
Lecture 14 – RAID

Thanks to Greg Ganger and Remzi Arapaci-Dusseau for

slides

15-440 Distributed Systems

Replacement Rates

HPC1 COM1 COM2
Component % Component % Component %

Hard drive 30.6 Power supply 34.8 Hard drive 49.1

Memory 28.5 Memory 20.1 Motherboard 23.4

Misc/Unk 14.4 Hard drive 18.1 Power supply 10.1

CPU 12.4 Case 11.4 RAID card 4.1

motherboard 4.9 Fan 8 Memory 3.4

Controller 2.9 CPU 2 SCSI cable 2.2

QSW 1.7 SCSI Board 0.6 Fan 2.2

Power supply 1.6 NIC Card 1.2 CPU 2.2

MLB 1 LV Pwr Board 0.6 CD-ROM 0.6

SCSI BP 0.3 CPU heatsink 0.6 Raid Controller 0.6

2

Outline

• Using multiple disks

• Why have multiple disks?

• problem and approaches

• RAID levels and performance

• Estimating availability

3

Motivation:

Why use multiple disks?

• Capacity

• More disks allows us to store more data

• Performance

• Access multiple disks in parallel

• Each disk can be working on independent read or write

• Overlap seek and rotational positioning time for all

• Reliability

• Recover from disk (or single sector) failures

• Will need to store multiple copies of data to recover

• So, what is the simplest arrangement?

Just a bunch of disks (JBOD)

• Yes, it’s a goofy name

• industry really does sell “JBOD enclosures”

5October 2010, Greg Ganger © 4

B0

B1

B2

B3

C0

C1

C2

C3

D0

D1

D2

D3

A0

A1

A2

A3

Just a bunch of disks (JBOD)

  Yes, it’s a goofy name
  industry really does sell “JBOD enclosures”

Disk Striping

• Interleave data across multiple disks

• Large file streaming can enjoy parallel transfers

• High throughput requests can enjoy thorough load

balancing

• If blocks of hot files equally likely on all disks (really?)

6

October 2010, Greg Ganger © 8

Disk Striping

  Interleave data across multiple disks
  Large file streaming can enjoy parallel transfers
  High throughput requests can enjoy thorough load balancing

  If blocks of hot files equally likely on all disks (really?)

stripe unit
or block

Stripe"

File Foo: "

Now, What If A Disk Fails?

• In a JBOD (independent disk) system

• one or more file systems lost

• In a striped system

• a part of each file system lost

• Backups can help, but

• backing up takes time and effort

• backup doesn’t help recover data lost during that day

• Any data loss is a big deal to a bank or stock

exchange

7

Tolerating and masking disk

failures

• If a disk fails, it’s data is gone

• may be recoverable, but may not be

• To keep operating in face of failure

• must have some kind of data redundancy

• Common forms of data redundancy

• replication

• erasure-correcting codes

• error-correcting codes

8

Redundancy via replicas

• Two (or more) copies

• mirroring, shadowing, duplexing, etc.

• Write both, read either

9

October 2010, Greg Ganger © 16

  Two (or more) copies
  mirroring, shadowing, duplexing, etc.

  Write both, read either

0

1

2

3

0

1

2

3

Redundancy via replicas

Mirroring & Striping

• Mirror to 2 virtual drives, where each virtual drive is

really a set of striped drives

• Provides reliability of mirroring

• Provides striping for performance (with write update costs)

10October 2010, Greg Ganger © 17

Mirroring & Striping

  Mirror to 2 virtual drives, where each virtual drive is
really a set of striped drives
  Provides reliability of mirroring
  Provides striping for performance (with write update costs)

Implementing Disk Mirroring

• Mirroring can be done in either software or hardware

• Software solutions are available in most OS’s
• Windows2000, Linux, Solaris

• Hardware solutions

• Could be done in Host Bus Adaptor(s)

• Could be done in Disk Array Controller

11

October 2010, Greg Ganger © 18

Implementing Disk Mirroring

  Mirroring can be done in either software or hardware
  Software solutions are available in most OS’s

  Windows2000, Linux, Solaris
  Hardware solutions

  Could be done in Host Bus Adaptor(s)
  Could be done in Disk Array Controller

Lower Cost Data Redundancy

• Single failure protecting codes

• general single-error-correcting code is overkill

• General code finds error and fixes it

• Disk failures are self-identifying (a.k.a. erasures)

