
15-441: Computer Networks

Project 2: IRC and Routing

Lead TA: Seunghwan Hong <seunghwa@andrew.cmu.edu>

Assigned: September 11, 2007
Checkpoint 1 due: October 4, 2007
Final version due: October 11, 2007

1 Introduction

The purpose of this project is to give you experience in developing concurrent network
applications. You will write an routing daemon intended to be implemented as a user level
application, and implement protocols between the daemon and your IRC server (Project 1).

The job of each routing daemon is to build its table so that packets can be successfully
forwarded to other nodes from that node. The routing daemon uses a shortest path link
state routing protocol in which each node in the network periodically exchanges information
with its neighbors so that everyone in the network knows the best path to take to reach each
destination. The protocol is simlar to the protocols used in Internet routers. At the end of
this project, you will complete the whole part of IRC server running with your own routing
daemon, which could be used to talk with users across the world.

2 Logistics

• There is no support code. You must start this project from your work on project 1.
Use the support code to implement your routing daemon.

• This is a group project. You must find exactly one partner for this assignment. The
only reason you should not have a partner is if there are an odd number of people in the
class and you are left out (in which case contact us). You can stay in the same team,
or you can change your team. But if you plan to change your team, you must discuss
it with course staff before.

• Once you have found a new partner, email Albert at albert@cmu.edu your names and
andrew logins so we can assign a group number to you. Even if you stay in the same
team, you must send this information as well. Use “15441 GROUP” as the subject.

1

Please try to be sure you know who you will work with for the full duration of the
project so we can avoid the hassle of people switching later.

• This is a large project, but not impossible. We recommend adhering to a schedule like:

date milestone
9/11 project assigned
9/15 read and understand the project handout
10/1 routing daemon implementation complete
10/4 Checkpoint due - user-forwarding test
10/5 routing daemon tested thoroughly
10/7 irc server extensions/forwarding protocol complete
10/9 irc server extensions tested thoroughly
10/11 last minute rush to get things done and hand-in

3 Overview

An IRC network is composed of a set of nodes interconnected by virtual links in an arbitrary
topology. Each node runs a process that we will call a routing daemon. Each routing daemon
maintains a list of IRC users available to the system. Figure 1 shows a sample IRC network
composed of 5 nodes. The solid lines represent virtual links between the nodes. Each node
publishes a set of users (i.e., the nicks of the IRC clients connected to it) to the system. The
dotted lines connect the nodes to their user sets.

The usage model is the following: If Bob wants to contact Alice, the IRC server on the
left first must find the route or path from it to the node on the right. Then, it must forward
Bob’s message to each node along the path (the dashed line in the figure) until it reaches
the IRC server at Alice’s node, which can then send the message to the client Alice.

In essence, each node in the system performs functions similar to the ones performed in
the network layer, namely forwarding and routing. Forwarding is the action performed by
each node to guide a packet toward its destination. Routing refers to the action of building
the data structures necessary to reach particular destinations (in terms of the IRC server, a
destination is a username/nick).

The routing daemon will be a separate program from your IRC server. Its purpose is
to maintain the routing state of the network (e.g., build the routing tables or discover the
routes to destinations). When the IRC server wants to send a message to a remote user,
it will ask the routing daemon how to get there and then send the message itself. In other
words, the routing daemon does the routing and the IRC server does the forwarding.

In your implementation, the routing daemon will communicate with other routing dae-
mons (on other nodes) over a UDP socket to exchange routing state. It will talk to the IRC
server that is on the same node as it via a local TCP socket. The IRC server will talk to
other IRC servers via the TCP socket that it also uses to communicate with clients. It will

2

simply use special server commands. This high level design is shown in the two large IRC
server nodes in Figure 1.

Figure 1: IRC network

In order to find out about the network topology, each routing daemon will receive a list
of neighboring nodes when it starts. In this project, you can assume that the no new nodes
or links will ever be added to the topology after starting, but nodes and links can fail (i.e.,
crash or go down) during operation (and may recover after failing).

4 Definitions

• node – an IRC server and routing daemon pair running together that is part of the
larger network. In the real world, a node would refer to a single computer, but we can
run multiple “virtual” nodes on the same computer since they can each run on different
ports. Each node is identified by its nodeID.

• nodeID – unique identifier that identifies a node. This is an unsigned 32-bit integer
that is assigned to each node when its IRC server and routing daemon start up.

• neighbor – Node 1 is a neighbor of node 2 if there is a virtual link between 1 and
2. Each node obtains a list of its neighbors’ nodeIDs and their routing and forwarding
ports at startup.

• destination – IRC nickname or channel as a null terminated character string. As
per the IRC RFC, destinations will be at most 9 characters long and may not contain
spaces.

3

• IRC port – The TCP port on the IRC server that talks to clients and other IRC
servers.

• forwarding port – Same as IRC port.

• routing port – The UDP port on the routing daemon used to exchange routing infor-
mation with other routing daemons.

• local port – The TCP port on the routing daemon that is used to exchange information
between it and the local IRC server. For example, when the IRC server wants to find
out the route to remote user, it queries the routing daemon on this port. The socket
open for listening will be on the routing daemon. The IRC server will connect to it.

• OSPF – The shortest path link state algorithm you will implemenit

• routing table – The data structure used to store the “next hops” that packet should
take used in OSPF. See your textbook pp. 274–280 for description.

