
Lecture 13 – Errors and Failures

15-440 Distributed Systems



Types of Errors

• Hard errors:  The component is dead.

• Soft errors: A signal or bit is wrong, but it doesn’t 
mean the component must be faulty

• Note:  You can have recurring soft errors due to 
faulty, but not dead, hardware
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Examples

• DRAM errors

• Hard errors:  Often caused by motherboard - faulty 
traces, bad solder, etc.

• Soft errors:  Often caused by cosmic radiation or alpha 
particles (from the chip material itself) hitting memory 
cell, changing value.  (Remember that DRAM is just 
little capacitors to store charge... if you hit it with 
radiation, you can add charge to it.)
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Some fun #s

• Both Microsoft and Google have recently 
started to identify DRAM errors as an 
increasing contributor to failures... Google in 
their datacenters, Microsoft on your 
desktops.

• We’ve known hard drives fail for years, of 
course. :)
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Replacement Rates

HPC1 COM1 COM2
Component % Component % Component %

Hard drive 30.6 Power supply 34.8 Hard drive 49.1
Memory 28.5 Memory 20.1 Motherboard 23.4
Misc/Unk 14.4 Hard drive 18.1 Power supply 10.1
CPU 12.4 Case 11.4 RAID card 4.1
motherboard 4.9 Fan 8 Memory 3.4
Controller 2.9 CPU 2 SCSI cable 2.2
QSW 1.7 SCSI Board 0.6 Fan 2.2
Power supply 1.6 NIC Card 1.2 CPU 2.2
MLB 1 LV Pwr Board 0.6 CD-ROM 0.6
SCSI BP 0.3 CPU heatsink 0.6 Raid Controller 0.6

From “Disk failures in the real world: What does an 
MTTF of 1,000,000 hours mean to you?”
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Measuring Availability

• Mean time to failure (MTTF)
• Mean time to repair (MTTR)
• MTBF = MTTF + MTTR

• Availability = MTTF / (MTTF + MTTR)
• Suppose OS crashes once per month, takes 10min to 

reboot.  
• MTTF = 720 hours = 43,200 minutes

MTTR = 10 minutes
• Availability = 43200 / 43210 = 0.997 (~“3 nines”)

6



Availability

Availability % Downtime 
per year

Downtime per 
month*

Downtime per 
week

90% ("one nine") 36.5 days 72 hours 16.8 hours
95% 18.25 days 36 hours 8.4 hours
97% 10.96 days 21.6 hours 5.04 hours
98% 7.30 days 14.4 hours 3.36 hours
99% ("two nines") 3.65 days 7.20 hours 1.68 hours
99.50% 1.83 days 3.60 hours 50.4 minutes
99.80% 17.52 hours 86.23 minutes 20.16 minutes
99.9% ("three nines") 8.76 hours 43.8 minutes 10.1 minutes
99.95% 4.38 hours 21.56 minutes 5.04 minutes
99.99% ("four nines") 52.56 minutes 4.32 minutes 1.01 minutes
99.999% ("five nines") 5.26 minutes 25.9 seconds 6.05 seconds
99.9999% ("six nines") 31.5 seconds 2.59 seconds 0.605 seconds
99.99999% ("seven nines") 3.15 seconds 0.259 seconds 0.0605 seconds
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Availability in practice

• Carrier airlines (2002 FAA fact book)
• 41 accidents, 6.7M departures
• 99.9993% availability

• 911 Phone service (1993 NRIC report)
• 29 minutes per line per year
• 99.994%

• Standard phone service (various sources)
• 53+ minutes per line per year
• 99.99+%

• End-to-end Internet Availability
• 95% - 99.6%
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Real Devices
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Real Devices – the small print
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Disk failure conditional probability 
distribution - Bathtub curve

Expected operating lifetime

1 / (reported MTTF)

Infant
mortality

Burn 
out
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Other Bathtub Curves

From: L. Gavrilov & N. Gavrilova, “Why We Fall Apart,” IEEE Spectrum, Sep. 2004.
Data from http://www.mortality.org

Human 
Mortality 
Rates
(US, 1999)
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So, back to disks...

• How can disks fail?
• Whole disk failure (power supply, electronics, motor, 

etc.)
• Sector errors - soft or hard

• Read or write to the wrong place (e.g., disk is 
bumped during operation)

• Can fail to read or write if head is too high, coating on 
disk bad, etc.

• Disk head can hit the disk and scratch it.
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Coping with failures...

• A failure
• Let’s say one bit in your DRAM fails.

• Propagates
• Assume it flips a bit in a memory address the kernel is 

writing to.  That causes a big memory error elsewhere, 
or a kernel panic.

