
Design & Testing:
Part Yin and Yang

Computer Networks (15-441) Fall 2007
Daniel Spangenberger



Design: Outside the Box

• Two types of applications

• Data-centric

• What type of data and what does it look like?

• Where do we store it

• Protocol-centric

• How do I talk to the world?

• Mostly about interfaces



Design: Inside the Box

• How do I access my data?

• Interfaces!

• How do I store my data?

• Implementation!

• Interfaces alleviate implementation pain

• Wrap a good interface around an 
implementation



Lessons to Be Learned
Lesson One

• Don’t Repeat Yourself (DRY principle)

• How much copy and paste do you use?

• Put it in a separate function!

• Design a small set of orthogonal interfaces 
to your modules

• Adhere to them!



Lessons to Be Learned
Lesson Two

• It’s OK for code to be shy

• It’s preferred! (unlike for you)

• Shy code...

• Doesn’t expose itself in public

• Doesn’t stare at others’ privates

• Surely doesn’t touch others’ privates!

• Doesn’t have a whole lot of friends



Lessons to Be Learned
Shyness (Example One)

Which is better?

int send_msg_to_user(int user_id,
user_sock, 
char* msg);

int send_msg_to_user(struct user_t*, 
char* msg);



Lessons to Be Learned
Shyness (Example Two)

int send_to_user(char *uname, char* msg) {
struct user *u;
for (u = userlist; u; u = u->next) {
if (!strcmp(u->uname, uname))
...

Consider factoring this into a separate function:
void find_user(struct user *u, char* uname)



Lessons to Be Learned
Lesson Three

• Keep it simple

• No premature optimization

• Even in the optimization contest, 
optimization generally not too 
important...

• Throw out unnecessary features / requests

• Not so important in 441...



Lessons to Be Learned
Lesson Four

• Be Consistent

• Naming

• Style

• Doesn’t matter what you choose, but 
choose something (no memcpy vs bcopy)

• Decide and document memory ownership

• Make it explicit in interfaces!



A Note:
Error Handling

• Detect at the low level

• malloc() returns null!

• Report at high level

• Not a good idea to abort()

• Print an error message and attempt to 
continue...



The Testing Mindset

• Think like the adversary (like security!)

• Your goal is breaking the code

• If you can’t, you probably haven’t tried hard enough

• This ensures that in five days you won’t spend five 
hours tracking down that bug...

• Think about your code

• Then write tests to exercise it

• Hit the corners!



Testability

• Test at all levels!

• From the user’s perspective

• From the code’s perspective

• Bugs are easiest to find in a local scope

• Unit test things if possible

• Make granular integration tests!



Testing Methods

• Unit

• Integration

• Regression 

• Performance



Unit Tests
• Tests specific features in a vacuum

• Generally reserved for internals...

• Hash tables...

• Linked lists...

• Read/write buffers...

• Always in the language of the product

• Use CUnit for 441 projects



Integration Tests

• “Do multiple pieces fit together?”

• Tests a major user-facing feature

• Does JOIN work?

• Does PRIVMSG work with nine targets?

• Generally utilizes a tool outside the product

• We will provide you with some samples



Blackbox vs Whitebox

• Blackbox

• Implementation-agnostic test cases

• Typical end-user use cases

• Whitebox

• Implementation-aware test cases

• Mainly for the corner cases/implementation 
details



Regression Tests

• Shows how a commit affects the product

• General idea:

• Record what tests passed at rev N

• See what tests pass at rev N+1

• Look at the difference

• If it wasn’t broken before you regressed



More Regression

• New features may uncover latent bugs

• Write new test cases when found!

• Make sure the test does what you think it 
does



Performance Testing

• General principle: Kick the shit out of it

• Two approaches:

• Isolate subsystems for analysis

• Test the gamut for the big picture

• Regression testing is valid for performance too!

• Make sure you don’t make performance 
worse at commit



Want more?

• Joel Spolsky will give you some info (if you 
can take him!) www.joelonsoftware.com

• There is the ACE framework 
http://www.cs.wustl.edu/~schmidt/patterns-ace.html

• Presentation on patterns for network apps
http://www.ncst.ernet.in/education/apgdst/npfac/slides/
NP-Patterns.ppt

http://www.joelonsoftware.com
http://www.joelonsoftware.com
http://www.cs.wustl.edu/~schmidt/patterns-ace.html
http://www.cs.wustl.edu/~schmidt/patterns-ace.html
http://www.ncst.ernet.in/education/apgdst/npfac/slides/NP-Patterns.ppt
http://www.ncst.ernet.in/education/apgdst/npfac/slides/NP-Patterns.ppt
http://www.ncst.ernet.in/education/apgdst/npfac/slides/NP-Patterns.ppt
http://www.ncst.ernet.in/education/apgdst/npfac/slides/NP-Patterns.ppt