5 Link State Routing

5.1 Basic Operation

You will implement a link-state routing protocol similar to OSPF, which is described in the
textbook in chapter 4, and in more detail in the OSPF RFC[5]. Note, however, that your
protocol is greatly simplified compared to the actual OSPF specification. As described in
the references, OSPF works by having each router maintain an identical database describing
the network’s topology. From this database, a routing table is calculated by constructing
a shortest-path tree. Each routing update contains the node’s list of neighbors, users, and
channel. Upon receiving a routing update, a node updates its routing table with the “best”
routes to each destination. In addition, each routing daemon must remove entries from its
routing table when they have not been updated for a long time. The routing daemon will
have a loop that looks similar to the following:

whi l e (1)
{

/∗ each i t e r a t i o n o f t h i s loop i s ” cyc l e ” ∗/
wa i t f o r e v en t (event) ;

i f (event == INCOMING ADVERTISEMENT)
{

proce s s incoming adver t i s ement s f r om ne ighbor () ;
}
e l s e i f (event == IT IS TIME TO ADVERTISE ROUTES)
{

4

a d v e r t i s e a l l r o u t e s t o a l l n e i g h b o r s () ;
check for down ne ighbors () ;

e xp i r e o l d r o u t e s () ;
d e l e t e v e r y o l d r o u t e s () ;

}
}

Let’s walk through each step. First, our routing daemon A waits for an event. If the event
is an incoming link-state advertisement (LSA), it receives the advertisement and updates
its routing table if the LSA is new or has a higher sequence number than the previous
entries. If the routing advertisement is from a new router B or has a higher sequence
number than the previously observed advertisement from router B, our router A will flood
the new announcement to all of its neighbors except the one from which the announcement
was received, and will then update its own routing tables.

If the event indicates that a predefined period of time has elapsed and it is time to
advertise the routes, then the router advertises all of its users, channels, and links to its direct
neighbors. If the routing daemon has not received any such advertisements from a particular
neighbor for a number of advertisements, the routing daemon should consider that neighbor
down. The daemon should mark the neighbor down and re-flood LSA announcements from
that neighbor with a TTL of zero. When your router receives an announcement with a TTL
of zero, it should delete the corresponding LSAs from its table.

If the event indicates that a user has joined or left a channel or the server, the router
should send a triggered update to its neighbors. This is simply a new link state advertisement
with a higher sequence number that announces the router’s new state. If a node has not
sent any announcements for a very long time, we expire it by removing it from our table.

If B receives an LSA announcement from A with a lower sequence number than it has
previously seen (which can happen, for example, if A reboots), B should echo the prior LSA
back to A. When A receives its own announcement back with a higher sequence number, it
will increment its transmitted sequence number to exceed that of the older LSAs.

Each routing announcement should contain a full state announcement from the router – all
of its neighbors, all of its users, and all of its channels. This is an inefficient way to manage
the announcements (see the extra credit section), but it greatly simplifies the design and
implementation of the routing protocol to make it more tractable for a 5 week assignment.
Each time your router originates a new LSA, it should increment the sequence number it
uses. When a router receives an updated LSA, it recomputes its local routing table. The
LSAs received from each of the peer nodes tell the router a link in the complete router graph.
When a router has received all of the LSAs for the network, it knows the complete graph.
Generating the user routing table is simply a matter of running a shortest-paths algorithm
over this graph.

5

5.2 Reliable Flooding

OSPF is based upon reliable flooding of link-state advertisements to ensure that every node
has an identical copy of the routing state database. After the flooding process, every node
should know the exact network topology. When a new LSA arrives at a router, it checks to
see if the sequence number on the LSA is higher than it has seen before. If so, the router
reliably transmits the message to each of its peers except the one from which the message
arrived. The flooding is made reliable by the use of acknowledgement packets from the
neighbors. When router A floods an LSA to router B, router B responds with an “LSA
Ack.” If router A does not receive such an ack from its neighbor within a certain amount of
time, router A will retransmit the LSA to B.

With the information contained in the LSAs, each server should be able to deliver messages
from one user to another without much trouble. To send messages to a channel, however,
requires a little more work; this is multicast routing instead of unicast routing. A channel
can exist on multiple servers, so the distribution can take multiple branches at a time. How
does the local node know which neighbors to forward the message to in this case?

Since a channel can exist on multiple servers and the server knows the network topology,
each server is able to construct a source rooted shortest paths tree for that message, which
tells the server what outgoing links it should use. Note that this tree is rooted at the message
source, not the router making the computation. The algorithm for computing the shortest
paths tree for the multicast case is the same as for the unicast to a user case, except that the
source may not be the local node.With these trees, a server will know which servers it should
propagate a channel message to, depending upon which server sent the message. Note that
there is a different shortest paths tree for every channel/source pair.

Why does it need to know the source? Consider the network pictured in Figure 2. Now,
suppose nodes 1, 2, 5 and 6 have users subscribed to channel #perl, and nodes 1, 3, 4, and 6
have users subscribed to channel #c. If a user on node 1 wants to send a message to #perl
then it should propagate the message to node 2. Node 2 knows nodes 1 and 5 also have users
in #perl, but since the message came from node 1, it should not propagate the message back
to node 1. So, it only propagates the message to node 5.

