
15-441 Computer Networking
The Web

2

Web history

• 1945: Vannevar Bush, “As we may think”, Atlantic Monthly, July,
1945.

• describes the idea of a distributed hypertext system.
• a “memex” that mimics the “web of trails” in our

minds.
• 1989: Tim Berners-Lee (CERN) writes internal proposal to develop

a distributed hypertext system

• connects “a web of notes with links”.
• intended to help CERN physicists in large projects

share and manage information
• 1990: Tim BL writes graphical browser for Next machines.

3

Web history (cont)

• 1992
• NCSA server released
• 26 WWW servers worldwide

• 1993
• Marc Andreessen releases first version of NCSA Mosaic Mosaic

version released for (Windows, Mac, Unix).
• Web (port 80) traffic at 1% of NSFNET backbone traffic.
• Over 200 WWW servers worldwide.

• 1994

• Andreessen and colleagues leave NCSA to form "Mosaic
Communications Corp" (Netscape).

4

Design the Web

• How would a computer scientist do it?
• What are the important considerations?

• What are NOT important?
• What should be the basic architecture?

• What are the components?
• What are the interfaces of components?

5

Basic Concepts

• client/server model
• client: browser that

requests, receives,
“displays” Web objects

• server: Web server sends
objects in response to
requests

• HTTP: Web’s application layer
protocol
• HTTP 1.0: RFC 1945
• HTTP 1.1: RFC 2068

PC running
Explorer

Server
running

Apache Web
server

Mac running
Navigator

HTTP request

HTTP request

HTTP response

HTTP response

6

Basic Concepts

• Web page consists of objects
• Web page consists of base HTML-file which includes

several referenced objects
• Object can be HTML file, JPEG image, Java applet, audio

file,…
• Each page or object is addressable by a URL

7

Overview of Concepts in This Lecture

• HTTP
• Interaction between HTTP and TCP
• Persistent HTTP
• Caching
• Content Distribution Network (CDN)

• State
• What is stateless protocol? Advantages and disadvantages?
• What type of states are used in the Web?
• Issues of maintaining state

8

HTTP Basics

• HTTP layered over bidirectional byte stream
• Almost always TCP

• Interaction
• Client sends request to server, followed by

response from server to client
• Requests/responses are encoded in text

• Stateless
• Server maintains no information about past

client requests

9

HTTP Request

10

HTTP Request Example

GET / HTTP/1.1
Accept: */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)
Host: www.intel-iris.net
Connection: Keep-Alive

http://www.seshan.org/

11

HTTP Response Example

HTTP/1.1 200 OK
Date: Tue, 27 Mar 2001 03:49:38 GMT
Server: Apache/1.3.14 (Unix) (Red-Hat/Linux) mod_ssl/2.7.1 OpenSSL/0.9.5a

DAV/1.0.2 PHP/4.0.1pl2 mod_perl/1.24
Last-Modified: Mon, 29 Jan 2001 17:54:18 GMT
ETag: "7a11f-10ed-3a75ae4a"
Accept-Ranges: bytes
Content-Length: 4333
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/html
…..

12

HTTP Request

• Request line
• Method

• GET – return URI
• HEAD – return headers only of GET response
• POST – send data to the server (forms, etc.)

• URL (relative)
• E.g., /index.html

• HTTP version

13

HTTP Request (cont.)

• Request headers
• Authorization – authentication info
• Acceptable document types/encodings
• From – user email
• If-Modified-Since
• Referrer – what caused this page to be

requested
• User-Agent – client software

• Blank-line
• Body

14

HTTP Response
• Status-line

• HTTP version
• 3 digit response code

• 1XX – informational
• 2XX – success

• 200 OK
• 3XX – redirection

• 301 Moved Permanently
• 303 Moved Temporarily
• 304 Not Modified

• 4XX – client error
• 404 Not Found

• 5XX – server error
• 505 HTTP Version Not Supported

• Reason phrase

15

HTTP Response (cont.)

• Headers
• Location – for redirection
• Server – server software
• WWW-Authenticate – request for authentication
• Allow – list of methods supported (get, head, etc)
• Content-Encoding – E.g x-gzip
• Content-Length
• Content-Type
• Expires
• Last-Modified

• Blank-line
• Body

16

How to Mark End of Message?

