
15-441: Computer Networks

Project 3: Congestion Control

Lead TA: Albert Sheu <albert@cmu.edu>

Assigned: October 25, 2007
Checkpoint 1 due: November 1, 2007
Checkpoint 2 due: November 9, 2007
Checkpoint 3 due: November 15, 2007
Checkpoint 4 due: November 29, 2007
Early bird deadline: November 29, 2007
Final version/contest: December 4, 2007

1 Overview

In this assignment, you will implement a BitTorrent-like file transfer application called Bit-
Flood. The application will run on top of UDP, and you will need to implement a reliable
congestion control protocol similar to TCP for the application. The application will be
able to simultaneously download different parts of the file, called ”chunks”, from different
peers. Please remember to read the complete assignment handout more than once so that
you know exactly what is being provided and what functionality you are expected to add.
Project documents, FAQ, and starter files can be found at:

http://www.cs.cmu.edu/~srini/15-441/F07/assignments.html

This project will be graded on two different criteria. Firstly, the mandatory component
of the project is the correctness criteria used for grading: this includes correct file transfer
and TCP-like congestion control. Secondly, there is an optimization component. The groups
whose application perform the fastest peer-to-peer file transfers, while maintaining proper
congestion control will receive both glowing praise from the course staff, and the awe and
envy of your peers. On the outside change that this is not enough motivation, we will also
provide gift certificates to the top two teams, as well as a ”secret prize” for the best code
design.

1



1.1 Checkpoints and Deadlines

The timeline for the project is below, including several 5 point checkpoints. To help you
pace your work, remember that checkpoints represent a date by which you should easily have
completed the required functionality. Given the timeline, you can see that this means you
should get started now! The late policy is explained on the course website. There are four
mandatory checkpoints worth 5 points each.

Date Milestone
October 25 Project assigned. Start early!
October 27 Project handout read and understood.
October 29 Deadline for project partner registration.
November 1 Checkpoint 1: WHOHAS flooding and IHAVE responses.
November 7 Recitation: Project Design, Overview, and Q&A.
November 8 Checkpoint 2: Simple chunk download (stop-and-wait).
November 14 Recitation: Congestion Control and Project 3.
November 15 Checkpoint 3: Sliding window flow-control.
November 29 Checkpoint 4: Simple congestion avoidance.
November 29 Early Bird Deadline for mandatory component (10 bonus points).
December 4 Normal Deadline and extra credit / competition deadline.

2 Where to get help

A big part of being a good programmer is learning how to be resourceful during the devel-
opment process. It is easy to get lost during this project! Don’t be afraid to ask for help,
but before you do so, the first places to look for help are:

1. Carefully re-reading the assignment.

2. Looking at the Project 3 Website for updates and the FAQ.

3. Scanning the bulletin board for previous posts.

4. Googling compiler or script errors.

Only AFTER you have exhausted these options, general questions should be posted to
the class bulletin board, academic.cs.15-441, we will be happy to help. If you have more
specific questions (especially ones involving your code), please drop by office hours.

3 Background

This project is loosely based on the BitTorrent Peer-to-Peer (P2P) file transfer protocol. In
a traditional file transfer application, the client knows which server has the file, and sends a

2



request to that specific server for the given file. In many P2P file transfer applications, the
actual location of the file is unknown, and the file may be present at multiple locations. The
client first sends a query to discover which of its many peers have the file it wants, and then
retrieves the file from one or more of these peers.

While P2P services had already become commonplace, BitTorrent introduced some new
concepts which made it really popular. Firstly BitTorrent splits the file into different
”chunks”. Each chunk can be downloaded independently of the others, and then the en-
tire collection of chunks is reassembled into the file. In this assignment, you will be using
a fixed-size chunk of 512KB. This means that the first 512KB of a file will be chunk 0, the
next 512KB will be chunk 1, etc. Note that the final chunk will probably be less than 512KB
in size.

BitTorrent uses a central ”tracker” that tracks which peers are attempting to download a
file. A client begins a download by first obtaining a ”.torrent” file, which lists the information
about each chunk of the file. A chunk is identified by the cryptographic hash of its contents;
after a client has downloaded a chunk, it can compute the cryptographic hash to determine
whether it obtained the right chunk or not. To download a particular chunk, the receiving
peer obtains from the tracker a list of peers that contain the chunk, and then directly contacts
one of those peers to begin the download.

