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Why Do | Want Networking?

¢ Goal of Networking: Communication
* Share data

SOCket Programming « Pass Messages

e Say | want to talk to a friend in Singapore...

Lecture 2 * How can | do this?
i = What applications and services must | use?
Daniel Spangenberger  Where can | access them?
15-441 Computer Networks, Fall 2007 * How will the data get there?

= Willit be reliable?

Lecture Today... Layered Commuication

» Motivations for Sockets

*What’s in a Socket?

» Working with Sockets

e Concurrent Network Applications
s Software Engineering for Project 1

What's really going on... Which is easier?

 An application programmer (writing an IRC server)

= Doesn’t need to send IP packets

= Doesn’t need to send Ethernet frames
= Doesn’t need to worry about reliability
= Shouldn’t have to!

e Sockets do this!
* TCP streams
@ = | R [prjfket g P::ket * UDP packetized service (Project 2)
« You'll be doing this! (using sockets)

* Toshare data
Ethernet Ethernet Ethernet Ethernet * To pass messages
Frame #1 Frame #2 Frame #3 Frame #4

Client (mIRC) Server (IRC)
128.2.194.242:6262 128.2.237.25:6667




9/13/2007

Interlude: Project 1 & 2

e IRC Server (Project 1)

* Login

= Reverse host lookup

= Support for channels

* Support for private messages

* Message Routing (Project 2)

= Unicast routing (OSPF)
= Multicast routing (MOSPF)
= Server extensions for message forwarding

Car Talk: What's in a Socket

* Some information needed...

= Where is the remote machine?
= IP Address
= Hostname (resolved to IP)

* Which service do | want?
= Port

o After that...

* You get afile! A plain old file!
* As simple as other Unix I/O
* Don’t forget to close it when you’re done!

Car Talk: How do 1 do it?

» Request a socket descriptor

* Both the client and the server need to
= Bunch of kernel allocations...

¢ And the server...

* Binds to a port

= “lam offering a service on port x. Hear me roar”

= Listens to the socket

= “Hey! Say something!”

= Accepts the incoming connection

= “Good, you spoke up!”

* And the client...

= Connects

= “Pm interested!”

Sockets: The lifecycle

Server
socket() socket()

listen()

connect() . Connection Request . accept() -

Client / Server Session

me@ju

close(

Step One: Socket-time

» Both the client and server need to setup the socket

= int socket(int domain, int type, int protocol)
Domain

= AF_INET (IPv4, also IPv6 available)

Type

= SOCK_STREAM TCP (your IRC server)

= SOCK_DGRAM UDP (your routing daemon)

Protocol

= 0 (trustus, or, read the manpage)

|int sockfd = socket(AF_INET, SOCK_STREAM, 0);

Step Two: Bind it up

« Server-only (read the man-page!)

= int bind(int sockfd, const struct sockaddr
*my_addr, socklen_t addrlen);

sockfd

= Afile descriptor to bind with, what socket returned!

my_addr

= It’s a struct (duh), describing an Internet socket/endpoint

struct sockaddr_in {

short sin_family;
unsigned short H
struct in_addr
char

}:

struct in_addr
unsigned long s_addr; // load with inet_aton()
3

7/ e.g. AF_INET
// e.g. htons(3490)

// see struct in_addr, below
// zero this if you want to




of (your sockaddr_in struct)

esson on byte ordering...

ork byte ordering is defined to be big-endian
x86-64 are little endian
w do we convert?
15() / htonl() - Convert host order to network order
s() [ ntohl() - Convert network order to host order

hat needs to be converted?

sses

anything that deals with a network sysca
=n data (up to the protocol designer)

er must explicitly accept connectio
accept(int sockfd, struct sockaddr *
socklen_t *addrlen);
d

descriptor to listen on, what socket returned!

erto a sockaddr_in, cast as sockaddr* to store th
ss information in

0 an int to store the returned size of addr, sho
as sizeof(addr)

ymorphism
e’s a different sockaddr for IPv6!

ptions for more in the future...

ap Three: Liste

e server to listen for new connect
isten(int sockfd, int backlog)

descriptor to listen on, what socket returned!

umber of connections to queue
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So what about the client?

