BN, | 15-440 Distributed Systems

Lecture 13 — Errors and Failures

Types of Errors “

 Hard errors: The componentis dead.

» Soft errors: A signal or bit is wrong, but it doesn’t
mean the component must be faulty

* Note: You can have recurring soft errors due to
faulty, but not dead, hardware

Examples “

 DRAM errors

« Hard errors: Often caused by motherboard - faulty
traces, bad solder, efc.

« Soft errors: Often caused by cosmic radiation or alpha
particles (from the chip material itself) hitting memory
cell, changing value. (Remember that DRAM is just
little capacitors to store charge... if you hit it with
radiation, you can add charge to it.)

Some fun #s “

® Both Microsoft and Google have recently
started to identify DRAM errors as an
increasing contributor to failures... Google in
their datacenters, Microsoft on your
desktops.

® We've known hard drives fail for years, of
course. :)

Replacement Rates

N

HPC1 COM1 COM2

Component % Component % Component %

Hard drive 30.6 Power supply 34.8 Hard drive 49.1
Memory 28.5 Memory 20.1 Motherboard 23.4
Misc/Unk 14.4 Hard drive 18.1 Power supply 10.1
CPU 12.4 Case 11.4 RAID card 4.1

motherboard 4.9 Fan 8 Memory 3.4
Controller 2.9 CPU 2 SCSI cable 2.2

QSW 1.7 SCSI Board 0.6 Fan 2.2

Power supply 1.6 NIC Card 1.2 CPU 2.2

MLB 1 LV Pwr Board 0.6 CD-ROM 0.6

SCSI BP 0.3 CPU heatsink 0.6 Raid Controller 0.6

From “Disk failures in the real world: What does an
MTTF of 1,000,000 hours mean to you?”

Measuring Availability

* Mean time to failure (MTTF)
* Mean time to repair (MTTR)
MTBF = MTTF + MTTR

Availability = MTTF / (MTTF + MTTR)

* Suppose OS crashes once per month, takes 10min to
reboot.

e MTTF =720 hours = 43,200 minutes
MTTR =10 minutes

* Availability = 43200 / 43210 = 0.997 (~"3 nines”)

Availability O\ Y

Downtime @ Downtime per Downtime per

Availability %

per year month* week
90% ("one nine") 36.5 days 72 hours 16.8 hours
95% 18.25 days 36 hours 8.4 hours
97% 10.96 days 21.6 hours 5.04 hours
98% 7.30 days 14.4 hours 3.36 hours
99% ("two nines") 3.65 days 7.20 hours 1.68 hours
99.50% 1.83 days 3.60 hours 50.4 minutes
99.80% 17.52 hours 86.23 minutes 20.16 minutes
99.9% ("three nines") 8.76 hours 43.8 minutes 10.1 minutes
99.95% 4.38 hours 21.56 minutes 5.04 minutes
99.99% ("four nines") 52.56 minutes 4.32 minutes 1.01 minutes
99.999% ("five nines") 5.26 minutes 25.9 seconds 6.05 seconds
99.9999% ("six nines") 31.5 seconds 2.59 seconds 0.605 seconds

99.99999% ("seven nines") | 3.15 seconds 0.259 seconds 0.0605 seconds

Avalilability in practice

Carrier airlines (2002 FAA fact book)

* 41 accidents, 6.7M departures

* 99.9993% availability

* 911 Phone service (1993 NRIC report)
* 29 minutes per line per year
* 99.994%

» Standard phone service (various sources)
« 53+ minutes per line per year
* 99.99+%

* End-to-end Internet Availability

* 95% - 99.6%

Real Devices

S —

sesote (€

We tum on dess

PRODUCT OVERVIEW

Cheetah 15K.4

Mainstream enterprise disc drive

Simply the best price/
performance, lowest cost of
ownership disc drive ever

KEY FEATURES AND BENEFITS

« The Cheetah® 15K.4 is the highest-performance drive ever offered by Seagate®,
delivering maximum IOPS with fewer drives to yield lower TCO.

« The Cheetah 15K.4 price-par-performanca value united with the breakthrough bensdits
of serial attached SCSI {SAS) make i the optimal 3.5-inch drive for rock salid
enferprise storage.