BitTorrent uses two main algorithms to ensure its efficiency. Firstly, it uses a “rarest-
chunk-first” heuristic where it tries to fetch the rarest chunk among its connected peers, al-
lowing the chunks to be evenly distributed across all your neighboring peers (your “swarm”).
Secondly, BitTorrent limits the number of concurrent uploads/downloads to four chunks at
once. To ensure that your peer always connects to the fastest possible neighbors, BitTor-
rent employs the “choke” and “optimistic unchoke” algorithms to either accept or deny
incoming chunk requests. You can read more about the BitTorrent protocol details from
http://www.bittorrent.org/protocol.html. Bram Cohen, its originator also wrote a
paper on the design decisions behind BitTorrent. The paper is available at:

http://bitconjurer.org/BitTorrent/bittorrentecon.pdf

4 Using Your Application

Your application will run very similarly to currently available implementations of BitTor-
rent. However, to greatly simplify your task, you will be doing a simplified, single-file,
commandline version of BitTorrent that relies on a central tracker for peer discovery. Your
implementation, BitFlood, will be incompatible with the BitTorrent protocol – for one, in-
stead of .torrent files, your implementation will use .flood files designed specifically for this
project. In addition, your implementation of BitFlood will not use TCP for chunk transfers,
and instead implement reliability and congestion control over UDP.

3



4.1 Client usage

To download a file, your BitFlood implementation requires a .flood file, containing all infor-
mation necessary to find peers, allocate space for a file, and verify individual chunks of the
end result. In addition, for this project, each client will need to be assigned a unique node
ID. In order to download a file specified by filename.flood, you will run:

./bitflood filename.flood -n <node-id>

In additional, your BitFlood client will take as additional optional parameters -m and -d

specifying the maximum number of simultaneous chunk transfers, and debugging output,
respectively. For example:

./bitflood filename.flood -n 1 -m 5 -d 1

The above would specify that only 5 chunks can be downloaded at any one time, and
that the debugging level should be set to 1. You may design your debugging output however
you wish. The default value for maximum number of connections should be infinite, and the
default level for debugging output should be 0.

You may choose the address and port that your BitTorrent client listens on. A simple
way of doing this would be to attempt to bind() to a default port, and increment the port
number until bind() succeeds. To facilitate development and to avoid port collisions, try to
use port numbers in the range [20N00, 20N99], where N is your group number.

4.2 Tracker usage

BitFlood will rely on a central tracker to keep track of all connected peers. We have provided
a tracker for you in the project starter files; to run this tracker, simply run the following
script:

./bf_runtracker.py <port-number>

When administering a BitFlood swarm, we need to first create a .flood file. In order to
create this .flood file, we need to run bf makeflood.py to summarize the relevant information
from the file we wish to share.

./bf_makeflood.py <shared-file> <tracker-address>

Once the tracker is running and the .flood is made, simply distribute the .flood file by
copying it to all your peers and set them to run your bitflood client. The common way this is
done for .torrent files is that they are distributed through websites, such as torrentspy.com
for normal HTTP download.

4



5 Project Outline

Your BitFlood implementation should do three main things:

• Search for peers and search for chunks to download / upload.

• Reliably transfer file chunks over UDP, using congestion control.

• Optimize peer selection to fully utilize the network (optional).

6 BitFlood Specifications

When a peer starts up, it will have a blank file, and will have to eventually download every
chunk in the file. Alternatively, the peer may have a partial file already; in that case, you
should determine which chunks are already downloaded (match the .flood hash) and request
all the rest. In order to get those chunks, the peer will have to (1) get a list of other peers,
and (2) determine which peers have the needed chunks, and (3) ask those peers for those
chunks. Part (1) is handled by the tracker, and part (2) and (3) should be handled through
client-client communication.