• Your program is running one of a dozen storage 
servers for your distributed filesystem.

• A client can’t read from the DFS, so it hangs.
• A professor can’t check out a copy of your 15-440 

assignment, so he gives you an F.
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Recovery Techniques

• We’ve already seen some:  e.g., retransmissions in 
TCP and in your RPC system

• Modularity can help in failure isolation:  preventing an 
error in one component from spreading.  
• Analogy:  The firewall in your car keeps an engine fire from 

affecting passengers
• Today:  Redundancy and Retries

• Next lecture:  Specific techniques used in file systems, disks
• This time:  Understand how to quantify reliability
• Understand basic techniques of replication and fault masking
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What are our options?

1. Silently return the wrong answer.

2. Detect failure.

3. Correct / mask the failure
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Parity Checking

Single Bit Parity:
Detect single bit errors
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Block Error Detection
• EDC= Error Detection and Correction bits (redundancy)
• D    = Data protected by error checking, may include header fields 
• Error detection not 100% reliable!

• Protocol may miss some errors, but rarely
• Larger EDC field yields better detection and correction
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Error Detection - Checksum

• Used by TCP, UDP, IP, etc..
• Ones complement sum of all words/shorts/bytes 

in packet
• Simple to implement
• Relatively weak detection

• Easily tricked by typical loss patterns
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Example: Internet Checksum

Sender
• Treat segment contents 

as sequence of 16-bit 
integers

• Checksum: addition (1’s 
complement sum) of 
segment contents

• Sender puts checksum 
value into checksum field 
in header

Receiver
• Compute checksum of 

received segment
• Check if computed 

checksum equals 
checksum field value:
• NO - error detected
• YES - no error 

detected. But maybe 
errors nonethless?

• Goal: detect “errors” (e.g., flipped bits) in transmitted 
segment
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Error Detection – Cyclic 
Redundancy Check  (CRC)

• Polynomial code
• Treat packet bits a coefficients of n-bit polynomial
• Choose r+1 bit generator polynomial (well known –

chosen in advance)
• Add r bits to packet such that message is divisible by 

generator polynomial
• Better loss detection properties than checksums

• Cyclic codes have favorable properties in that they are 
well suited for detecting burst errors

• Therefore, used on networks/hard drives
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Error Detection – CRC
• View data bits, D, as a binary number
• Choose r+1 bit pattern (generator), G
• Goal: choose r CRC bits, R, such that

• <D,R> exactly divisible by G (modulo 2) 
• Receiver knows G, divides <D,R> by G.  If non-zero remainder: 

error detected!
• Can detect all burst errors less than r+1 bits

• Widely used in practice
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CRC Example

Want:
D.2r XOR R = nG

equivalently:
D.2r = nG XOR R 

equivalently:
if we divide D.2r by G, 
want reminder Rb

R = remainder[           ]
D.2r

G
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What are our options?

1. Silently return the wrong answer.

2. Detect failure.

3. Correct / mask the failure
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Error Recovery

• Two forms of error recovery
• Redundancy

• Error Correcting Codes (ECC)
• Replication/Voting

• Retry

• ECC
• Keep encoded redundant data to help repair losses
• Forward Error Correction (FEC) – send bits in advance

• Reduces latency of recovery at the cost of bandwidth

25



Error Recovery – Error 
Correcting Codes (ECC)

Two Dimensional Bit Parity:
Detect and correct single bit errors

0 0
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Replication/Voting

• If you take this to the extreme
[r1]  [r2]  [r3]

• Send requests to all three versions of the software:  Triple 
modular redundancy
•Compare the answers, take the majority
•Assumes no error detection

• In practice - used mostly in space applications;  some 
extreme high availability apps (stocks & banking?  maybe.  
But usually there are cheaper alternatives if you don’t 
need real-time)
•Stuff we cover later:  surviving malicious failures through voting 
(byzantine fault tolerance)
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Retry – Network Example

Time

Ti
m

eo
ut

• Sometimes errors 
are transient

• Need to have error 
detection 
mechanism
• E.g., timeout, 

parity, chksum
• No need for 

majority vote

Sender Receiver
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One key question

• How correlated are failures?
• Can you assume independence?

• If the failure probability of a computer in a rack is p,
• What is p(computer 2 failing) | computer 1 failed?

• Maybe it’s p... or maybe they’re both plugged into 
the same UPS...

• Why is this important?
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Fault Tolerant Design

• Quantify probability of failure of each component
• Quantify the costs of the failure
• Quantify the costs of implementing fault tolerance

• This is all probabilities...
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Summary

• Definition of MTTF/MTBF/MTTR:  Understanding 
availability in systems.