« Proactive, seli-initiated background management functions impeove media integeity,
Increass drive efficiency, reduce incidence of integeation failures and improve
fiekd refability.

« The Cheetah 15K.4 shzres its slectronics architecture and firmware base with
Cheetzh 10K.7 and Savvia ™ to ensure greater factory consistency and reducad
time to market.

KEY SPECIFICATIONS

« 146-,73- and 36-Gbyte capacties

« 3.3-msac average read and 3.8-msec average write seek tmes

« Up 1o 95-Moytes/sac sustained transfer rate

1.4 million hours full duty cycle MTBF

« Serial Attached SCSI (SAS), Utra320 SCSI and 2 Gbits/sec Fibre Channel interfacss

« 5-yzar warranty

For mare infarmation on why 15K is the industry’s best price/perfarmance disc drive for
use in mair storage appiications, wsit /15K

Real Devices — the small print i‘

dalvering maximum I0PS with fewer drives 1o yield lower TCO.

« The Cheetah 15K.4 price-par-performancs value united with the breakthrough bensfits
of seral attached SCSI [SAS) make #t the optimal 3.5-inch drive for rock solid
enferprse storage.

« Proactive, self-initated background manzgement functions impeove media intagrity,
increass drive efficiency, raduce incidence of integreation failures and improve
fizid relability.

« The Cheetah 15K.4 shares its clectronics architecture and firmware base with
Cheetzh 10K.7 and Savvio ™ 10 ensure greater factory consistency and reducad
time 10 market.

KEY SPECIFICATIONS

« 146-, 73- and 36-Gbyte capacities
3.3-msac average read and 3.6-msec averags wrte seek tmes

For more information an why 15K is the industry’s best price/performance disc drive for
s i mamstream stovane aonlficabans wsi hito://soecials seaaate. com/15k

10

Disk failure conditional probability
distribution - Bathtub curve

Infant Burn
 mortality out
= Stable failure period
Q
E
&
k=
—
o 1 / (reported MTTF)
o e
Expected opeéating lifetime
| o
0

Time

11

Other Bathtub Curves

©
|

0.0l

Death rate, log scale

0.00I

0.0001 -

Human
Mortality
Infant Rates
mortality Female (US, 1999)
Aging
Normal working
20 60 100
Age, years

From: L. Gavrilov & N. Gavrilova, “Why We Fall Apart,” IEEE Spectrum, Sep. 2004.
Data from http://www.mortality.org 12

So, back to disks... “

* How can disks fail?

« Whole disk failure (power supply, electronics, motor,
etc.)

e Sector errors - soft or hard

« Read or write to the wrong place (e.g., disk is
bumped during operation)

 Can fail to read or write if head is too high, coating on
disk bad, etc.

* Disk head can hit the disk and scratch it.

13

Coping with failures... O\ Y

* A failure
 Let’ s say one bit in your DRAM fails.

* Propagates

« Assume it flips a bit in a memory address the kernel is
writing to. That causes a big memory error elsewhere,
or a kernel panic.

* Your program is running one of a dozen storage
servers for your distributed filesystem.

« Aclient can’t read from the DFS, so it hangs.

A professor can’ t check out a copy of your 15-440
assignment, so he gives you an F.

14

Recovery Techniques “

 We've already seen some: e.g., retransmissionsin
TCP and in your RPC system

* Modularity can help in failure isolation: preventing an
error in one component from spreading.
* Analogy: The firewall in your car keeps an engine fire from
affecting passengers
 Today. Redundancy and Retries
* Next lecture: Specific techniques used in file systems, disks
* This time: Understand how to quantify reliability
« Understand basic techniques of replication and fault masking

15

What are our options?

1. Silently return the wrong answer.

2. Detect failure.

3. Correct/ mask the failure

16

Parity Checking

Single Bit Parity:

Detect single bit errors

— d data bits —A Lo

0111000110101011 OI

17

Block Error Detection

N

« EDC-= Error Detection and Correction bits (redundancy)

D

= Data protected by error checking, may include header fields

Error detection not 100% reliable!

Protocol may miss some errors, but rarely
Larger EDC field yields better detection and correction

| datagram I | datagram I

v |

detected
error

<+d data bits—»| :
D EDC D' EDC'

— () bit-error prone link () —

18

Error Detection - Checksum

N

Used by TCP, UDP, IP, etc..