6.1 BitFlood Tracker Communication

The BitFlood tracker keeps track of the list of peers. A Python implementation of the
tracker is provided for you, and you may use a TCP connection to connect to the tracker.
When a client first connects to the tracker, it will send a registration message containing the
hostname and port on which it is listening for other clients. The format for the registration
message should be:

REGISTER <node-id> <hostname> <port>\r\n

For example, if the client 1 is going to listen on unix38.andrew.cmu.edu:16020 for other
clients, then it should send the tracker:

REGISTER 1 unix38.andrew.cmu.edu 16020\r\n

As a response, the server will send back an acknowledgement OK and a list of peers
currently registered with the tracker. The tracker response will be an acknowledgement OK,
followed by a list of peers, one per line, of the same format used to register the client, followed
by an explicit close(). For example, a sample response from the server would be:

OK

1 unix38.andrew.cmu.edu 16020

2 unix38.andrew.cmu.edu 16021

3 unix38.andrew.cmu.edu 16022

5



The tracker will remember your client for one minute before it will drop your registration.
To prevent this, your client should connect with the tracker every 5 seconds to re-register
before it timeouts. Note that the list of available peers can and will change as the tracker
updates and accepts / drops more connections.

6.2 BitFlood Client Communication

Clients should communicate between each other using only UDP packets as the underlying
protocol. All packets begin with a common header:

• Magic number [2 bytes] This value should always be 15441. Any packet that does
not contain this value should be dropped.

• Version number [1 byte] This value should always be 1. Any packet that does not
contain this value should be dropped.

• Packet type [1 byte] The packet type indicates the payload of the packet.

• Header length [2 bytes] If you wish to extend your header, then specify the new
header length here. In addition, for interoperability reasons, the first two bytes of your
extension should be your group number. When your client processes an extended header
and receives a header extension that does not match your group number, simply ignore
the extension.

• Total packet length [2 bytes] The packet length indicates the amount of data that
should have been transferred in this packet, including the header.

• Sequence number [4 bytes] Sequence numbers are used by senders for reliable trans-
fer.

• Acknowledgement number [4 bytes] Acknowledgement numbers are used by re-
ceivers to indicate receipt of a given packet.

Like in previous assignments, all multi-byte integer fields should be transmitted in network
byte order. This includes the magic number, the header length, packet length, and the
sequence / acknowledgement numbers.

6.3 BitFlood Packet Types

Each BitFlood packet will have a packet type associated with it. There will be 6 packet
types used in your implementation:

How these different packet types are used are described below.

6



Packet Type Code

WHOHAS 0

IHAVE 1

GET 2

DATA 3

ACK 4

DENIED 5

Figure 1: The different packet types and their corresponding codes.

6.4 BitFlood Packet Format

To find hosts to download from, the requesting peer sends a WHOHAS <list> request to all
other peers, where <list> is the list of chunk hashes it wants to download. The list specifies
the SHA-1 hashes of the chunks it wants to retrieve. The entire list may be too large to fit
into a single UDP packet. You should assume the maximum packet size for UDP as 1500
bytes. It is the peers responsibility to split the list into different WHOHAS queries (chunk
hashes are a preset length of 20 bytes). If the file is too large to express in a single WHOHAS
query, the minimum necessary solution may send out GET requests iteratively, waiting for
responses to a GET requests chunks to be downloaded before continuing. A better solution
might parallelize these.

Upon receipt of a WHOHAS query, a peer sends back the list of chunks it contains using
the IHAVE <list> reply. The list again contains the list of hashes for chunks it has. Since
the request was made to fit into one packet, the response is guaranteed to fit into a single
packet.

The requesting peer looks at all IHAVE replies and decides which remote peer to fetch
each of the chunks from. It then downloads each chunk individually using GET <chunk-
hash> requests. Because you are using UDP, you can think of a GET request as combining
the function of an application-layer GET request and a the connection-setup function of a
TCP SYN packet.

When a peer receives a GET request for a chunk it owns, it will send back multiple DATA
packets to the requesting peer (see format below) until the chunk specified in the GET request
has been completely transferred. These DATA packets are subject to congestion control, as
outlined in Section 6.2. The peer may not be able to satisfy the GET request if it is already
serving maximum number of other peers. The peer can ignore the request or queue them
up or notify the requester about its inability to serve the particular request. Sending this
notification is optional, and uses the DENIED code. Each peer can only have 1 simultaneous
download from any other peer in the network, meaning that the IP address and port in the
UDP packet will uniquely determine which download a DATA packet belongs to.