• Failure detection and fault masking techniques
• Engineering tradeoff:  Cost of failures vs. cost of 

failure masking.
• At what level of system to mask failures?
• Leading into replication as a general strategy for fault 

tolerance
• Thought to leave you with:

• What if you have to survive the failure of entire 
computers?  Of a rack?  Of a datacenter?
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Replacement Rates

HPC1 COM1 COM2
Component % Component % Component %

Hard drive 30.6 Power supply 34.8 Hard drive 49.1
Memory 28.5 Memory 20.1 Motherboard 23.4
Misc/Unk 14.4 Hard drive 18.1 Power supply 10.1
CPU 12.4 Case 11.4 RAID card 4.1
motherboard 4.9 Fan 8 Memory 3.4
Controller 2.9 CPU 2 SCSI cable 2.2
QSW 1.7 SCSI Board 0.6 Fan 2.2
Power supply 1.6 NIC Card 1.2 CPU 2.2
MLB 1 LV Pwr Board 0.6 CD-ROM 0.6
SCSI BP 0.3 CPU heatsink 0.6 Raid Controller 0.6
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Back to Disks…
What are our options?
1. Silently return the wrong answer.
2. Detect failure.

• Every sector has a header with a checksum.  Every read 
fetches both, computes the checksum on the data, and 
compares it to the version in the header. Returns error if 
mismatch.

3. Correct / mask the failure
• Re-read if the firmware signals error (may help if transient 

error, may not)
• Use an error correcting code (what kinds of errors do they 

help?)
• Bit flips?  Yes.  Block damaged?  No

• Have the data stored in multiple places (RAID)
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Fail-fast disk

failfast_get (data, sn) {
get (s, sn);
if (checksum(s.data) = s.cksum) {

data ← s.data;
return OK;

} else {
return BAD;

}
}
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Careful disk

careful_get (data, sn) {
r  ← 0;
while (r < 10) {

r ← failfast_get (data, sn);
if (r = OK) return OK;
r++;

}
return BAD;

}
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Use multiple disks?

• Capacity
• More disks allows us to store more data

• Performance
• Access multiple disks in parallel
• Each disk can be working on independent read or write
• Overlap seek and rotational positioning time for all

• Reliability
• Recover from disk (or single sector) failures
• Will need to store multiple copies of data to recover

• So, what is the simplest arrangement? 



Just a bunch of disks (JBOD) 

• Yes, it’s a goofy name
• industry really does sell “JBOD enclosures” 
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  industry really does sell “JBOD enclosures” 



Disk Subsystem Load Balancing 

• I/O requests are almost never evenly distributed 
• Some data is requested more than other data
• Depends on the apps, usage, time, ... 

• What is the right data-to-disk assignment policy? 
• Common approach: Fixed data placement

• Your data is on disk X, period!
• For good reasons too: you bought it or you’re paying more... 

• Fancy: Dynamic data placement
• If some of your files are accessed a lot, the admin(or even 

system) may separate the “hot” files across multiple disks
• In this scenario, entire files systems (or even files) are manually moved 

by the system admin to specific disks
• Alternative: Disk striping 

• Stripe all of the data across all of the disks
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Disk Striping 

• Interleave data across multiple disks 
• Large file streaming can enjoy parallel transfers 
• High throughput requests can enjoy thorough load 

balancing
• If blocks of hot files equally likely on all disks (really?) 
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Disk Striping 

  Interleave data across multiple disks 
  Large file streaming can enjoy parallel transfers  
  High throughput requests can enjoy thorough load balancing 

  If blocks of hot files equally likely on all disks (really?) 

stripe unit  
or block 

Stripe"

File Foo: "



Disk striping details 

• How disk striping works 
• Break up total space into fixed-size stripe units 
• Distribute the stripe units among disks in round-robin 
• Compute location of block #B as follows

• disk# = B%N (%=modulo,N = #ofdisks) 
• LBN# = B / N (computes the LBN on given disk) 
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Now, What If A Disk Fails? 

• In a JBOD (independent disk) system 
• one or more file systems lost 

• In a striped system
• a part of each file system lost 

• Backups can help, but 
• backing up takes time and effort
• backup doesn’t help recover data lost during that day

• Any data loss is a big deal to a bank or stock 
exchange 
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Tolerating and masking disk 
failures 

• If a disk fails, it’s data is gone
• may be recoverable, but may not be 

• To keep operating in face of failure
• must have some kind of data redundancy 

• Common forms of data redundancy 
• replication 
• erasure-correcting codes 
• error-correcting codes 
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