Figure 2: Sample Network

6

The channel routing table for node 1 would look like:

Channel Name Source Code Next Hops
#perl 1 2
#perl 2 None
#perl 5 None
#perl 6 None
#c 1 2,3
#c 3 None
#c 4 None
#c 6 None

The channel routing table for node 2 would look like:

Channel Name Source Code Next Hops
#perl 1 4,5
#perl 2 1,4,5
#perl 5 1
#perl 6 1
#c 1 4
#c 3 4
#c 4 1,3
#c 6 1

The channel routing table for node 5 would look like:

Channel Name Source Code Next Hops
#perl 1 None
#perl 2 None
#perl 5 2,6
#perl 6 None
#c 1 None
#c 3 6
#c 4 None
#c 6 3

The channel routing table for node 6 would look like:

7

Channel Name Source Code Next Hops
#perl 1 None
#perl 2 None
#perl 5 None
#perl 6 4,5
#c 1 None
#c 3 None
#c 4 None
#c 6 4,5

Now consider a case where a client on node 2 has not subscribed to the channel #c and
sends a PRIVMSG to the channel. (Note that such a client can only send messages but
cannot receive messages being sent by other users on the channel). In this case, the node
will compute the shortest path tree. The message will be forwarded to nodes 1,3 and 4.
Node 4 will then forward the message to node 6. This should clear the fact that being a
source node and being a subscriber are independent.

There are two ways that a router could potentially compute these routes. It could compute
all possible (source, channel) trees in advance, and populate its routing table with the results.
Or, the router could compute the routes dynamically on demand when a message arrives for
a particular channel from a particular source, and cache the results. In this assignment,
we will implement the dynamic computation and caching version. The router’s
multicast routing table (channel routing table) should act as a cache, and the router should
compute the trees dynamically if it has no entry. Remember to have a way to indicate “route
calculated, but there were no neighbors” in your routing table so that you dont eternally
recompute local channels. Also, these cached trees must however be discarded when there
is a change in the topology or subscription to channels as notified by triggered updates or
normal advertisements.

Your router should be robust to misbehaving neighbors. If the router receives a channel
message forwarded to it by a peer who should not have forwarded the message (remember,
the router can check this, since it knows the shortest paths tree), it should silently drop the
message. Such an event could occur during a route change when the routing table became
temporarily inconsistent, and it can lead to routing loops. Because multicast can generate a
large number of packets, and the IRC network is a less trusted environment than an ISPs own
routers, dropping the message is safer (for the project), but might cause packet delivery to
be somewhat less reliable. The congestion caused by routing loops is also typically addressed
through a TTL in the packets being forwarded.

5.3 Protocol Specifications

Figure 3 shows the routing update message format, with the size of each field in bytes in
parenthesis.

8

Figure 3 OSPF Packet Format

• Version – the protocol version, always set to 1

• TTL – the time to live of the LSA. It is decremented each hop during flooding, and is
initially set to 32.

• Type – Advertisement packets should be type 0 and Acknowledgement packets should
be type 1.

• Sender nodeID – The nodeID of the sender of the message, not the immediate sender.

• Sequence number – The sequence number given to each message.

• Num link entries – The number of link table entries in the message.

• Num user entries – The numbers of users announced in the message.

• Num channel entries – The number of channels announced in the message.

• Link entries – Each link entry contains the nodeID of a node that is directly connected
to the sender. This field is 4 bytes.

• User entries – Each user entry contains the name of the destination user as a null
terminated string. Since the IRC RFC indicates that nicknames should be at most 9
characters and we have added the constraint that channels can be at most 9 characters
(including & or #), it should definitely fit within 16 (the unused bytes will be ignored).

• Channel entries – Same as a user entry, above.

All multi-byte integer fields (nodeIDs, TTLs, link entries, etc) should be in network byte
order. An acknowledgement packet looks very similar to an announcement packet, but it
does not contain any entries. It contains the sender nodeID and sequence number of the
original announcement, so that the peer knows that the LSA has been reliably received.

9

5.4 Requirements

Your implementation of OSPF should have the following features:

• Given a particular network configuration, the routing tables at all nodes should converge
so that forwarding will take place on the paths with shortest length.

• In the event of a tie for shortest path, the next hop in the routing table should always
point to the nodeID with the lowest numerical value. Note that this implies there should
be a unique solution to the routing tables in any given network.

• Remove the LSAs for a neighbor if it hasnt given any updates for some period of time.

• You should implement Triggered Updates (when a link goes down or when users join
or leave a server or channel).

• If a node or link goes down (e.g., routing daemon crashes, or link between them no
longer works and drops all messages), your routing tables in the network should re-
converge to reflect the new network graph. You shouldn’t have to do anything more to
make sure this happens, as the above protocol already ensures it.

You do not have to implement the following:

• You do not have to provide authentication or security for your routing protocol mes-
sages.

• You only need to store the single best route to a given user.

• You do not have to “jitter” your timer with randomized times.

6 Local Server–Daemon Protocol

This section describes the mini-protocol that an IRC Server uses to talk to the local routing
daemon on the same node. It is important that you follow these specifications carefully
because we will test your routing daemon independently of your IRC server!

The routing daemon listens on the local port when it starts up to service route lookup
requests. When the IRC server on the same node starts up, it connects to the local port of
the routing daemon. Since the local port is only supposed to service local client programs
(like the IRC server) on the same machine that it trusts, you can assume that we won’t do
anything intentionally malicious to try to break it. However, you may find it useful to make
it robust to invalid input, since you may make typos when testing it. Specifically, you can
assume:

• We will only use the protocol as defined below. We will not send invalid requests.

• Only a single IRC server will connect to the routing daemon.