When a peer receives a DATA packet it sends back an ACK packet to the sender to notify
that it successfully received the packet. Receivers should acknowledge all DATA packets.

7



TypeVersionMagic Number

Header Len Packet Len

Seq Num

Ack Num

0 1 2 3

0115441

16 60

Not used

Not used

0 1 2 3

2 Not used

SHA-1 Hash

SHA-1 Hash

3115441

16 1016

24

Not used

0 1 2 3

Packet Data (1000 bytes)

Figure 2: The basic packet header, and an example WHOHAS packet with two SHA-1 hash queries, and a

DATA packet holding 1000 bytes of data. Note that some fields are not used by the WHOHAS or DATA.

6.5 BitFlood File Format

All the information necessary to download a shared file can be found in a .flood file. This
information includes the location of the tracker, the name of the file we are downloading, the
length of the file in bytes, and a list of the SHA-1 hashes for each chunk in the file. The first
three pieces of information are found on the first three lines of the file. Each SHA-1 hash
will be in 20-byte hex values on separate lines of the format chunk-number sha-1-hash.

tracker-address

filename

file-size

0 sha-1-hash

1 sha-1-hash

2 sha-1-hash

...

The format of the address is a hostname:port pair. An example .flood file is provided
for you in the project tarball.

8



6.6 Writing to file

Once the chunks have been downloaded, you should be ready to write them to the file.
Recall that each chunk corresponds to the factor of 512KB offset you should write to the
file. IMPORTANT NOTE: make sure that your clients are writing to separate files. If they
are both attempting to access the same file and are both writing to it, you could potentially
corrupt your data.

7 Project Tasks

This section details the requirements of the assignment. This high-level outline roughly
mirrors the order in which you should implement functionality. Your project tasks will
mainly involve the process between sending chunks between clients reliably, efficiently, while
avoiding congestion.

7.1 Task 1: Reliable Sliding Window

The first task is to implement a 100% reliable protocol for file transfer (ie: DATA packets)
between two peers with a simple flow-control protocol. Non-Data traffic (WHOHAS, IHAVE,
GET packets) does not need to be transmitted reliably or with flow-control. The peer should
be able to search the network for available chunks and download them from the peers that
have them. All different parts of the file should be collected at the requesting peer and their
validity should be ensured before considering the chunks as received. You can check the
validity of a downloaded chunk by computing its SHA-1 hash and comparing it against the
specified chunk hash. To achieve reliability and ordered delivery, you need to use sliding
windows on both sides (sender, receiver) of the connection. In this case, the sender is the
node that already has the file, while the receiver is the node that sends the GET request to
begin downloading the file.

To start the the project, use a fixed-size window of 8 packets. 1 The sender and receiver
should ignore packets that fall out of the window. The figure below shows the sliding
windows for both side. The sender slides the window forward when it gets an ACK for a
higher packet number. The receiver slides the window forward when the application reads
more packets bytes from the buffer to increment the LastPacketRead. There is a sequence
number associated with each packet and the following constraints are valid for sender and
receiver (hint your peers will likely want to keep state very similar to that shown here):

1Note that TCP uses a byte-based sliding window, but your project will use a packet-based sliding window. Its a bit

simpler to do it by packet. Also, unlike TCP, you only have a sender window, meaning that window size does not need to be

communicated in the packet header.

9



LastPacketAcked LastPacketSent LastPacketAvailable

Sent but not ACKed

LastPacketRead

NextPacketExpected

Receive buffer

LastPacketReceived

Dropped packets

Window Size = 8

Window Size = 8

Sender Sliding Window

Receiver Sliding Window

10



Sending side

• LastPacketAcked ≤ LastPacketSent

• LastPacketSent ≤ LastPacketAvailable

• LastPacketAvailable − LastPacketAcked ≤ WindowSize

• Packets between LastPacketAcked and LastPacketAvailable must be “buffered” – you
can either implement this by buffering the packets or by being able to regenerate them
from the datafile.

Receiving side

• LastPacketRead < NextPacketExpected

• NextPacketExpected ≤ LastPacketReceived + 1

• LastPacketReceived − NextPacketExpected ≤ WindowSize

• Bytes between NextPacketExpected and LastPacketReceived must be ”buffered”. As
above, you could actually buffer the data, or write the data in its correct order to the
data file.