• Size of message Content-Length
• Implications:

• must know size of transfer in advance
• What applications are not appropriate?

• Close connection
• Only server can do this

17

Cookies: Keeping “State” (Cont.)

client Amazon server
usual http request msg

usual http response +
Set-cookie: 1678

usual http request msg
cookie: 1678

usual http response msg

usual http request msg
cookie: 1678

usual http response msg

cookie-
specific
action

cookie-
specific
action

server
creates ID

1678 for user

entry in backend

database

access

ac
ce

ss

Cookie file
amazon: 1678
ebay: 8734

Cookie file

ebay: 8734

Cookie file

amazon: 1678
ebay: 8734

one week later:

18

Cookies: Keeping “state”

Many major Web sites use cookies
Four components:

1) Cookie header line in the
HTTP response message

2) Cookie header line in HTTP
request message

3) Cookie file kept on user’s
host and managed by user’s
browser

4) Back-end database at Web
site

Example:
• Susan access Internet

always from same PC
• She visits a specific e-

commerce site for first time
• When initial HTTP requests

arrives at site, site creates a
unique ID and creates an
entry in backend database
for ID

19

Outline

• Web intro, HTTP

• Persistent HTTP

• HTTP caching

• Content distribution networks

20

Typical Workload (Web Pages)

• Multiple (typically small) objects per page
• File sizes

• Heavy-tailed
• Pareto distribution for tail
• Lognormal for body of distribution

• Embedded references
• Number of embedded objects =

pareto – p(x) = akax-(a+1)

21

HTTP 0.9/1.0

• One request/response per TCP connection
• Simple to implement

• Disadvantages
• Multiple connection setups three-way

handshake each time
• Several extra round trips added to transfer

• Multiple slow starts

22

Single Transfer Example

Client Server
SYN

SYN

SYN

SYN

ACK

ACK

ACK

ACK

ACK

DAT

DAT

DAT

DAT

FIN

ACK

0 RTT

1 RTT

2 RTT

3 RTT

4 RTT

Server reads from
disk

FIN

Server reads from
disk

Client opens TCP
connection
Client sends HTTP request
for HTML

Client parses HTML
Client opens TCP
connection

Client sends HTTP request
for image

Image begins to arrive

23

More Problems

• Short transfers are hard on TCP
• Stuck in slow start
• Loss recovery is poor when windows are small

• Lots of extra connections
• Increases server state/processing

• Server also forced to keep TIME_WAIT connection state
• Why must server keep these?
• Tends to be an order of magnitude greater than # of

active connections, why?

24

Persistent Connection Solution

• Multiplex multiple transfers onto one TCP connection

• How to identify requests/responses
• Delimiter Server must examine response for delimiter string
• Content-length and delimiter Must know size of transfer in

advance
• Block-based transmission send in multiple length delimited

blocks
• Store-and-forward wait for entire response and then use

content-length
• Solution use existing methods and close connection otherwise

25

Persistent Connection Example

Client Server

ACK

ACK

DAT

DAT

ACK

0 RTT

1 RTT

2 RTT

Server reads from
disk

Client sends HTTP request
for HTML

Client parses HTML
Client sends HTTP request
for image

Image begins to arrive

DAT
Server reads from
disk

DAT

26

Persistent HTTP

Nonpersistent HTTP issues:
• Requires 2 RTTs per object
• OS must work and allocate host

resources for each TCP
connection

• But browsers often open parallel
TCP connections to fetch
referenced objects

Persistent HTTP
• Server leaves connection open

after sending response
• Subsequent HTTP messages

between same client/server are
sent over connection

Persistent without pipelining:
• Client issues new request

only when previous
response has been received

• One RTT for each
referenced object

Persistent with pipelining:
• Default in HTTP/1.1
• Client sends requests as

soon as it encounters a
referenced object

• As little as one RTT for all
the referenced objects

27

Outline

• Web Intro, HTTP

• Persistent HTTP

• Caching

• Content distribution networks

28

Web Proxy Caches

• User configures browser: Web
accesses via cache

• Browser sends all HTTP
requests to cache
• Object in cache: cache

returns object
• Else cache requests object

from origin server, then
returns object to client

client

Proxy
server

client

HTTP request

HTTP request

HTTP response

HTTP response

HTTP request

HTTP response

origin
server

origin
server

29

Caching Example (1)