10

• Your IRC server may block while waiting for a response from the routing daemon. (i.e.,
you can treat it as a function call)

This is a line-based protocol like the IRC-protocol itself. Each request and response pair
looks like this:

command arguments . . . results . . .
Where command is the name of the request, arguments . . . is a space-separated list of

arguments to the command, and results . . . is a space-separated list of results returned. All
requests and responses are terminated with a newline character (\n) and are case sensitive,
but some responses have multiple lines. You must implement the following request/response
pairs in your routing daemon:

Request: ADDUSER nick
Response: OK
Description: This request is issued when a new user is registered with the IRC server. The
user’s nick is added to the routing daemon’s list of local users so that other nodes can find
the user. This should trigger an immediate update for that nick.
Examples:

req: ADDUSER bob
resp: OK
req: ADDUSER alice
resp: OK

Request: ADDCHAN channel
Response: OK
Description: This request is issued when a user joins a previously non-existant channel
on the local IRC server. The channel name is added to the routing daemon’s list of local
channels so that other nodes can find the channel. This should trigger an immediate update
for that channel.
Examples:

req: ADDCHAN #perl
resp: OK
req: ADDCHAN #networks
resp: OK

Request: REMOVEUSER nick
Response: OK
Description: This request is issued when a local user leaves the IRC server. The user’s

11

nick is removed from the routing daemon’s list of local destinations so that other nodes will
know that they can no longer reach the user there. This should trigger an immediate update
for that nick.
Examples:

req: REMOVEUSER bob
resp: OK
req: REMOVEUSER baduser
resp: OK

Request: REMOVECHAN channel
Response: OK
Description: This request is issued when the last local user leaves a channel. The channel
name is removed from the routing daemon’s list of local channels so that other nodes will
know that they should no longer send channel messages to that server. This should trigger
an immediate update for that channel.
Examples:

req: REMOVECHAN bob
resp: OK
req: REMOVECHAN baduser
resp: OK

Request: NEXTHOP nick
Response: OK nodeID distance
Response: NONE
Description: This request is used to find nodeID of the next hop to use if we want to
forward a message to the user nick. It should return OK if the routing table has a valid next
hop for the nick along with the distance to that destination, and NONE otherwise (e.g., if
the destination’s distance is not known or user does not exist).
Examples:

req: NEXTHOP bob
resp: OK 2 5
req: NEXTHOP alice
resp: OK 3 2
req: NEXTHOP baduser
resp: NONE

12

Request: NEXTHOPS sourceID channel
Response: OK nodeID nodeID nodeID . . .
Response: NONE
Description: This request is used to find which links a server should send messages to if
it wants to forward a message to a channel. It should return OK if the routing table has a
valid entry for the channel from the given source node and then list the nodes to which it
should propagate the message. Otherwise, it should return NONE (e.g., if the channel does
not exist). See graph in Link-State section.
Examples:

req: NEXTHOPS 1 #perl
resp: OK 2 5 9
req: NEXTHOPS 5 #perl
resp: OK 1
req: NEXTHOPS #badchan
resp: NONE

Request: USERTABLE
Response: OK size
Description: If this request is issued, the routing daemon should respond with OK, the
size or number of entries in the routing table, and a multi-line response with its entire user
table in the following format:

nick next-hop distance
nick next-hop distance
nick next-hop distance
. . .

Where nick is the nickname, next-hop is the nodeID of the next hop, and distance is the
current distance value for that destination. You should not include local nicknames in this
list. The order of entries does not matter. Your IRC Server will probably not need to use
this command. We will use this to test your routing daemon. This would be similar to
calling NEXTHOP on every user on the server.
Examples:

req: USERTABLE
resp: OK 3
BOB 2 2
alice 3 1
jim 3 2

13

Request: CHANTABLE
Response: OK size
Description: If this request is issued, the routing daemon should respond with OK, the size
or number of entries in the channel table, and a multi-line response with its entire channel
table in the following format:

channel sourceID next-hop next-hop next-hop . . .
channel sourceID next-hop next-hop next-hop . . .
channel sourceID next-hop next-hop next-hop . . .
. . .

Where channel is the channel name, sourceID is the nodeID on which the message would
come, and next-hop is a list of nodeIDs to which the server should propagate a message for
that channel. You should not include channels that exist only locally in this list. The order
of entries does not matter. Your IRC Server will probably not need to use this command.
We will use this to test your routing daemon. This would be similar to calling NEXTHOPS
on every channel on the server.
Examples:

req: CHANTABLE
resp: OK 4
#perl 1 2 5 9
#perl 2 5 9
#perl 5 1 9
#perl 9 5 2

7 IRC Server (revisited)

Now that we have covered the IRC server, the routing protocols, and the server-daemon
protocol, the only major issue remaining is how to extend your IRC Server to use the routing
daemon so it can send messages to users on remote IRC Servers.

Remember that the PRIVMSG command has two targets: nicknames and channels. If
the target is a nickname, the IRC server must first determine if there is a local user with
that nickname. If not, then it should try to locate the user on a remote IRC Server (using
the routing daemon) and, if found, forward the message to that IRC Server which will
then send it to the target. If the target is not found, then you should send the user an
ERR NOSUCHNICK error. If the target is a channel, then you must echo that message to
every user on that channel.

14

7.1 Requirements

Your extensions to the IRC server should have the following features:

• Connect to the routing daemon’s local port when it starts up. You can assume the
routing daemon will be started first.

• When a new user is registered with the IRC server, it should add the users nick to the
routing daemons list of users using the ADDUSER request.

• When a user leaves the IRC server, it should remove the user’s nick from the routing
daemons list of users using the REMOVEUSER request.