Ones complement sum of all words/shorts/bytes
In packet

Simple to implement

Relatively weak detection
 Easily tricked by typical loss patterns

19

Example: Internet Checksum

N

« Goal: detect “errors” (e.g., flipped bits) in transmitted

segment

Sender

* Treat segment contents
as sequence of 16-bit
integers

« Checksum: addition (1" s
complement sum) of
segment contents

» Sender puts checksum
value into checksum field
In header

Recelver

« Compute checksum of
received segment

* Check if computed
checksum equals
checksum field value:

* NO - error detected

* YES - no error
detected. But maybe
errors nonethless?

20

Error Detection — Cyclic

Redundancy Check (CRC) “

* Polynomial code
* Treat packet bits a coefficients of n-bit polynomial

* Choose r+1 bit generator polynomial (well known —
chosen in advance)

« Add r bits to packet such that message is divisible by
generator polynomial

» Better loss detection properties than checksums

« Cyclic codes have favorable properties in that they are
well suited for detecting burst errors

 Therefore, used on networks/hard drives

21

Error Detection — CRC

N

View data bits, D, as a binary number
Choose r+1 bit pattern (generator), G

Goal: choose r CRC bits, R, such that
« <D,R> exactly divisible by G (modulo 2)

* Receiver knows G, divides <D,R> by G. If non-zero remainder:
error detected!

 (Can detect all burst errors less than r+1 bits
Widely used in practice

< d bits » <+ r bits —
bit
| D: data bits to be sent‘ R:CRC bitsl pattern
D 27 XOR R mathematical

formula

22

CRC Example
Want:
D-2" XORR =nG
equivalently:
D-2"=nG XOR R
equivalently:

if we divide D-2" by G,
want reminder Rb

N

D-2r]
G

R = remainder[

101011

1001) 101110000
X >D

=
-
-
=

23

What are our options?

1. Silently return the wrong answer.

2. Detect failure.

3. Correct/ mask the failure

24

Error Recovery

« Two forms of error recovery
* Redundancy
 Error Correcting Codes (ECC)
 Replication/Voting
* Retry

- ECC

« Keep encoded redundant data to help repair losses
* Forward Error Correction (FEC) — send bits in advance
* Reduces latency of recovery at the cost of bandwidth

25

Error Recovery — Error
Correcting Codes (ECC)

Two Dimensional Bit Parity:

Detect and correct single bit errors

dq 4

ds 4

row

parity
dq dq j+1
ds | do 41
di | dj j+1

1 d; 4
column ’
parity ditq 4

10101
11110
01110
Q0101

no errors

Ol O

divlj disq juq

10101

1 1 1 0
i E I A W

, parity

error

01110

Ol O K

Q0101
pa‘lrrity
error

correctable
single bit error

26

Replication/VVoting “

 If you take this to the extreme
[r1] [r2] [r3]

* Send requests to all three versions of the software: Triple
modular redundancy
Compare the answers, take the majority
*Assumes no error detection

* |n practice - used mostly in space applications; some
extreme high availability apps (stocks & banking? maybe.
But usually there are cheaper alternatives if you don’ t
need real-time)

*Stuff we cover later: surviving malicious failures through voting
(byzantine fault tolerance)

27
27

Retry — Network Example

e Sometimes errors
are transient

* Need to have error
detection
mechanism

* E£.g., timeout,
parity, chksum

* No need for
majority vote

N

Time

Sender Receiver

| A

B Tir_r]_e_out

28

One key question “

« How correlated are failures?

» Can you assume independence?
* |f the failure probability of a computer in a rack is p,
« What is p(computer 2 failing) | computer 1 failed?

« Maybe it’ s p... or maybe they’ re both plugged into
the same UPS...

* Why is this important?

29

Fault Tolerant Design O\ Y

» Quantify probability of failure of each component
* Quantify the costs of the failure
Quantify the costs of implementing fault tolerance

This is all probabilities...

30

Summary “

* Definition of MTTF/MTBF/MTTR: Understanding
availability in systems.

 Failure detection and fault masking techniques

* Engineering tradeoff: Cost of failures vs. cost of
failure masking.

« At what level of system to mask failures?