• Don’t have to find the error

• Fact: N-error-detecting code is also N-erasure-

correcting

• Error-detecting codes can’t find an error, just know its there

• But if you independently know where error is, allows repair

• Parity is single-disk-failure-correcting code

• recall that parity is computed via XOR

• it’s like the low bit of the sum

12

Simplest approach: Parity Disk

• Capacity: one

extra disk needed

per stripe

13

October 2010, Greg Ganger © 20

  One extra disk
  All writes update

parity disk
  potential

bottleneck

Ap

Bp

Cp

Dp

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

Simplest approach: Parity Disk

Updating and using the parity

October 2010, Greg Ganger © 23

Updating and using the parity

D D D P

Fault-Free Read

D D D P

Fault-Free Write

4
3 2 1

D D D P

Degraded Read

D D D P

Degraded Write

14

Performance

• Suppose 1 drive gives bandwidth B

• Fault-Free Read = 3B

• Degraded Read = 1B

• Fault-Free Write = 0.5 B

• But can do 2B Fault-Free Read at the same time

• Degraded Write = 1 B

15

The parity disk bottleneck

• Reads go only to the data disks

• But, hopefully load balanced across the disks

• All writes go to the parity disk

• And, worse, usually result in Read-Modify-Write

sequence

• So, parity disk can easily be a bottleneck

16

Solution: Striping the Parity

• Removes parity disk bottleneck

17

October 2010, Greg Ganger © 25

  Removes parity
disk bottleneck A

B

C

D

A

B

C

Dp

A

B

D

Cp

A

D

C

Bp

D

B

C

Ap

Solution: Striping the Parity

Outline

• Using multiple disks

• Why have multiple disks?

• problem and approaches

• RAID levels and performance

• Estimating availability

18

RAID Taxonomy

• Redundant Array of Inexpensive Independent Disks
• Constructed by UC-Berkeley researchers in late 80s (Garth)

• RAID 0 – Coarse-grained Striping with no redundancy

• RAID 1 – Mirroring of independent disks

• RAID 2 – Fine-grained data striping plus Hamming code disks

• Uses Hamming codes to detect and correct multiple errors

• Originally implemented when drives didn’t always detect errors

• Not used in real systems

• RAID 3 – Fine-grained data striping plus parity disk

• RAID 4 – Coarse-grained data striping plus parity disk

• RAID 5 – Coarse-grained data striping plus striped parity

19

RAID-0: Striping

• Stripe blocks across disks in a �chunk� size

• How to pick a reasonable chunk size?

0 4

8 12

1 5

9 13

2 6

10 14

3 7

11 15

How to calculate where chunk # lives?

Disk:

Offset within disk:

RAID-0: Striping

• Evaluate for D disks

• Capacity: How much space is wasted?

• Performance: How much faster than 1 disk?

• Reliability: More or less reliable than 1 disk?

0 4

8 12

1 5

9 13

2 6

10 14

3 7

11 15

RAID-1: Mirroring

• Motivation: Handle disk failures

• Put copy (mirror or replica) of each chunk on another disk

0 2

4 6

0 2

4 6

1 3

5 7

1 3

5 7

Capacity:

Reliability:

Performance:

RAID-4: Parity

• Motivation: Improve capacity

• Idea: Allocate parity block to encode info about blocks
• Parity checks all other blocks in stripe across other disks

• Parity block = XOR over others (gives �even� parity)

• Example: 0 1 0 à Parity value?

• How do you recover from a failed disk?
• Example: x 0 0 and parity of 1

• What is the failed value?

0 3

6 9

1 4

7 10

2 5

8 11

P0 P1

P2 P3

RAID-4: Parity

• Capacity:

• Reliability:

• Performance:

• Reads

• Writes: How to update parity block?

• Two different approaches

• Small number of disks (or large write):

• Large number of disks (or small write):

• Parity disk is the bottleneck

0 3

6 9

1 4

7 10

2 5

8 11

P0 P1

P2 P3

RAID-5: Rotated Parity

• Capacity:

• Reliability:

• Performance:

• Reads:

• Writes:

• Still requires 4 I/Os per write, but not always to same parity disk

0 3

6 P3

1 4

P2 9

2 P1

7 10

P0 5

8 11

Rotate location of parity across all disks

Comparison
REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAIDS) 15

RAID-0 RAID-1 RAID-4 RAID-5
Capacity N N/2 N − 1 N − 1
Reliability 0 1 (for sure) 1 1

N
2

(if lucky)
Throughput

Sequential Read N · S (N/2) · S (N − 1) · S (N − 1) · S
Sequential Write N · S (N/2) · S (N − 1) · S (N − 1) · S
Random Read N · R N · R (N − 1) · R N · R
Random Write N · R (N/2) · R 1

2
· R N

4
R

Latency
Read D D D D
Write D D 2D 2D

Table 38.7: RAID Capacity, Reliability, and Performance

Because RAID-5 is basically identical to RAID-4 except in the few cases
where it is better, it has almost completely replaced RAID-4 in the market-
place. The only place where it has not is in systems that know they will
never perform anything other than a large write, thus avoiding the small-
write problem altogether [HLM94]; in those cases, RAID-4 is sometimes
used as it is slightly simpler to build.