• When a channel is created on the IRC server, it should send an ADDCHAN message
to the routing daemon.

• When the last user leaves a channel on the IRC server, it should send a REMOVECHAN
message to the routing daemon.

• If a user changes his or her nick, remove the old nick and add the new one to the routing
daemon.

• When a PRIVMSG is sent to a nick that we don’t know locally, the IRC Server should
ask the routing daemon to find it, if possible, and then the server should forward the
message to that user. The remote IRC server receiving the message should send it to
the target user the same way it would send any other PRIVMSG to him or her.

• If the target is not found, then you should send the user an ERR NOSUCHNICK error
as defined in section 4.4.1 of the IRC RFC.

• The PRIVMSG command should support multiple targets; i.e., the PRIVMSG com-
mand may have a comma-separated list of target users or channels that should all be
sent the message.

• If the routing daemon dies or you cannot communicate with it, your IRC server may
exit.

You do not have to implement the following:

• Forwarding messages to target servers, host masks, or anything mentioned in the IRC
RFC that is not mentioned in this document.

7.2 Message Forwarding

Once the IRC Server has found the next hop or route to a remote nickname, it must forward
the message to the remote IRC Server. You are responsible for designing a protocol to be
used between your IRC Servers for forwarding these messages so that they will reach the
destination. Here are a couple things to keep in mind when designing your protocol:

15

• When using OSPF, you can only obtain the next hop from the routing daemon. Hence,
each IRC server along the path will have to query its routing daemon to figure out
where to send the packet next.

• When using OSPF, while forwarding, a node or virtual link may go down (or the target
user may leave). In this circumstance, you can just drop the message. You do not have
to inform the user that sent the message that it was dropped.

• You may have to send the message to multiple peers when forwarding to a remote
channel.

• If the same nick is logged on to more than one IRC Server in the network, OSPF should
find the route to the “closest” one. Your forwarding protocol only needs to forward the
message to one of them.

• IRC Servers and virtual links may go down and come back up. If you detect that your
neighbor is down (i.e., the socket is closed), you should check to see if they have come
back up at least once every 3 seconds. In fact, when the network first starts up, since
only one server will come up at a time, all its neighbors will appear to be down at first.

• You should not have IRC Servers communicate if they are not neighbors.

• Your forwarding protocol should not be “flood every message to every IRC server on
the network.” That is not efficient and doesn’t require the routing layer at all.

• You should not rely on any special extensions to the local port mini-protocol. We may
test your IRC Server on our own routing daemon.

8 Implementation Details and Usage

Your programs must be written in the C programming language. You are not allowed to use
any custom socket classes or libraries, only the standard libsocket, and the provided library
functions. You may use the pthread library, but you are responsible for learning how to use
it correctly yourself if you choose to. To use the csapp wrapper library, you must link with
libpthread (-lpthread). If you wish to use other libraries, please contact us.

8.1 Compiling

You responsible for making sure your code compiles and runs correctly on the Andrew x86
machines running Linux (i.e., linux.andrew.cmu.edu). We recommend using gcc to compile
your program and gdb to debug it. You should use the -Wall flag when compiling to generate
full warnings and to help debug. Other tools available on the Andrew unix machines that are
suggested are ElectricFence[8] (link with -lefence) and Valgrind[9]. These tools will detecting
overflows and memory leaks respectively. For this project, you will also be responsible for

16

turning in a GNUMake (gmake) compatible Makefile. See the GNU make manual[6] for
details. When we run gmake we should end up with the routing daemon which you should
call srouted and the simplified IRC Server which is called sircd.

8.2 Command Line Arguments

Your routing daemon must take the following command line arguments in any order. We
will provide you some framework code that will read in these arguments. Please use the
same names for your binaries as shown.

usage: ./srouted -i nodeID -c config file [options]

-i integer

NodeID. Sets the nodeID for this process.

-c filename

Config file. Specifies the name of the configuration file that contains the information
about the neighbor nodes. The format of this file is described below.

It should also recognize the following optional switches:

-a seconds

Advertisement cycle time. The length of time between each advertisement cycle. De-
faults to 30.

-n seconds

Neighbor timeout. The elapsed time after which we declare a neighbor to be down
if we have not received updates from it. You may assume that this value is a multiple of
advertisement cycle time. Defaults to 120.

-r seconds

Retransmission timeout. The elapsed time after which a peer will attempt to retrans-
mit an LSA to a neighbor if it has not yet received an acknowledgement for that LSA. This
value is an integral number of seconds. Defaults to 3.

-t seconds

LSA timeout. The elapsed time after which we expire an LSA if we have not received
updates for it. You may assume that this value is a multiple of advertisement cycle time.
Defaults to 120.

17

8.3 Configuration File Format

This file describes the neighborhood of a node. The neighborhood of a node 1 is composed
by node 1 itself and all the nodes n that are directly connected to 1. For example, in Figure
4, the neighborhood of node 1 is {1, 2, 3}. The format of the configuration file very simple,
and we will supply you with code to parse it. The file contains a series of entries, one entry
per line. Each line has the following format:

nodeID hostname routing-port local-port IRC-port

nodeID
Assigns an identifier to each node.

hostname
The name or IP address of the machine where the neighbor node is running.

local-port
The TCP port on which the routing daemon should listen for the local IRC server.

routing-port
The port where the neighbor node listens for routing messages.

IRC-port
The TCP port on which the IRC server listens for clients and other IRC servers.