Assumptions
• Average object size = 100,000 bits
• Avg. request rate from institution’s

browser to origin servers = 15/sec
• Delay from institutional router to

any origin server and back to router
= 2 sec

Consequences
• Utilization on LAN = 15%
• Utilization on access link = 100%
• Total delay = Internet delay + access

delay + LAN delay
= 2 sec + minutes + milliseconds

origin
servers

public
Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

30

Caching Example (2)

Possible solution
• Increase bandwidth of access link

to, say, 10 Mbps
• Often a costly upgrade

Consequences
• Utilization on LAN = 15%
• Utilization on access link = 15%
• Total delay = Internet delay + access

delay + LAN delay
= 2 sec + msecs + msecs

origin
servers

public
Internet

institutional
network 10 Mbps LAN

10 Mbps
access link

31

Caching Example (3)

Install cache
• Suppose hit rate is .4
Consequence
• 40% requests will be satisfied almost

immediately (say 10 msec)
• 60% requests satisfied by origin server
• Utilization of access link reduced to 60%,

resulting in negligible delays
• Weighted average of delays

= .6*2 sec + .4*10msecs < 1.3 secs

origin
servers

public
Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional
cache

32

HTTP Caching

• Clients often cache documents
• Challenge: update of documents
• If-Modified-Since requests to check

• HTTP 0.9/1.0 used just date
• HTTP 1.1 has an opaque “entity tag” (could be a file signature,

etc.) as well
• When/how often should the original be checked for

changes?
• Check every time?
• Check each session? Day? Etc?
• Use Expires header

• If no Expires, often use Last-Modified as estimate

33

Example Cache Check Request

GET / HTTP/1.1
Accept: */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
If-Modified-Since: Mon, 29 Jan 2001 17:54:18 GMT
If-None-Match: "7a11f-10ed-3a75ae4a"
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT

5.0)
Host: www.intel-iris.net
Connection: Keep-Alive

34

Example Cache Check Response

HTTP/1.1 304 Not Modified
Date: Tue, 27 Mar 2001 03:50:51 GMT
Server: Apache/1.3.14 (Unix) (Red-Hat/Linux) mod_ssl/2.7.1

OpenSSL/0.9.5a DAV/1.0.2 PHP/4.0.1pl2 mod_perl/1.24
Connection: Keep-Alive
Keep-Alive: timeout=15, max=100
ETag: "7a11f-10ed-3a75ae4a"

35

Problems

• Over 50% of all HTTP objects are uncacheable – why?
• Not easily solvable

• Dynamic data stock prices, scores, web cams
• CGI scripts results based on passed parameters

• Obvious fixes
• SSL encrypted data is not cacheable

• Most web clients don’t handle mixed pages well many generic
objects transferred with SSL

• Cookies results may be based on passed data
• Hit metering owner wants to measure # of hits for revenue, etc.

• What will be the end result?

36

Content Distribution Networks (CDNs)

• The content providers are the CDN
customers.

Content replication
• CDN company installs hundreds of

CDN servers throughout Internet
• Close to users

• CDN replicates its customers’ content
in CDN servers. When provider
updates content, CDN updates
servers

origin server
in North America

CDN distribution node

CDN server
in S. America CDN server

in Europe

CDN server
in Asia

37

Outline

• HTTP intro and details

• Persistent HTTP

• HTTP caching

• Content distribution networks

38

Content Distribution Networks &
Server Selection

• Replicate content on many servers
• Challenges

• How to replicate content
• Where to replicate content
• How to find replicated content
• How to choose among know replicas
• How to direct clients towards replica

39

Server Selection

• Which server?
• Lowest load to balance load on servers
• Best performance to improve client performance

• Based on Geography? RTT? Throughput? Load?

• Any alive node to provide fault tolerance
• How to direct clients to a particular server?

• As part of routing anycast, cluster load balancing
• Not covered

• As part of application HTTP redirect
• As part of naming DNS

40

Application Based

• HTTP supports simple way to indicate that Web page has moved (30X
responses)

• Server receives Get request from client
• Decides which server is best suited for particular client and object
• Returns HTTP redirect to that server

• Can make informed application specific decision
• May introduce additional overhead multiple connection setup, name

lookups, etc.
• While good solution in general, but…

• HTTP Redirect has some design flaws – especially with current
browsers

41

Naming Based

• Client does name lookup for service
• Name server chooses appropriate server address

• A-record returned is “best” one for the client
• What information can name server base decision on?

