9/13/2007

Why Do | Want Networking?

¢ Goal of Networking: Communication
* Share data

SOCket Programming « Pass Messages

e Say | want to talk to a friend in Singapore...

Lecture 2 * How can | do this?
i = What applications and services must | use?
Daniel Spangenberger Where can | access them?
15-441 Computer Networks, Fall 2007 * How will the data get there?

= Willit be reliable?

Lecture Today... Layered Commuication

» Motivations for Sockets

*What’s in a Socket?

» Working with Sockets

e Concurrent Network Applications
s Software Engineering for Project 1

What's really going on... Which is easier?

 An application programmer (writing an IRC server)

= Doesn’t need to send IP packets

= Doesn’t need to send Ethernet frames
= Doesn’t need to worry about reliability
= Shouldn’t have to!

e Sockets do this!
* TCP streams
@ = | R [prjfket g P::ket * UDP packetized service (Project 2)
« You'll be doing this! (using sockets)

* Toshare data
Ethernet Ethernet Ethernet Ethernet * To pass messages
Frame #1 Frame #2 Frame #3 Frame #4

Client (mIRC) Server (IRC)
128.2.194.242:6262 128.2.237.25:6667

9/13/2007

Interlude: Project 1 & 2

e IRC Server (Project 1)

* Login

= Reverse host lookup

= Support for channels

* Support for private messages

* Message Routing (Project 2)

= Unicast routing (OSPF)
= Multicast routing (MOSPF)
= Server extensions for message forwarding

Car Talk: What's in a Socket

* Some information needed...

= Where is the remote machine?
= IP Address
= Hostname (resolved to IP)

* Which service do | want?
= Port

o After that...

* You get afile! A plain old file!
* As simple as other Unix I/O
* Don’t forget to close it when you’re done!

Car Talk: How do 1 do it?

» Request a socket descriptor

* Both the client and the server need to
= Bunch of kernel allocations...

¢ And the server...

* Binds to a port

= “lam offering a service on port x. Hear me roar”

= Listens to the socket

= “Hey! Say something!”

= Accepts the incoming connection

= “Good, you spoke up!”

* And the client...

= Connects

= “Pm interested!”

Sockets: The lifecycle

Server
socket() socket()

listen()

connect() . Connection Request . accept() -

Client / Server Session

me@ju

close(

Step One: Socket-time

» Both the client and server need to setup the socket

= int socket(int domain, int type, int protocol)
Domain

= AF_INET (IPv4, also IPv6 available)

Type

= SOCK_STREAM TCP (your IRC server)

= SOCK_DGRAM UDP (your routing daemon)

Protocol

= 0 (trustus, or, read the manpage)

|int sockfd = socket(AF_INET, SOCK_STREAM, 0);

Step Two: Bind it up

« Server-only (read the man-page!)

= int bind(int sockfd, const struct sockaddr
*my_addr, socklen_t addrlen);

sockfd

= Afile descriptor to bind with, what socket returned!

my_addr

= It’s a struct (duh), describing an Internet socket/endpoint

struct sockaddr_in {

short sin_family;
unsigned short H
struct in_addr
char

}:

struct in_addr
unsigned long s_addr; // load with inet_aton()
3

7/ e.g. AF_INET
// e.g. htons(3490)

// see struct in_addr, below
// zero this if you want to

of (your sockaddr_in struct)

esson on byte ordering...

ork byte ordering is defined to be big-endian
x86-64 are little endian
w do we convert?
15() / htonl() - Convert host order to network order
s() [ntohl() - Convert network order to host order

hat needs to be converted?

sses

anything that deals with a network sysca
=n data (up to the protocol designer)

er must explicitly accept connectio
accept(int sockfd, struct sockaddr *
socklen_t *addrlen);
d

descriptor to listen on, what socket returned!

erto a sockaddr_in, cast as sockaddr* to store th
ss information in

0 an int to store the returned size of addr, sho
as sizeof(addr)

ymorphism
e’s a different sockaddr for IPv6!

ptions for more in the future...

ap Three: Liste

e server to listen for new connect
isten(int sockfd, int backlog)

descriptor to listen on, what socket returned!

umber of connections to queue

9/13/2007

9/13/2007

So what about the client?