Figure 4 – Sample Node Network

Node 2 Node 5
2 localhost 20203 20204 20205 3 unix3.andrew.cmu.edu 20206 20207 20208
1 unix1.andrew.cmu.edu 20200 20201 20202 5 localhost 20209 20210 20211
3 unix3.andrew.cmu.edu 20206 20207 20208

Figure 5: Sample configuration file for nodes 2 and 5

18

How does a node find out which ports it should use as routing, IRC, and local ports?
When reading the configuration file if an entry’s nodeID matches the node’s nodeID of the
node (passed in on the command line), then the node uses the specified port numbers to
route and forward packets. Figure 5 contains a sample configuration files corresponding to
node 2 and node 5 for the network in Figure 4. Notice that the file for node 2 contains
information about node 2 itself. Node 2 uses this information to configure itself.

8.4 Running

This is how we will start your IRC network.

First, we start each routing daemon with the commands:
./srouted -i 0 -c node0.conf . . .&
./srouted -i 1 -c node1.conf . . .&
./srouted -i 2 -c node2.conf . . .&
. . .

Each routing daemon will be started with its own configuration file to find out about its
neighbors (described above) and its nodeID. In addition, we will pass it certain arguments
to set the timer values.

Next, we will start each IRC server at each node:
./sircd 0 node0.conf &
./sircd 1 node1.conf &
./sircd 2 node2.conf &
. . .

Each IRC Server will be passed its nodeID and the configuration file to find out about its
neighbors and what ports it should use/talk to. Now we will wait enough time such that the
routing state should have converged and test your system. (We may also bring down nodes
and restart them to test how resilient your system is to faults)

8.5 Framework Code

Look at your project 1 folder. We have provided you with some framework code in project
1 to simplify some tasks for you, like reading in the command line arguments and parsing
the configuration file. You do not have to use any of this code if you do not want to. This
code is documented in rtlib.h and implemented in rtlib.c. Feel free to modify this code also.
However, you must use the following three routines, which are declared in rtgrading.h and
implemented in rtgrading.c, and must not modify them:

19

• rt init(. . .): You must call this function when your routing daemon starts with the
argc and argv passed to your program.

• rt sendto(. . .): Wrapper function for the sendto(system call. The parameters and
semantics are the same as in the system call. You should use this function to send UDP
packets in your routing daemon.

• rt recvfrom(. . .): Wrapper function for the recvfrom(system call. The parameters
and semantics are the same as in the system call. You should use this function to receive
UDP packets in your routing daemon.

We will replace rtgrading.c with implementations that we will use for grading so you
should not modify it.

DISCLAIMER: We reserve the right to change the support code as the project pro-
gresses to fix bugs and to introduce new features that will help you debug your code. You
are responsible for reading the b-boards to stay up-to-date on these changes. We will assume
that all students in the class will read and be aware of any information posted to b-boards.

9 Testing

Code quality is of particular importance to server robustness in the presence of client errors
and malicious attacks. Thus, a large part of this assignment (and programming in general)
is knowing how to test and debug your work. There are many ways to do this; be creative.
We would like to know how you tested your server and how you convinced yourself it actu-
ally works. To this end, you should submit your test code along with brief documentation
describing what you did to test that your server works. The test cases should include both
generic ones that check the server functionality and those that test particular corner cases.
If your server fails on some tests and you do not have time to fix it, this should also be
documented (we would rather appreciate that you know and acknowledge the pitfalls of your
server, than miss them). Several paragraphs (or even a bulleted list of things done and why)
should suffice for the test case documentation.

Daemon Debugging:
The daemon will have no user interface, but you can still telnet to the local port on your

routing daemons to inject destinations, remove destinations, check routing tables, etc.
To test if your system can handle node faults, kill some of your routing daemons and IRC

servers. To test if your system can handle link faults, try blocking off a pair of UDP ports
between two routing daemons (You can do this artificially in your code by dropping packets
that go between them).

20

10 Handin

Handing in code for checkpoints and the final submission deadline will be done through your
subversion repositories. If you stay in the same group, you must work this project on the
same subversion repository used for project 1. If you change your team, you can check out
your subversion repository with the following command where you must change your Team#
to “Team1” for instance, and your P# to the correct number such as “P2”:

svn co https://moo.cmcl.cs.cmu.edu/441/svn/Project2Team# –username Project2Team#P#

The grader will check directories in your repository for grading, which can be created
with an “svn copy”:

• Checkpoint 1 – YOUR REPOSITORY/tags/checkpoint1

• Final Handin – YOUR REPOSITORY/tags/final

Your repository should contain the following files:

• Makefile – Make sure all the variables and paths are set correctly such that your
program compiles in the handin directory. The Makefile should build two executable
named srouted and sircd.

• All of your source code – (files ending with .c, .h, etc. only, no .o files and no
executables)

• readme.txt – File containing a brief description of your design of your routing daemon
and a complete description of the protocols you used for forwarding IRC messages.

• tests.txt – File containing documentation of your test cases and any known issues you
have.

• extra.txt – (optional) Documentation on any extra credit items you have worked on.

Late submissions will be handled according to the policy given in the course syllabus

11 Grading

• OSPF User routing: 15 points

The OSPF routing protocol should find a route if it exists. If there is more than one,
it should only accept one and ignore the others. If there is no route, it should timeout
after a specified time and ignore any path it might receive after timeout. If there are
two users, you should use only one path and ignore the others.

21

• OSPF Channel routing: 20 points

The OSPF routing protocol should provide a list of nodes to which a channel message
should be propagated. It must use shortest path finding and build the minimum span-
ning tree for each source node.