« Leading into replication as a general strategy for fault
tolerance

* Thoughtto leave you with:

« What if you have to survive the failure of entire
computers? Of a rack? Of a datacenter?

31
31

Replacement Rates

N

HPC1 COM1 COM2

Component % Component % Component %

Hard drive 30.6 Power supply 34.8 Hard drive 49.1
Memory 28.5 Memory 20.1 Motherboard 23.4
Misc/Unk 14.4 Hard drive 18.1 Power supply 10.1
CPU 12.4 Case 11.4 RAID card 4.1

motherboard 4.9 Fan 8 Memory 3.4

Controller 2.9 CPU 2 SCSI cable 2.2

QSW 1.7 SCSI Board 0.6 Fan 2.2

Power supply 1.6 NIC Card 1.2 CPU 2.2

MLB 1 LV Pwr Board 0.6 CD-ROM 0.6

SCSI BP 0.3 CPU heatsink 0.6 Raid Controller 0.6

32

Back to Disks...
What are our options?

N

1. Silently return the wrong answer.

2. Detectfailure.

* Every sector has a header with a checksum. Every read
fetches both, computes the checksum on the data, and
compares it to the version in the header. Returns error if
mismatch.

3. Correct/ mask the failure

* Re-read if the firmware signals error (may help if transient
error, may not)

« Use an error correcting code (what kinds of errors do they
help?)

 Bit flips? Yes. Block damaged? No
« Have the data stored in multiple places (RAID)

33

Fail-fast disk

failfast _get (data, sn) {
get (s, sn);
if (checksum(s.data) = s.cksum) {
data < s.data;
return OK;
} else {
return BAD:;

34

Careful disk

careful _get (data, sn) {
r «— O;
while (r < 10) {
r — failfast_get (data, sn);
iIf (r = OK) return OK;
r++;

}
return BAD:;

35

Use multiple disks?

Capacity

* More disks allows us to store more data
Performance

* Access multiple disks in parallel

« Each disk can be working on independent read or write

* QOverlap seek and rotational positioning time for all
Reliability

« Recover from disk (or single sector) failures

« Will need to store multiple copies of data to recover

So, what is the simplest arrangement?

C Y O 3 £
A0 BO CO DO
~ 1 M~ M~ [—
Al Bl Cl D1
1 M~ e [—
A2 B2 C2 D2
] M~ e [
A3 B3 C3 D3
N— N— N— N—

Just a bunch of disks (JBOD)

* Yes, it's a goofy name
* industry really does sell “JBOD enclosures”

37

Disk Subsystem Load Balancing

* 1/O requests are almost never evenly distributed
 Some data is requested more than other data
 Depends on the apps, usage, time, ...

* What is the right data-to-disk assignment policy?
« Common approach: Fixed data placement
* Your data is on disk X, period!
« For good reasons too: you bought it or you're paying more...
« Fancy: Dynamic data placement

* If some of your files are accessed a lot, the admin(or even
system) may separate the “hot” files across multiple disks

* In this scenario, entire files systems (or even files) are manually moved
by the system admin to specific disks

» Alternative: Disk striping
 Stripe all of the data across all of the disks

38

Disk Striping l‘

* |nterleave data across multiple disks
 Large file streaming can enjoy parallel transfers

* High throughput requests can enjoy thorough load
balancing

* If blocks of hot files equally likely on all disks (really?)

stripe unit

or block

Stripe |

39

Disk striping details «N

* How disk striping works
« Break up total space into fixed-size stripe units
 Distribute the stripe units among disks in round-robin
e Compute location of block #B as follows
o disk# = B%N (%=modulo,N = #ofdisks)
 LBN# =B / N (computes the LBN on given disk)

40

Now, What If A Disk Fails?

* In a JBOD (independent disk) system
* one or more file systems lost

* |n a striped system
 a part of each file system lost

» Backups can help, but
* backing up takes time and effort
* backup doesn’t help recover data lost during that day

* Any data loss is a big deal to a bank or stock
exchange

41

Tolerating and masking disk
failures

 If a disk fails, it's data is gone
* may be recoverable, but may not be

» To keep operating in face of failure
« must have some kind of data redundancy

 Common forms of data redundancy
 replication
 erasure-correcting codes
* error-correcting codes

42