When the sender sends a data packet it starts a timer for it. It then waits for a fixed
amount of time to get the acknowledgment for the packet. Whenever the receiver gets
a packet it sends an acknowledgment for NextPacketExpected1. That is, upon receiving
a packet with sequence number = 8, the reply would be ACK 8, but only if all packets
with sequence numbers less than 8 have already been received. These are called cumulative
acknowledgements. The sender has two ways to know if the packets it sent did not reach the
receiver: either a time-out occurred, or the sender received duplicate ACKs.

• ACK timeout: If the sender sent a packet and did not receive an acknowledgment for
it before the timer for the packet expired, it resends the packet.

• Duplicate ACKs: If the sender sent a packet and received duplicate acknowledgments,
it knows that the next expected packet (at least) was lost. To avoid confusion from
re-ordering, a sender counts a packet lost only after 3 duplicate ACKs in a row.

If you received a IHAVE from a host, and then send a GET to that same host, set a
timer to retransmit the GET after some period of time (less than 5 seconds). You should
have reasonable mechanisms to recognized when successive timeouts of DATA or GET traffic
indicates that a hosts has likely crashed. Your code should then try to download the file
from another peer (reflooding the WHOHAS is fine).

We will test your your basic functionality using a network topology similar to Figure 4(a).
A more complicated topology like Figure 4(b) will be used to test for concurrent downloads
and robustness to crashes, as well as for measuring performance in the competition. As
suggested by the checkpoints, you can first code-up basic flow control with a completely loss
free virtual network to simplify development.

11



7.2 Task 2: Congestion Control

You should implement a TCP-like congestion control algorithm on top of UDP for all DATA
traffic (you dont need congestion control for WHOHAS, IHAVE, and GET packets). TCP
uses an end-to-end congestion control mechanism. Broadly speaking, the idea of TCP con-
gestion control is for each source to determine how much capacity is available in the network,
so it knows how many packets it can safely have in transit at the same time. Once a given
source has this many packets in transit, it uses the arrival of an ACK as a signal that one
of its packets has left the network, and it is therefore safe to insert a new packet into the
network without adding to the level of congestion. By using ACKs to pace the transmission
of packets, TCP is said to be self-clocking.

TCP Congestion Control mechanism consists of the algorithms of Slow Start, Conges-
tion Avoidance, Fast Retransmit and Fast Recovery. You can read more about these
mechanisms in Peterson & Davie Section 6.3.

In the first part of the project, your window size was fixed at 8 packets. The task of this
second part is to dynamically determine the ideal window size. When a new connection is
established with a host on another network, the window is initialized to one packet.

• Slow Start – each time an ACK is received, the window is increased by one packet.
The sender keeps increasing the window size until the first loss is detected or until
the window size reaches the value ssthresh (slow-start threshold), after which it enters
Congestion Avoidance mode (see below). For a new connection the ssthresh is set to
a very big value - well use 64 packets. If a packet is lost in slow start, the sender sets
ssthresh to max(currentwindowsize/2, 2), in case the client returns to slow start
again during the same connection.

• Congestion Avoidance slowly increases the congestion window and backs off at the
first sign of trouble. In this mode when new data is acknowledged by the other end, the
window size increases, but the increase is slower than the Slow Start mode. The increase
in window size should be at most one packet each round-trip time (regardless how many
ACKs are received in that RTT). This is in contrast to Slow Start where the window size
is incremented for each ACK. Similar to Slow Start, in Congestion Avoidance if there
is a loss in the network (resulting from either a time out, or duplicate acks), ssthresh

is set to max(windowsize/2, 2). The window size is then set to 1 and the Slow Start
process starts again.

• Fast Retransmit – Recall that when the sender receives 3 duplicate ACK packets,
you should assume that the packet with sequence number = acknowledgment number
+ 1 was lost, even if a time out has not occurred.

• Fast Recovery – You do not need to implement Fast Recovery for the project, but it
would be a good trick to implement for the competition phase of the assignment! You
can read up more about these mechanisms from Section 6.3.3 of Peterson & Davie.