¢ Client does not need to bind, listen, or accept

e Client needs only to socket and connect
= int connect(int sockfd, const struct sockaddr
*saddr, socklen_t addrlen);

connect(sockfd, (struct sockaddr *) &saddr, sizeof(saddr)); |

And now for the client...

struct sockaddr_in saddr;

struct hostent *h;

int sockfd, connfd;

unsigned short port = 80;

if (0 > (sockfd=socket(AF_INET, SOCK_STREAM, 0))) {
printf(“Error creating socket\n);

3

// looking up the hostname

if (NULL == (h=gethostbyname(“‘www.slashdot.org”))) {
printf(“Unknown host\n™);

i
memset(&saddr, *\0", sizeof(saddr)); // zero structure out
saddr.sin_family = AF_INET; // match the socket() call
memcpy((char *) &saddr.sin_addr.s_addr,

h->h_addr_list[0],

h->h_length); // copy the address
saddr.sin_port = htons(port); // specify port to connect to
if ('connect(sockfd, (struct sockaddr *) &saddr, sizeof(saddr)) {

printf(“Cannot connect\n”);

A Connection, at last!

e But what now? Send data of course!
swrite(Q)
* read()
e Both are used by the client and the server
» To write and read
- ssize_t read(int fd, void* buf, size_t len);
= ssize_t write(int ffd, const void* buf,
size_t len);

read(sockfd, buffer, sizeof(buffer));

write(sockfd, “what’s up?\n”, strlen(“what’s up?\n”));

The lifecycle again...

Client

socket0 |

connect() . Connection Request . accept() -

Client / Server Session

And when were done...

* You must close()it!

* Just like a file (since it appears as one!)
¢ What next? Loop around...

= Accept new connections

* Process requests

= Close them

* Rinse, repeat
* What’s missing here?

connect()

9/13/2007

Concurrency

“[... Ja property of systems in
which several computational
processes are executing at the
same time[...]” (thanks Wikipedia!)

How do we add concurrency?

* Threads

* Natural concurrency (new thread per connection)

* Easier to understand (you know it already)

= Complexity is increased (possible race conditions)
¢ Use non-blocking I/O

= Usesselect()

* Explicit control flow (no race conditions!)

* Explicit control flow more complicated though

There are good arguments for each
but you must use select()!

Adding Concurency: Step One

e Start with allowing address re-use

int sock, opts;

sock = socket(.);

// getting the current options

setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &opts, sizeof(opts));

* Then we set the socket to non-blocking

// getting current options

if (0 > (opts = fentl(sock, F_GETFL)))
printf(“Error.\n);

// modifying and applying

opts = (opts | O_NONBLOCK);

if (fentl(sock, F_SETFL, opts))
printf(“Error.\n”);

bind(.);

Adding Concurrency: Step Two

¢ Monitor sockets with select()
= int select(int maxfd, fd_set *readfds, fd_set
*writefds, fd_set *exceptfds, const
struct timespec *timeout);

* So what’s an fd_set?
= Bit vector with FD_SETSIZE bits
» maxfd — Max file descriptor + 1
 readfs - Bit vector of read descriptors to monitor
» writefds - Bit vector of write descriptors to monitor
» exceptfds — Read the manpage, set to NULL
» timeout — How long to wait with no activity before
returning, NULL for eternity

How does the code change?