¢ Client does not need to bind, listen, or accept

e Client needs only to socket and connect
= int connect(int sockfd, const struct sockaddr
*saddr, socklen_t addrlen);

connect(sockfd, (struct sockaddr *) &saddr, sizeof(saddr)); |

And now for the client...

struct sockaddr_in saddr;

struct hostent *h;

int sockfd, connfd;

unsigned short port = 80;

if (0 > (sockfd=socket(AF_INET, SOCK_STREAM, 0))) {
printf(“Error creating socket\n);

3

// looking up the hostname

if (NULL == (h=gethostbyname(“‘www.slashdot.org”))) {
printf(“Unknown host\n™);

i
memset(&saddr, *\0", sizeof(saddr)); // zero structure out
saddr.sin_family = AF_INET; // match the socket() call
memcpy((char *) &saddr.sin_addr.s_addr,

h->h_addr_list[0],

h->h_length); // copy the address
saddr.sin_port = htons(port); // specify port to connect to
if ('connect(sockfd, (struct sockaddr *) &saddr, sizeof(saddr)) {

printf(“Cannot connect\n”);

A Connection, at last!

e But what now? Send data of course!
swrite(Q)
* read()
e Both are used by the client and the server
» To write and read
- ssize_t read(int fd, void* buf, size_t len);
= ssize_t write(int ffd, const void* buf,
size_t len);

read(sockfd, buffer, sizeof(buffer));

write(sockfd, “what’s up?\n”, strlen(“what’s up?\n”));

The lifecycle again...

Client

socket0 |

connect() . Connection Request . accept() -

Client / Server Session

And when were done...

* You must close()it!

* Just like a file (since it appears as one!)
¢ What next? Loop around...

= Accept new connections

* Process requests

= Close them

* Rinse, repeat
* What’s missing here?

connect()
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Concurrency

“[... Ja property of systems in
which several computational
processes are executing at the
same time[... ]” (thanks Wikipedia!)

How do we add concurrency?

* Threads

* Natural concurrency (new thread per connection)

* Easier to understand (you know it already)

= Complexity is increased (possible race conditions)
¢ Use non-blocking I/O

= Usesselect()

* Explicit control flow (no race conditions!)

* Explicit control flow more complicated though

There are good arguments for each
but you must use select()!

Adding Concurency: Step One

e Start with allowing address re-use

int sock, opts;

sock = socket(.);

// getting the current options

setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &opts, sizeof(opts));

* Then we set the socket to non-blocking

// getting current options

if (0 > (opts = fentl(sock, F_GETFL)))
printf(“Error.\n);

// modifying and applying

opts = (opts | O_NONBLOCK);

if (fentl(sock, F_SETFL, opts))
printf(“Error.\n”);

bind(.);

Adding Concurrency: Step Two

¢ Monitor sockets with select()
= int select(int maxfd, fd_set *readfds, fd_set
*writefds, fd_set *exceptfds, const
struct timespec *timeout);

* So what’s an fd_set?
= Bit vector with FD_SETSIZE bits
» maxfd — Max file descriptor + 1
 readfs - Bit vector of read descriptors to monitor
» writefds - Bit vector of write descriptors to monitor
» exceptfds — Read the manpage, set to NULL
» timeout — How long to wait with no activity before
returning, NULL for eternity

How does the code change?

