W%, | 15-440 Distributed Systems

Lecture 8 — Distributed File Systems 2



Logistical Updates “

« PO (+1 extra day, penalty updated)
 Original due date: Midnight EST 9/24.
« QOriginal max 2 days late => Now Max 3 days late
* Original: 10% penalty/day => Now 5% Penalty/day
« NOTE: We will not accept PO after Midnight EST 9/27
 Attend office hours in case you are having trouble
« Solutions for PO discussed
 Extra recitation section on Tuesday 9/29 (Time: >6pm)
 Location: CUC McConomy, likely 6pm — 8pm
» Learn about good solutions to PO
* May help to learn how to structure GO code (for P1)



Review of Last Lecture

 Distributed file systems functionality

* Implementation mechanisms example
* Client side: VFS interception in kernel
 Communications: RPC
» Server side: service daemons

* Design choices
» Topic 1: client-side caching

* NFS and AFS



Today's Lecture

 DFS design comparisons continued

» Topic 2: file access consistency
- NFS, AFS

« Topic 3: name space construction
* Mount (NFS) vs. global name space (AFS)

» Topic 4: Security in distributed file systems
» Kerberos

* Other types of DFS

» Coda — disconnected operation
« LBFS — weakly connected operation



Topic 2: File Access Consistency “

* In UNIX local file system, concurrent file reads
and writes have “sequential” consistency
semantics

« Each file read/write from user-level app is an atomic
operation

* The kernel locks the file vnode
« Each file write is immediately visible to all file readers

* Neither NFS nor AFS provides such concurrency
control
* NFS: “sometime within 30 seconds”
* AFS: session semantics for consistency



Session Semantics in AFS v2 “

« What it means:

A file write is visible to processes on the same box
Immediately, but not visible to processes on other
machines until the file is closed

* When a file is closed, changes are visible to new
opens, but are not visible to “old” opens

« All other file operations are visible everywhere
Immediately
* Implementation

 Dirty data are buffered at the client machine until file
close, then flushed back to server, which leads the
server to send “break callback” to other clients



AFS Write Policy

* Writeback cache
* Opposite of NFS “every write is sacred”
» Store chunk back to server
* \When cache overflows
* On last user close()
 ...ordon't (if client machine crashes)

* |s writeback crazy?

* Write conflicts “assumed rare”
« Who wants to see a half-written file?



Results for AFS Y

 Lower server load than NFS
 More files cached on clients

« Callbacks: server not busy if files are read-only (common
case)

« But maybe slower: Access from local disk is much

slower than from another machine’ s memory over
LAN

 For both:

 Central server is bottleneck: all reads and writes hit it at
least once;

* is a single point of failure.
* is costly to make them fast, beefy, and reliable servers.



Topic 3: Name-Space
Construction and Organization

* NFS: per-client linkage
« Server: export /root/fs1/
* Client: mount server:/root/fs1 /fs1

* AFS: global name space

 Name space is organized into Volumes
 Global directory /afs;
* /afs/cs.wisc.edu/voll/...; /afs/cs.stanford.edu/vol1/...

« Each file is identified as fid = <vol _id, vnode #, unique
identifier>

« All AFS servers keep a copy of “volume location database”,
which is a table of vol id-> server_ip mappings



Implications on Location “‘

Transparency

 NFS: no transparency

» If a directory is moved from one server to another, client
must remount

* AFS: transparency

 If a volume is moved from one server to another, only
the volume location database on the servers needs to
be updated

10



Naming in NFS (1)

Client A

remote/ \ bin

Server

O

/ L&Steen

/N
O

\mbox / Eﬂbpx Y mbox
‘ ,,l \‘\ ‘ >I’l \\\
Exported directory Exported directory
mounted by client mounted by client
Network

11




Naming in NFS (2)

N

Exported directory
contains imported

subdirectory

Server A

Client
imports
directory
from
server A

/7
/

packag:S/ \

/ \O
’ / \ir{aw %

/ g \

/ N, A
1 / \ \\

v\
\

Enst‘a'll ,

____________

oo e N =

Server B

Server A
imports
directory
from
server B

/ \Q
N
Q '/ ins';\élll
MR

\

|

I

/
7/

v o o

Network

4

Client needs to
explicitly import
subdirectory from
server B

12



Implications on Location “‘

Transparency

 NFS: no transparency

» If a directory is moved from one server to another, client
must remount

* AFS: transparency

 If a volume is moved from one server to another, only
the volume location database on the servers needs to
be updated

13



Topic 4: User Authentication and
Access Control “‘

« User X logs onto workstation A, wants to access files
on server B
« How does A tell B who X is?
« Should B believe A?