38.8 RAID Comparison: A Summary

We now summarize our simplified comparison of RAID levels in Ta-
ble 38.7. Note that we have omitted a number of details to simplify our
analysis. For example, when writing in a mirrored system, the average
seek time is a little higher than when writing to just a single disk, because
the seek time is the max of two seeks (one on each disk). Thus, random
write performance to two disks will generally be a little less than random
write performance of a single disk. Also, when updating the parity disk
in RAID-4/5, the first read of the old parity will likely cause a full seek
and rotation, but the second write of the parity will only result in rotation.

However, our comparison does capture the essential differences, and
is useful for understanding tradeoffs across RAID levels. We present a
summary in the table below; for the latency analysis, we simply use D to
represent the time that a request to a single disk would take.

To conclude, if you strictly want performance and do not care about
reliability, striping is obviously best. If, however, you want random I/O
performance and reliability, mirroring is the best; the cost you pay is in
lost capacity. If capacity and reliability are your main goals, then RAID-
5 is the winner; the cost you pay is in small-write performance. Finally,
if you are always doing sequential I/O and want to maximize capacity,
RAID-5 also makes the most sense.

c⃝ 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

26

Outline

• Using multiple disks

• Why have multiple disks?

• problem and approaches

• RAID levels and performance

• Estimating availability

27

Sidebar: Availability metric

• Fraction of time that server is able to handle requests

• Computed from MTBF and MTTR (Mean Time To Repair)

28October 2010, Greg Ganger © 13

Sidebar: Availability metric

  Fraction of time that server is able to handle requests
  Computed from MTBF and MTTR (Mean Time To Repair)

 MTBF _
MTBF + MTTR

Availability

TBF1 TTR1 TBF2 TTR2 TBF3 TTR3

Installed Fixed Fixed Fixed

Available during these 3
periods of time.

How often are failures?

• MTBF (Mean Time Between Failures)

• MTBFdisk ~ 1,200,00 hours (~136 years, <1% per year)

• MTBFmutli-disk system = mean time to first disk failure

• which is MTBFdisk / (number of disks)

• For a striped array of 200 drives

• MTBFarray = 136 years / 200 drives = 0.65 years

29

October 2010, Greg Ganger © 14

How often are failures?

  MTBF (Mean Time Between Failures)
  MTBFdisk ~ 1,200,00 hours (~136 years, <1% per year)

  pretty darned good, if you believe the number

  MTBFmutli-disk system = mean time to first disk failure
  which is MTBFdisk / (number of disks)
  For a striped array of 200 drives

  MTBFarray = 136 years / 200 drives = 0.65 years

Back to Mean Time To Data Loss

(MTTDL)

• MTBF (Mean Time Between Failures)

• MTBFdisk ~ 1,200,00 hours (~136 years, <1% per year)

• MTBFmutli-disk system = mean time to first disk failure

• which is MTBFdisk / (number of disks)

• For a striped array of 200 drives

• MTBFarray = 136 years / 200 drives = 0.65 years

30

October 2010, Greg Ganger © 14

How often are failures?

  MTBF (Mean Time Between Failures)
  MTBFdisk ~ 1,200,00 hours (~136 years, <1% per year)

  pretty darned good, if you believe the number

  MTBFmutli-disk system = mean time to first disk failure
  which is MTBFdisk / (number of disks)
  For a striped array of 200 drives

  MTBFarray = 136 years / 200 drives = 0.65 years

Reliability without rebuild

• 200 data drives with MTBFdrive

• MTTDLarray = MTBFdrive / 200

• Add 200 drives and do mirroring

• MTBFpair = (MTBFdrive / 2) + MTBFdrive = 1.5 * MTBFdrive

• MTTDLarray = MTBFpair / 200 = MTBFdrive / 133

• Add 50 drives, each with parity across 4 data disks

• MTBFset = (MTBFdrive / 5) + (MTBFdrive / 4) = 0.45 * MTBFdrive

• MTTDLarray = MTBFset / 50 = MTBFdrive / 111

31

Rebuild: restoring redundancy

after failure

• After a drive failure

• data is still available for access

• but, a second failure is BAD

• So, should reconstruct the data onto a new drive

• on-line spares are common features of high-end disk arrays

• reduce time to start rebuild

• must balance rebuild rate with foreground performance impact

• a performance vs. reliability trade-offs

• How data is reconstructed

• Mirroring: just read good copy

• Parity: read all remaining drives (including parity) and compute

32

Reliability consequences of

adding rebuild

• No data loss, if fast enough

• That is, if first failure fixed before second one happens

• New math is...