• User Forwarding: 10 points

Using the PRIVMSG command with a nickname target, the server should communicate
with the daemon to get a next-hop from the local server to the server where the desti-
nation resides. Then, you must send a packet using a protocol of your devising. When
an IRC server gets a forwarding packet, it should deliver the message locally or query
the local daemon for the next hop and propagate the message. The message should
travel along the path returned by the daemons and should ultimately be received. If
path fails, you can drop the message and do not have to return an error.

• Channel forwarding: 10 points

Similarly, using the PRIVMSG command with a channel target, the server should com-
municate with the daemon to get a list of next-hops from the local server to the servers
using that channel. Then, you must send a packet using a protocol of your devising.
When an IRC server gets a forwarding packet, it should deliver the message locally
and/or query the local daemon for the next list of hops given the source ID of the node
from which it received the packet. If the path fails, you can drop the message and do
not have to return an error.

• Robustness: 15 points

– Server robustness: 8 points

– Test cases: 7 points

Since code quality is of a high priority in server programming, we will test your pro-
gram in a variety of ways using a series of test cases. For example, we will send your
server a message longer than 512 bytes to test if there is a buffer overflow. We will
make sure that your server does something reasonable when given an unknown com-
mand, or a command with invalid arguments. We will verify that your server correctly
handles clients that leave abruptly (without sending a QUIT message). We will test
that your server correctly handles concurrent requests from multiple clients, without
blocking inappropriately. The only exception is that your server may block while doing
DNS lookups

However, there are many corner cases that the RFC does not specify. You will find that
this is very common in “real world” programming since it is difficult to foresee all the

22

problems that might arise. Therefore, we will not require your server pass all of the test
cases in order to get a full 15 points.

We will also look at your own documented test cases to evaluate how you tested your
work.

• Style: 15 points

Poor design, documentation, or code structure will probably reduce your grade by mak-
ing it hard for you to produce a working program and hard for the grader to understand
it; egregious failures in these areas will cause your grade to be lowered even if your im-
plementation performs adequately.

To help your development and testing, we suggest your server optionally take a verbosity
level switch (-v level) as the command line argument to control how much information
it will print. For example, -v 0 means nothing printed, -v 0 means basic logging of users
signing on and off, -v 2 means logging every message event.

• Extra credit: 25 points

See extra credit section

• Checkpoint: 15 points

Tests and extra credit sections need not be submitted. Late policy does not apply to
the checkpoint. You may either submit on time or else you may not get the points
applicable to the checkpoint. The user-forwarding feature of your routing daemon will
be tested on the checkpoint.

12 Extra Credit

Our intent in suggesting extra credit items is to give interested students the opportunity to
explore additional topics that we do not have time to cover in class. The primary reward for
working on the suggested items is the additional experience and knowledge that they give
you, not extra credit points. Extra credit will be granted at the discretion of the teaching
staff.

For each suggestion, we list a rough estimate of the number of points you can receive.
If you have more specific expectations about the extra credit you will receive, you should
consult your TAs beforehand to avoid any disappointment.

23

If you work on the suggested topics below, please include in your project submission a file
called extra.txt, describing what you have done. To receive credit for the programming items
listed below, the code should be incorporated in your server. If it doesn’t work, don’t submit
it! Extra credit options should be disabled by default, but provide a command
line argument to enable them.

• Test case, 2 points – In general, your test code will be evaluated in the robustness
part (see evaluation section). But you can get 2 points if your test code captures an
interesting error case and is adopted for project grading.

• Denial of Service, 4 points – (2 points for implementation, 2 points for evaluation.)
Secion 8.10 of the RFC provides some suggestions for dealing with malicious clients
that attempt to make the IRC service useless by flooding the network. Implement the
suggestion, and experimentally evaluate its effectiveness. Report your experimental
findings. Propose any other solutions to the problem that you think of.

• Async name loopups, 5 points – Your IRC server must perform DNS lookups on
clients addresses. As described in Section 8.11 of the RFC, the standard library calls may
block for an extended time while the lookup times out. This is obviously an undesirable
behavior for a server. Implement asynchronous name lookups using a seperate thread
to perform name lookups without blocking the primary server thread.

• Scalability, 4 points – Section 9 of the RFC notes that one of the current problems
with the IRC protocol is scalability. Suggest how the protocol might be changed to
improve scalability. You may get some ideas from looking at the design of IP multicast.
(Or maybe not!)

• Non-blocking Mini Protocol, 2 points – An undesirable property of our routing
daemon is that the IRC Server must block while waiting for a response from it. Make
your IRC Server not block while waiting for a response. Furthermore, allow your IRC
Server to submit multiple requests to the routing daemon at the same time; for example,
so that it can initiate multiple route discoveries at the same time.

• State synchronization (more like real OSPF), 8 points – The link-state routing
protocol we have implemented is extremely inefficient, because each node retransmits
its entire state table every announcement period. Real OSPF implementations use high
frequency “HELLO” packets to ensure that links are still alive, but only perform link
state advertisements infrequently, or when a routing update occurs. Add this capability
to your router – it will require modifying the packet format slightly to permit per-entry
sequence numbers, and you’ll have to add new types to support the state synchronization
and updates.

24

13 Getting Started

Depending on your previous experience, this project may be substantially larger than your
previous programming projects. Expect the routing implementation to require more than
1000 lines of code. With that in mind, this section gives suggestions for how to approach
the project. Naturally, other approaches are possible, and you are free to use them.