struct sockaddr_in saddr, caddr;
int sockfd, clen, isock;
unsigned short port = 80;
if (0 > (sockfd=socket(AF_INET, SOCK_STREAM, 0)))
printf(“Error creating socket\n”):
memset(&saddr, *\0*, sizeof(saddr)); // zero structure out
saddr_sin_fanily = AF_INET; // match the socket() call
saddr.sin_addr.s_addr = htonl (INADDR_ANY): /7 bind to any local address
saddr_sin_port = htons(port); // specify port to listen on
if (0 > (bind(sockfd, (struct sockaddr *) &saddr, sizeof(saddr)))
printf(“Error binding\n");
if (listen(sockfd, 5) < 0) { // listen for incoming connections
printf(“Error listening\n”);
clen = sizeof(caddr)
// Setup your read_set with FD_ZERO and the server socket descriptor
while (1) {
pool .ready_set = &pool.read_set;
pool.nready = select(pool .maxfd+1, &pool.ready set,
pool .write_set, NULL, NULL);
if (FD_ISSET(sockfd, &pool.ready_set)) {
if (0 > (isock = accept(sockfd, (struct sockaddr *)
&caddr, &clen)))
rintf(“Error accepting\n”);
add_client(isock, &caddr, &pool):

3
check_clients(&pool);

3
7/ close it up down here

What was pool?

e A struct something like this:

typedef struct s_pool {

int maxfd; // largest descriptor in sets
fd_set read_set; // all active read descriptors
fd_set write_set; // all active write descriptors
fd_set ready_set; // descriptors ready for reading
int nready; // return of select()

int clientfd[FD_SETSIZE]; // max index in client array

// might want to write this
read_buf client_read_buf[FD_SETSIZE];

// what else might be helpful for project 1?
} pool;

So what about bit vectors?

» void FD_ZERO(fd_set *fdset);
= Clears all the bits

« void FD_SET(int fd, fd_set *fdset);
* Sets the bit for fd

* void FD_CLR(int fd, fd_set *fdset);
= Clears the bit for fd

e Int FD_ISSET(int fd, fd_set *fdset);
= Checks whether fd’s bit is set

9/13/2007

What about checking clients?

¢ The code only tests for new incoming connections
* But we have many more to test!
e Store all your client file descriptors
* In pool is a good idea!
» Several scenarios
* Clients are sending us data
* We may have pending data to write in a buffer
» Keep the while(1) thin
* Delegate specifics to functions that access the appropriate data
* Keep it orthogonal!
* Note the design presented here is not the best
= Think up your own!

Back to that lifecycle...

Client(s Server
socket() socket()
!
bindQ)

listen()

select() || FD_ISSET(sfd)

connect() I Connection Request

nts() main loop

Some subtleties...

¢ |RC commands are terminated by a newline
* But you might not get one at the end of a read()!
» Buffers are your friend
* read(Qreturns exactly what is available—that might not be
what you want!
* If you don’t have an entire line, buffer it and wait for more (but
don’t block!)
* Do not use the “Robust I/0” package from 213
* It’s not robust
* Don’t use anything from csapp-h

So What Now?

¢ So what do | do now?
* Read the handout (Tuesday!)
*+ Come to recitation (Wednesday)
= Meet with your partner

 This may be a progression goals to achieve...
= Construct a simple echo server for a single client
= Construct a simple client to talk to that server
= Modify your server to work with multiple clients
= Modify your echo server to be a chat server
= IRC?

Software Engineering
Tools for Project 1

 Version Control — Subversion
¢ Automated Build “Management” — Makefiles
¢ Automated Test “Management” — Makefiles
¢ Unit Tests — CUnit
¢ Integration Tests — Our custom test harness (or yourst)
» Debugging
* Logging Macros
* GDB
* Valgrind (we’ll run it for you if you don’t!)
e Linked list and hash table library

* You don’t have to write your own!

ogramming
eview (every check-in!)

ogramming (sometimes two sets of eyes are be

ging

take days to figure some out!
g Test Cases

how to find the corner cases!

orthogonal design, refactor to achieve it!

Good Luck!

L
Questions?
Email project partners to Albert:

albert@cmu.edu

9/13/2007

oups that did not do well on Project 1 last fal
er just days before its checkpoint...
partner, before the handout is released
early and often
oals with each other
ill have basic network code for an echo server by to
ogramming is useful
beginning it is difficult to start on something wit
... planit out together
ad of the checkpoints
ripts likely released a day prior t