12



7.2.1 Graphing Window Size

Your program must generate a simple output file (named window size.txt) showing how
your window size varies over time for each chunk download. This will help you debug and
test your code, and it will also help us grade your code and any extra-credit you implement.
The output format is simple and will work with many Unix graphing programs like gnuplot.
Every time a window size changes, you should print the ID of this connection (choose some-
thing that will be unique for the duration of the flow), the time in milliseconds since your
program began, and the new window size. Each column should be separated by a tab. For
example:

f1 45 2

f1 60 3

f1 78 4

f2 84 2

f1 92 5

f2 97 3

... ... ...

You can get a graph input file for a single chunk download using grep. For example:

% grep f1 window_size.txt > f1.dat

You can the run gnuplot on any Andrew machine, which will give you a gnuplot prompt.
To draw a plot of the file above, use the command:

gnuplot> plot "f1.dat" using 2:3 title flow 1 with lines

There are additional features of gnuplot that will allow you to automate this graphing
process, or output to a PostScript file. For more information on how to use gnuplot, see:

http://www.duke.edu/hpgavin/gnuplot.html

7.3 Task 3: Intelligent Peer Selection and Caching (optional)

For this section, we would measure how well you can optimize the speed with which files
are transferred across different network topologies. We will keep different chunks of the file
at various peers, and then make a number of other peers fetch the files. You should use
some heuristics to load balance across different peers, fetch chunks from a peer having more
throughput than others, etc. For example in the Figure 4(b) the peer A and B could fetch
different chunks from D,E and then they can share those chunks between themselves. Since
A and B are close together, they will have much better throughput than getting the chunks
directly from D and E.

13



To test this we will distribute the file into different nodes and then sum the time taken
to collect the file at each node. There will be a competition across the class and the group/-
groups taking the least time will get maximum grade (and prizes!). Some things to think
about:

• Having peers cache the entries they have downloaded and offer them to others is a
simple way to have more peers to choose among.

• Fast Recovery will help you make better use of the network links while still being TCP
friendly.

• Some nodes may be closer to their neighbors than others.

• Available bandwidth may change.

• A peer node may go away. You should quickly recognized this and switch to any other
peer who has this same block.

8 Starter Materials

8.1 Provided files

Your stater code includes:

• bf runtracker.py - This script will run a BitFlood tracker.

• bf makeflood.py - This script will generate a BitFlood .flood file.

• bf preseed.py - This script creates an incomplete file for testing BitFlood.

• bf networksim.py - This script simulates a network topology with congestion.

• topo.map - This map details the network topology used in bf networksim.py.

• debug.c, debug.h - Helpful utilities for debugging output.

• bf parse.c, bf parse.h - Utilities for parse command line arguments and .flood files.

• bitflood.c - A skeleton source file. Handles some processing for you.

8.2 Using the scripts

The following section gives some examples for using the bf scripts. To accomplish the
following basic tasks, run the following scripts as shown below.

• To create a flood file to distribute filename that uses localhost : 16000 as the tracker
address:

14



% ./bf_makeflood.py filename localhost:16000

• To start a persistent server that keeps track of your BitFlood clients:

% ./bf_runtracker.py

NOTE: the default port that the tracker runs on is 8801. You should set the tracker to
run on one of your group’s predefined port numbers (see above) using the -p argument.

% ./bf_runtracker.py -p 20001

• To create an incomplete file with only some of the chunks filled in, use bf preseed.py to
zero a file and fill in some of the chunks with the corresponding data in filename. The
first pre-seed method you can use is to write random chunks of the file. For example,
the following command will create a copy of filename where 10 random 512KB chunks
match that of filename.

% ./bf_preseed.py filename -r 10

• To manually specify which chunks to fill in, use bf preseed with the -t parameter
pointing to a file that contains the inclusive chunk-ids separated by whitespace. For
example, to create an incomplete file where the first 2048KB of filename is filled in,
run:

% echo "0 1 2 3" > chunkfile

% ./bf_preseed.py filename -f chunkfile

8.3 Spiffy: Simulating Networks with Loss and Congestion

To test your system, you will need more interesting networks that can have loss, delay,
and many nodes causing congestion. To help you with this, we created a simple network
simulator called Spiffy which runs completely on your local machine. The simulator is im-
plemented by bf networksim.py, which creates a series of links with limited bandwidth and
queue sized between nodes specified by the file topo.map (this allows you to test congestion
control). To send packets on your virtual network, change your sendto() system calls to
spiffy sendto(). spiffy sendto() tags each packet with the id of the sender, then sends
it to the port specified by the SPIFFY ROUTER environment variable. bf networksim.py

listens on that port (which needs to be specified when running bf networksim.py), and de-
pending on the identity of the sender, it will route the packet through the network specified
by topo.map and to the correct destination. You hand spiffy sendto() the exact same
packet that you would hand to the normal UDP sendto() call.