• First, take a deep breath and do not panic.

• Start early! The hardest part of getting started tends to be getting started. Remember
the 90-90 rule: the first 90% of the job takes 90% of the time; the remaining 10%
takes the other 90% of the time. Starting early gives your time to ask questions. For
clarifications on this assignment, post to the main class bulletin board (academic.cs.15-
441) and read project updates on the course web page. Talk to your classmates. While
you need to write your own original program, we expect conversation with other people
facing the same challenges to be very useful. Come to office hours. The course staff
is here to help you. Caution: This project requires substantial effort in debugging.
Starting early is critical to finish this project on time.

• Read the revised RFC selectively. RFCs are written in a style that you may find
unfamiliar. However, it is wise for you to become familiar with it, as it is similar to the
styles of many standards organizations. We dont expect you to read every page of the
RFC, especially since you are only implementing a small subset of the full protocol, but
you may well need to re-read critical sections a few times for the meaning to sink in.

• Note that the normal gdb debugging may not be useful in this project. Since the
routing protocol happens among multiple nodes concurrently, stopping one daemon
process and debugging step by step will not get you into the desired situation. To
search what happened on the netework thoroughly, we recommend you to create a log
file and dump information updated on one process to that file.

• Now be ready to design your own routing daemon. Since the routing daemon and IRC
server are two programs, it is not necessary to have the two talking to each other yet. In
fact, it is probably best to have the two thoroughly tested independently to trap errors
more efficiently. First, get familiar with UDP socket programming, which is almost
identical to TCP socket programming, but not quite. There are some references to help
you at the end of this document. Next, write up a design of each part of the routing
daemon and decide what data structures you will need.

• First tackle general flooding and table construction. Work on getting the link entry
and user entry tables functional. Once the protocol works for messages between users,
then start working on multicasting, minimum spanning trees, shortest path finding, and
multicasting.

25

• Again, thoroughly test the routing daemon. Telnet is a very useful tool for this. Make
sure your daemon can add paths, remove paths, find paths, withstand failures, and does
not segfault.

• Before you start implementing message forwarding in your IRC Server, carefully design
a protocol. You might need to differentiate between users and channels since channels
need to be multicasted. Outline what parts of the original IRC server need to be
modified in order to connect and talk to the routing daemon.

• Almost there! Hopefully, after implementing the message forwarding protocol and server
extensions everything will work perfectly. More likely, though, something will break.
Things that work perfectly separately do not always work perfectly together. This is
a big software engineering problem. So, yet again, thoroughly test the final product.
Run the same tests you used on the individual pieces to make sure nothing broke in the
merge.

• You may use some of the system call wrappers provided by CS 15-213 csapp library
(included with the simple IRC client package). However, for server robustness, you
should not use certain wrappers such as Select since temporary system call failures
(e.g., EINTR) would cause the server to abort. Instead, you server should handle
such errors gracefully. For the same reason, you should NOT use the RIO read/write
functions provided by the csapp library as they may cause your server to block while
reading/writing, or give inappropriate return codes.

• Be liberal in what you accept, and conservative in what you send[7]. Following this guid-
ing principle of Internet design will help ensure your server works with many different
and unexpected client behaviors.

• Code quality is important. Make your code modular and extensible where possible.
You should probably invest an equal amount of time in testing and debugging as you
do writing. Also, debug incrementally. Write in small pieces and make sure they work
before going on to the next piece. Your code should be readable and commented. Not
only should your code be modular, extensible, readable, etc, most importantly, it should
be your own!

14 Resources

For information on network programming, the following may be helpful:

• Class Textbook – Sockets, OSPF, etc

• Class B-board – Announcements, clarifications, etc

• Class Website – Announcements, errata, etc

26

• Computer Systems: A Programmer’s Perspective (CS 15-213 text book)[10]

• BSD Sockets: A Quick And Dirty Primer[11]

• An Introductory 4.4 BSD Interprocess Communication Tutorial[12]

• Unix Socket FAQ[13]

• Sockets section of the GNU C Library manual

– Installed locally: info libc

– Available online: GNU C Library manual[14]

• man pages

– Installed locally (e.g. man socket)

– Available online: the Single Unix Specification[15]

• Google groups - Answers to almost anything[16]

References

[1] IRC RFC: http://www.irchelp.org/irchelp/rfc/

[2] The IRC Prelude: http://www.irchelp.org/irchelp/new2irc.html

[3] RFC 1459: http://www.ietf.org/rfc/rfc1459.txt

[4] Annotated RFC: http://www.cs.cmu.edu/ srini/15-441/F07/project1/rfc.html

[5] OSPF RFC: http://www.rfc-editor.org/rfc/rfc2328.txt

[6] GNU Make Manual: http://www.gnu.org/manual/software/make/html mono/make.html

[7] RFC 1122: http://www.ietf.org/rfc/rfc1122.txt, page 11

[8] ElectricFence: http://perens.com/FreeSoftware/ElectricFence/

[9] Valgrind: http://valgrind.org/

[10] CSAPP: http://csapp.cs.cmu.edu

[11] http://www.frostbytes.com/ jimf/papers/sockets/sockets.html

[12] http://docs.freebsd.org/44doc/psd/20.ipctut/paper.pdf

[13] http://www.developerweb.net/forum/forumdisplay.php?s=f47b63594e6b831233c4b8ebaf10a614&f=70

[14] http://www.gnu.org/software/libc/manual/

[15] http://www.opengroup.org/onlinepubs/007908799/

[16] http://groups.google.com

27