• Server load/location must be collected
• Information in the name lookup request

• Name service client typically the local name server for client

42

How Akamai Works

• Clients fetch html document from primary server
• E.g. fetch index.html from cnn.com

• URLs for replicated content are replaced in html
• E.g. replaced with

• Client is forced to resolve aXYZ.g.akamaitech.net
hostname

43

How Akamai Works

• How is content replicated?
• Akamai only replicates static content (*)
• Modified name contains original file name
• Akamai server is asked for content

• First checks local cache
• If not in cache, requests file from primary server and

caches file

* (At least, the version we’re talking about today. Akamai actually lets sites write
code that can run on Akamai’s servers, but that’s a pretty different beast)

44

How Akamai Works

• Root server gives NS record for akamai.net
• Akamai.net name server returns NS record for

g.akamaitech.net
• Name server chosen to be in region of client’s name

server
• TTL is large

• G.akamaitech.net nameserver chooses server in region
• Should try to chose server that has file in cache - How

to choose?
• Uses aXYZ name and hash
• TTL is small why?

45

Simple Hashing

• Given document XYZ, we need to choose a server to use
• Suppose we use modulo
• Number servers from 1…n

• Place document XYZ on server (XYZ mod n)
• What happens when a servers fails? n n-1

• Same if different people have different measures of n

• Why might this be bad?

46

How Akamai Works

End-user

cnn.com (content provider) DNS root server Akamai server

1 2 3

4

Akamai high-level
DNS server

Akamai low-level DNS
server

Nearby matching
Akamai server

11

6
7

8

9

10

Get
index.
html

Get /cnn.com/foo.jpg

12

Get foo.jpg

5

47

Akamai – Subsequent Requests

End-user

cnn.com (content provider) DNS root server Akamai server

1 2 Akamai high-level
DNS server

Akamai low-level DNS
server

7

8

9

10

Get
index.
html

Get
/cnn.com/foo.jpg

Nearby matching
Akamai server

48

Summary

• Simple text-based file exchange protocol
• Support for status/error responses, authentication, client-side state

maintenance, cache maintenance
• Interactions with TCP

• Connection setup, reliability, state maintenance
• Persistent connections

• How to improve performance
• Persistent connections
• Caching
• Replication

• State
• Deal with maintenance & consistency

49

Caching Proxies – Sources for Misses

• Capacity
• How large a cache is necessary or equivalent to infinite
• On disk vs. in memory typically on disk

• Compulsory
• First time access to document
• Non-cacheable documents

• CGI-scripts
• Personalized documents (cookies, etc)
• Encrypted data (SSL)

• Consistency
• Document has been updated/expired before reuse

• Conflict
• No such misses

50

Naming Based

• Round-robin
• Randomly choose replica
• Avoid hot-spots

• [Semi-]static metrics
• Geography
• Route metrics
• How well would these work?

• Predicted application performance
• How to predict?
• Only have limited info at name resolution

	15-441 Computer Networking�The Web �
	Web history
	Web history (cont)
	Design the Web
	Basic Concepts
	Basic Concepts
	Overview of Concepts in This Lecture
	HTTP Basics
	HTTP Request
	HTTP Request Example
	HTTP Response Example
	HTTP Request
	HTTP Request (cont.)
	HTTP Response
	HTTP Response (cont.)
	How to Mark End of Message?
	Cookies: Keeping “State” (Cont.)
	Cookies: Keeping “state”
	Outline
	Typical Workload (Web Pages)
	HTTP 0.9/1.0
	Single Transfer Example
	More Problems
	Persistent Connection Solution
	Persistent Connection Example
	Persistent HTTP
	Outline
	Web Proxy Caches
	Caching Example (1)
	Caching Example (2)
	Caching Example (3)
	HTTP Caching
	Example Cache Check Request
	Example Cache Check Response
	Problems
	Content Distribution Networks (CDNs)
	Outline
	Content Distribution Networks & �Server Selection
	Server Selection
	Application Based
	Naming Based
	How Akamai Works
	How Akamai Works
	How Akamai Works
	Simple Hashing
	How Akamai Works
	Akamai – Subsequent Requests
	Summary
	Caching Proxies – Sources for Misses
	Naming Based