15



8.3.1 Running the network simulator

bf networksim.py will have four required parameters that you will need to set.

% ./bf_networksim.py -t <tracker-addr> \

-m <topology-file> \

-p <listen-port> \

-v <verbosity>

• tracker-addr: The hostname and port of the tracker as a hostname:port pair.

• topology-file: The link to the topo.map file.

• listen-port: The port on which to listen for UDP packets.

• verbosity: The level of debugging output the script will output.

9 Grading

This information is subject to change, but will give you a high-level view of how points
will be allocated when grading this assignment. Notice that many of the points are for basic
file transmission functionality and simple congestion control. Make sure these work well
before moving to more advanced functionality or worrying about corner-cases.

9.1 Points distribution

• Peer discovery [5 points]: The peer program should be able to search for chunks and
request them from the remote peers. This includes the basic functionality of WHOHAS,
IHAVE, and GET packets.

• Reliable file retrieval [15 points]: We will test if the output file is exactly the same
as the file peers are sharing. Note, in addition to implementing WHOHAS, IHAVE,
and GET, this section requires reliability to handle packet loss.

• Basic congestion control [10 points]: The peer should be able to do the basic
congestion control by imple- menting the basic Slow Start and Congestion Avoidance
functionality for common cases.

• Concurrent transfer support [20 points]: The peer should be able to send and
retrieve content from more than one node simultaneously (note: this does not imply
threads!). Your peers should simultaneously take advantage of all nodes that have useful
data, instead of simply downloading a chunk from one host at a time.

• Congestion control corner cases [10 points]: The congestion control should be
robust. It must handle issues like lost ACKs, multiple losses, out of order packets, etc.

16



Additionally, it should have Fast Retransmit. We will stress test your code and look
for tricky corner cases.

• Robustness [10 points]: Your implementation should be robust to crashing peers,
and should attempt to download interrupted chunks from other peers. In addition, your
peer should be resiliant to peers that send corrupt data, etc.

• Style [10 points]: Well-structured, well documented, clean code, with well defined in-
terfaces between components. Appropriate use of comments, clearly identified variables,
constants, function names, etc. Use of provided debugging functions using different de-
bug levels within the code.

• Checkpoints [20 points]: You will be graded on the four checkpoints we release. The
checkpoint grades will be on an all or nothing process; we will release the code that will
be used to grade your checkpoint so that you can verify your submission ahead of time.

• Selective acknowledgement [optional, 5 points]: Implement SACK for better
congestion recovery. In SACK, in addition to sending the cumulative acknowledgment
for all the packets received so far, the receiver sends the list of packets it has in its
sliding window buffer. This provides the sender more information about which packets
were lost in transmission. SACK is described in RFC 2018.

• Peer selection, download efficiency [optional, 10 points]: You should imple-
ment heuristics and protocol techniques that will help your peers transfer files faster
in reasonable scenarios and topologies. We will measure the average download speed
for multiple uploading and multiple downloading peers at the same time. For example,
peers may determine optimal peers to download from (instead of choosing randomly),
and update the optimal peers list on the fly. Other strategies could include fast failure
detection and pre-fetching blocks. Points will be awarded only if you document your
mechanisms in the README.txt, and provide graphs and reproducible test cases that
show your optimizations providing benefit compared to the basic implementation.

9.2 Deadlines and Checkpoint information

• Checkpoint 1 (November 1): You ust be able to generate WHOHAS queries and
correctly respond (if needed) with an IHAVE for a simple configuration of two hosts.
You may assume for checkpoint 1 that there is no loss in the network.

• Checkpoint 2 (November 9): You must be able to send a GET request and download
an entire chunk from another peer within a simple two host network. Use a simple stop-
and-wait protocol where hosts send a single packet, and wait for an ACK before sending
another. Again, assume no network loss.

