally)

56

IP over ATM

57

- When sending IP packets over an ATM network, set up a VC to destination.
 - ATM network can be end to end, or just a partial path
 - ATM is just another link layer
- Virtual connections can be cached.
 - After a packet has been sent, the VC is maintained so that later packets can be forwarded immediately
 - VCs eventually time out
- Properties.
 - Overhead of setting up VCs (delay for first packet)
 - · Complexity of managing a pool of VCs
 - Flexible bandwidth management
 - Can use ATM QoS support for individual connections (with appropriate signaling support)

IP over ATM Permanent VCs

- Establish a set of "ATM pipes" that defines connectivity between routers.
- Routers simply forward packets through the pipes.
 - Each statically configured VC looks like a link
- · Properties.
 - Some ATM benefits are lost (per flow QoS)
 - + Flexible but static bandwidth management
 - + No set up overheads