• MTTDLarray = MTBFfirstdrive * (1 / prob of 2nd failure before repair)

• ... which is MTTRdrive / MTBFseconddrive

• For mirroring

• MTBFpair = (MTBFdrive / 2) * (MTBFdrive / MTTRdrive)

• For 5-disk parity-protected arrays

• MTBFset = (MTBFdrive / 5) * ((MTBFdrive / 4)/ MTTRdrive)

33

Three modes of operation

• Normal mode

• everything working; maximum efficiency

• Degraded mode

• some disk unavailable

• must use degraded mode operations

• Rebuild mode

• reconstructing lost disk’s contents onto spare

• degraded mode operations plus competition with

rebuild

34

Mechanics of rebuild

• Background process

• use degraded mode read to reconstruct data

• then, write it to replacement disk

• Implementation issues

• Interference with foreground activity and controlling rate

• Rebuild is important for reliability

• Foreground activity is important for performance

• Using the rebuilt disk

• For rebuilt part, reads can use replacement disk

• Must balance performance benefit with rebuild

interference

35

Conclusions

• RAID turns multiple disks into a larger, faster, more

reliable disk

• RAID-0: Striping

Good when performance and capacity really matter,

but reliability doesn�t

• RAID-1: Mirroring

Good when reliability and write performance matter,

but capacity (cost) doesn�t

• RAID-5: Rotating Parity

Good when capacity and cost matter or workload is

read-mostly

• Good compromise choice

Exam Details

• Look at past exams (http://www.cs.cmu.edu/~srini/15-

440/exams.html)

• Coverage – up to and including RAID lecture

• Closed book

• No calculator – all calculations will be simple

• Style

• short answer questions

• long, multi-part questions

• Review session

• Monday @ 4:30 in Rashid Auditorium in GHC

37

Disk Subsystem Load Balancing

• I/O requests are almost never evenly distributed

• Some data is requested more than other data

• Depends on the apps, usage, time, ...

• What is the right data-to-disk assignment policy?

• Common approach: Fixed data placement

• Your data is on disk X, period!

• For good reasons too: you bought it or you’re paying more...

• Fancy: Dynamic data placement

• If some of your files are accessed a lot, the admin(or even

system) may separate the “hot” files across multiple disks

• In this scenario, entire files systems (or even files) are manually moved

by the system admin to specific disks

• Alternative: Disk striping

• Stripe all of the data across all of the disks

38

Disk striping details

• How disk striping works

• Break up total space into fixed-size stripe units

• Distribute the stripe units among disks in round-robin

• Compute location of block #B as follows

• disk# = B%N (%=modulo,N = #ofdisks)

• LBN# = B / N (computes the LBN on given disk)

39

Hardware vs. Software RAID

• Hardware RAID

• Storage box you attach to computer

• Same interface as single disk, but internally much more

• Multiple disks

• More complex controller

• NVRAM (holding parity blocks)

• Software RAID

• OS (device driver layer) treats multiple disks like a single disk

• Software does all extra work

• Interface for both

• Linear array of bytes, just like a single disk (but larger)

RAID 6

• P+Q Redundancy

• Protects against multiple failures using Reed-Solomon codes

• Uses 2 “parity” disks

• P is parity

• Q is a second code

• It’s two equations with two unknowns, just make
“biggerbits”

• Group bits into “nibbles” and add different coefficients to each
equation (two independent equations in two unknowns)

• Similar to parity striping

• De-clusters both sets of parity across all drives

• For small writes, requires 6 I/Os

• Read old data, old parity1, old parity2

• Write new data, new parity1, new parity2

41

The Disk Array Matrix

October 2010, Greg Ganger © 29

Replication

Parity Disk

Striped Parity

None

Independent Fine Striping Course Striping

JBOD

Mirroring
RAID1

RAID0+1

Gray90

RAID0

RAID3 RAID4

RAID5

The Disk Array Matrix

42

Advanced Issues

• What happens if more than one fault?

• Example: One disk fails plus �latent sector error� on another

• RAID-5 cannot handle two faults

• Solution: RAID-6 (e.g., RDP) Add multiple parity blocks

• Why is NVRAM useful?

• Example: What if update 2, don�t update P0 before power failure

(or crash), and then disk 1 fails?

• NVRAM solution: Use to store blocks updated in same stripe

• If power failure, can replay all writes in NVRAM

• Software RAID solution: Perform parity scrub over entire disk

0 3

6 9

1 4

7 10

2 5

8 11

P0 P1

P2 P3