struct sockaddr_in saddr, caddr;
int sockfd, clen, isock;
unsigned short port = 80;
if (0 > (sockfd=socket(AF_INET, SOCK_STREAM, 0)))
printf(“Error creating socket\n”):
memset(&saddr, *\0*, sizeof(saddr)); // zero structure out
saddr_sin_fanily = AF_INET; // match the socket() call
saddr.sin_addr.s_addr = htonl (INADDR_ANY): /7 bind to any local address
saddr_sin_port = htons(port); // specify port to listen on
if (0 > (bind(sockfd, (struct sockaddr *) &saddr, sizeof(saddr)))
printf(“Error binding\n");
if (listen(sockfd, 5) < 0) { // listen for incoming connections
printf(“Error listening\n”);
clen = sizeof(caddr)
// Setup your read_set with FD_ZERO and the server socket descriptor
while (1) {
pool .ready_set = &pool.read_set;
pool.nready = select(pool .maxfd+1, &pool.ready set,
pool .write_set, NULL, NULL);
if (FD_ISSET(sockfd, &pool.ready_set)) {
if (0 > (isock = accept(sockfd, (struct sockaddr *)
&caddr, &clen)))
rintf(“Error accepting\n”);
add_client(isock, &caddr, &pool):

3
check_clients(&pool);

3
7/ close it up down here

What was pool?

e A struct something like this:

typedef struct s_pool {

int maxfd; // largest descriptor in sets
fd_set read_set; // all active read descriptors
fd_set write_set; // all active write descriptors
fd_set ready_set; // descriptors ready for reading
int nready; // return of select()

int clientfd[FD_SETSIZE]; // max index in client array

// might want to write this
read_buf client_read_buf[FD_SETSIZE];

// what else might be helpful for project 1?
} pool;




So what about bit vectors?

» void FD_ZERO(fd_set *fdset);
= Clears all the bits

« void FD_SET(int fd, fd_set *fdset);
* Sets the bit for fd

* void FD_CLR(int fd, fd_set *fdset);
= Clears the bit for fd

e Int FD_ISSET(int fd, fd_set *fdset);
= Checks whether fd’s bit is set
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What about checking clients?

¢ The code only tests for new incoming connections
* But we have many more to test!
e Store all your client file descriptors
* In pool is a good idea!
» Several scenarios
* Clients are sending us data
* We may have pending data to write in a buffer
» Keep the while(1) thin
* Delegate specifics to functions that access the appropriate data
* Keep it orthogonal!
* Note the design presented here is not the best
= Think up your own!

Back to that lifecycle...

Client(s Server
socket() socket()
!
bindQ)

listen()

select() || FD_ISSET(sfd)

connect() I Connection Request

nts() main loop

Some subtleties...

¢ |RC commands are terminated by a newline
* But you might not get one at the end of a read()!
» Buffers are your friend
* read(Qreturns exactly what is available—that might not be
what you want!
* If you don’t have an entire line, buffer it and wait for more (but
don’t block!)
* Do not use the “Robust I/0” package from 213
* It’s not robust
* Don’t use anything from csapp-h

So What Now?

¢ So what do | do now?
* Read the handout (Tuesday!)
*+ Come to recitation (Wednesday)
= Meet with your partner

 This may be a progression goals to achieve...
= Construct a simple echo server for a single client
= Construct a simple client to talk to that server
= Modify your server to work with multiple clients
= Modify your echo server to be a chat server
= IRC?

Software Engineering
Tools for Project 1

 Version Control — Subversion
¢ Automated Build “Management” — Makefiles
¢ Automated Test “Management” — Makefiles
¢ Unit Tests — CUnit
¢ Integration Tests — Our custom test harness (or yourst)
» Debugging
* Logging Macros
* GDB
* Valgrind (we’ll run it for you if you don’t!)
e Linked list and hash table library

* You don’t have to write your own!




ogramming
eview (every check-in!)

ogramming (sometimes two sets of eyes are be

ging

take days to figure some out!
g Test Cases

how to find the corner cases!

orthogonal design, refactor to achieve it!

Good Luck!

L
Questions?
Email project partners to Albert:

albert@cmu.edu
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ill have basic network code for an echo server by to
ogramming is useful
beginning it is difficult to start on something wit
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