« Choices made in NFS V2
 All servers and all client workstations share the same <uid,
gid> name space - B send X’s <uid,gid> to A
* Problem: root access on any client workstation can lead
to creation of users of arbitrary <uid, gid>
« Server believes client workstation unconditionally

« Problem: if any client workstation is broken into, the
protection of data on the server is lost;

e <uid, gid> sent in clear-text over wire - request packets
can be faked easily

14



User Authentication (cont’'d) “.

 How do we fix the problems in NFS v2
* Hack 1: root remapping - strange behavior
* Hack 2: UID remapping = no user mobility

* Real Solution: use a centralized
Authentication/Authorization/Access-control (AAA)

system

15



A Better AAA System: Kerberos “

Basic idea: shared secrets

« User proves to KDC who he is; KDC generates shared
secret between client and file server

p KDC

ticket server
generates S

file server

&
encrypt S with
\/client’s key

client

S: specific to {client,fs} pair;
“short-term session-key”; expiration time (e.g. 8 hours)

16



Key Lessons “

 Distributed filesystems almost always involve a
tradeoff. consistency, performance, scalability.

« We'll see a related tradeoff, also involving
consistency, in a while: the CAP tradeofft.
Consistency, Availability, Partition-resilience.




More Key Lessons “

» Client-side caching is a fundamental technique to
improve scalability and performance
« But raises important questions of cache consistency

 Timeouts and callbacks are common methods for
providing (some forms of) consistency.

* AFS picked close-to-open consistency as a good
balance of usability (the model seems intuitive to
users), performance, etc.

« AFS authors argued that apps with highly concurrent,
shared access, like databases, needed a different
model



Today's Lecture

 DFS design comparisons continued

» Topic 2: file access consistency
- NFS, AFS

« Topic 3: name space construction
* Mount (NFS) vs. global name space (AFS)

» Topic 4: AAA in distributed file systems

 Kerberos

* Other types of DFS

» Coda — disconnected operation
« LBFS — weakly connected operation

19



Background

We are back to 1990s.
Network is slow and not stable

Terminal - “powerful” client
« 33MHz CPU, 16MB RAM, 100MB hard drive

Mobile Users appeared
e 1st IBM Thinkpad in 1992

We can do work at client without network

20



CODA Y

« Successor of the very successful Andrew File
System (AFS)
 AFS
* First DFS aimed at a campus-sized user community
» Key ideas include

* open-to-close consistency
» callbacks

21



Hardware Model “

« CODA and AFS assume that client workstations

are personal computers controlled by their
user/owner

* Fully autonomous
« Cannot be trusted

 CODA allows owners of laptops to operate them
In disconnected mode

* Opposite of ubiquitous connectivity

22



Accessibility

* Must handle two types of failures
» Server failures:
« Data servers are replicated

« Communication failures and voluntary
disconnections

« Coda uses optimistic replication and file
hoarding

23



Design Rationale

« Scalability
« Callback cache coherence (inherit from AFS)
* Whole file caching
« Fat clients. (security, integrity)
* Avoid system-wide rapid change
* Portable workstations
« User's assistance in cache management

24



Design Rationale —Replica
Control “‘

* Pessimistic
* Disable all partitioned writes

- Require a client to acquire control of a cached object
prior to disconnection

* Optimistic
« Assuming no others touching the file
- conflict detection
+ fact: low write-sharing in Unix
+ high availability: access anything in range

25



What about Consistency? “

* Pessimistic replication control protocols
guarantee the consistency of replicated in the
presence of any non-Byzantine failures

» Typically require a quorum of replicas to allow access
to the replicated data

 Would not support disconnected mode

26



Pessimistic Replica Control “

« Would require client to acquire exclusive (RW)
or shared (R) control of cached objects before
accessing them in disconnected mode:

» Acceptable solution for voluntary disconnections
* Does not work for involuntary disconnections

* What if the laptop remains disconnected for a long
time?

27



Leases “

* We could grant exclusive/shared control of the
cached objects for a limited amount of time

* Works very well in connected mode

* Reduces server workload
« Server can keep leases in volatile storage as long as
their duration is shorter than boot time
« Would only work for very short disconnection
periods

28



Optimistic Replica Control (1) “

 Optimistic replica control allows access in
every disconnected mode
» Tolerates temporary inconsistencies
* Promises to detect them later
* Provides much higher data availability

29



Optimistic Replica Control (Il) “

 Defines an accessible universe: set of files that
the user can access
 Accessible universe varies over time

« Atany time, user

« Will read from the latest file(s) in his accessible
universe

« Will update all files in his accessible universe

30



Coda States

e e

1. Hoarding.
Normal operatlon mode

2. Emulatmg{
Disconnected operation mode

3. Reinteg ratmg{‘
Propagates changes and detects inconsistencies

31



Hoarding

 Hoard useful data for disconnection

« Balance the needs of connected and
disconnected operation.