17



• Checkpoint 3 (November 15): You must implement sliding window flow control with
a window size of 8 packets. You must also implement time-outs and retransmission for
reliable delivery. Use the spiffy router to test your network with loss.

• Checkpoint 4 (November 29): Implement simple congestion avoidance. Start the
win- dow off at size one, and increase the window one packet for every window of data
that is acked without a loss. After any loss, reduce the window to one packet, and begin
again.

• Early bird deadline (November 29): If you turn in your project by this date,
you will receive a bonus of 5 extra points. This deadline applies only to the required
functionality (ie: the final svn tag). Extra credit and competition submissions may be
submitted up to the late deadline without sacrificing the early-bird bonus.

• Final version, contest, extra credit deadline (December 4): If you turn in your
project by this date, you will not receive any penalty. Regular late penalty of 10%
per day will be deducted if you turn in your project after this date. Extra credit and
competition tags must be submitted by this deadline to count.

10 Handin

As in Project 1 and 2, code submission for checkpoints and the final project will be done
through your Subversion repositories. You should receive an email with your Team #,
username, and password soon after you register your team with the TAs. Again, you can
check out your subversion repository with the following command:

svn co https://moo.cmcl.cs.cmu.edu/441/svn/Project2TeamN --username <username>

Where TeamN should be replaced with your team name.
The grading scripts will check the directories in your repository for grading, which can

be created easily using svn copy.

• Checkpoint 1: <REPOSITORY>/tags/checkpoint1

• Checkpoint 2: <REPOSITORY>/tags/checkpoint2

• Checkpoint 3: <REPOSITORY>/tags/checkpoint3

• Checkpoint 4: <REPOSITORY>/tags/checkpoint4

• Final Handin: <REPOSITORY>/tags/final

• Contest / Extra Credit Handin (optional): <REPOSITORY>/tags/extra

For all the checkpoints, you will be expected to have a working Makefile that compiles
on Andrew Linux. If your checkpoint does not compile, it will receive a zero. In addition,
your final and extra credit handins should contain the following files:

18



• Makefile - Make sure all the variables and paths are set correctly such that your pro-
gram compiles in the hand-in directory. Makefile should build the executable bitflood

that runs on Andrew Linux.

• All source files needed to compile.

• README.txt - File containing a thorough description of your design and implemen-
tation. If you use any additional packet headers, please document them here. In-
clude documentation of your test cases, any known bugs, and a sample output of your
window size.txt. Also, please list any extra credit parts that you have implemented
here, as well as test-cases and graphs you committed to demonstrate the value of your
optimizations.

11 How To Succeed

This project is long, involved, and will probably take place while you are busy with lots
of other work during the semester. Our previous recitations give some ideas regarding
software engineering concepts that will help you, such as code design, scripting, compilation,
debugging, and version control. You should also consider:

• Start Early! You know it’s true, you know there’s no reason not to, and your future
self 5 weeks from now will thank you. Start by reading the handout; even if you have no
idea what the handout is saying, you will be in a position to form educated questions
about it for the TAs.

• Check the bboards and FAQs regularly, even before you run into problems! As-
suming a uniform distribution, there is a 97% chance that another group will discover
an unknown corner case or error before you do. Finding the problem ahead of time will
save you loads of pain later.

• We have office hours. During Project 1 and Project 2, hardly anyone came in to
office hours; we are just waiting here for you to ask for help! The earlier you come, the
more time we will have to help you.

• bf Writing unit tests. Modularize and test! For example, let’s say that you are testing
your client* find client(int chunknum) function. You can throw a simple assertion
like:

void test_find_client()

{

int i;

client* has_chunk_0;

has_chunk_0 = find_client(0);

19



assert (has_chunk_0 == NULL || has_chunk_0->chunklist[0] == 1);

}

Then, write a new driver program that just runs these tests:

#ifdef TESTING

int main()

{

test_find_client();

return 0;

}

#endif

and compile the code into a test client program.

• Know TCP back and forth. Not only will it help you with the project, but also on
final.

• Write comments in your code. Not only are you communicating to us and your
partner, but to yourself. When you come back to a complicated code segment later,
you don’t want to spend X minutes trying to figure out where you unset your flag
pointer or something similar.

• START EARLY! And good luck!

20