» Cache size is restricted
* Unpredictable disconnections

« Uses user specified preferences + usage patterns
to decide on files to keep in hoard

32



Prioritized algorithm “

User defined hoard priority p: how important is a
file to you?

Recent Usage q

Obiject priority = f(p,q)

Kick out the one with lowest priority

+ Fully tunable
Everything can be customized

- Not tunable (?)

- No idea how to customize

33



Hoard Walking

* Equilibrium — uncached obj < cached obj
« Why it may be broken? Cache size is limited.

Walking: restore equilibrium

* Reloading HDB (changed by others)
» Reevaluate priorities in HDB and cache

* Enhanced callback
Increase scalability, and availability
Decrease consistency

34



Emulation “

 |n emulation mode:

» Attempts to access files that are not in the client caches
appear as failures to application

» All changes are written in a persistent log,
the client modification log (CML)

« Coda removes from log all obsolete entries like those
pertaining to files that have been deleted

35



Persistence “

* Coda keeps its cache and related data structures
In non-volatile storage

* All Venus metadata are updated through
atomic transactions

« Using a lightweight recoverable virtual memory
(RVM) developed for Coda

« Simplifies Venus design

36



Reintegration

« When workstation gets reconnected, Coda initiates a

reintegration process
« Performed one volume at a time

* Venusships replay log to all volumes
Each volume performs a log replay algorithm

Only care about write/write confliction
« Conflict resolution succeeds?

* Yes. Free logs, keep going...
* No. Save logs to a tar. Ask for help

* |n practice:
« No Conflict at all! Why?
Over 99% maodification by the same person
Two users modify the same obj within a day: <0.75%

37



Coda Summary “

» Puts scalability and availability before
data consistency
* Unlike NFS

« Assumes that inconsistent updates are very
infrequent

 |ntroduced disconnected operation mode and file
hoarding

38



Remember this slide?

We are back to 1990s.
Network is slow and not stable

Terminal - “powerful” client
« 33MHz CPU, 16MB RAM, 100MB hard drive

Mobile Users appear
e 1st IBM Thinkpad in 1992

39



What's now?

« We are in 2000s now.
 Network is fast and reliable in LAN

« “powerful” client = very powerful client
« 2.4GHz CPU, 4GB RAM, 500GB hard drive

* Mobile users everywhere

* Do we still need support for disconnection?
 WAN and wireless is not very reliable, and is slow

40



Today's Lecture

 DFS design comparisons continued

» Topic 2: file access consistency
- NFS, AFS

« Topic 3: name space construction
* Mount (NFS) vs. global name space (AFS)

» Topic 4: AAA in distributed file systems

 Kerberos

* Other types of DFS

» Coda — disconnected operation
« LBFS — weakly connected operation

41



Low Bandwidth File System
Key Ideas “‘

* A network file systems for slow or wide-area
networks

« Exploits similarities between files or versions of
the same file

« Avoids sending data that can be found in the server’'s
file system or the client’'s cache

* Also uses conventional compression and caching

* Requires 90% less bandwidth than traditional
network file systems

42



Working on slow networks

 Make local copies

» Must worry about update conflicts
* Use remote login

* Only for text-based applications

 Use instead a LBFS
» Better than remote login

* Must deal with issues like auto-saves blocking the
editor for the duration of transfer

43



LBFS design “

« LBFS server divides file it stores into chunks and
iIndexes the chunks by hash value

* Client similarly indexes its file cache

» Exploits similarities between files

« LBFS never transfers chunks that the recipient already
has

44



Indexing “

* Uses the SHA-1 algorithm for hashing
* ltis collision resistant

* Central challenge in indexing file chunks is
keeping the index at a reasonable size while
dealing with shifting offsets

 Indexing the hashes of fixed size data blocks

* Indexing the hashes of all overlapping blocks at all
offsets

45



L BFS chunking solution O\

« Considers only non-overlapping chunks

« Sets chunk boundaries based on file contents
rather than on position within a file

« Examines every overlapping 48-byte region of file
to select the boundary regions called breakpoints
using Rabin fingerprints

* When low-order 13 bits of region’s fingerprint equals a
chosen value, the region constitutes a breakpoint

46



Effects of edits on file chunks

da. C1 g C2 g f‘?é C4 g Cs g Ch g Cy
b. €1 § €2 g ’—"E Cs g Cs g Ce g C7
C. C1 g C2 g C‘E C8 g Co % ('ué & g C7

* Chunks of file before/after edits
« Grey shading show edits

« Stripes show regions with magic values that creating chunk boundaries

47



More Indexing Issues “

« Pathological cases

* Very small chunks

« Sending hashes of chunks would consume as much
bandwidth as just sending the file

* Very large chunks
» Cannot be sent in a single RPC

 LBFS imposes minimum and maximum chuck
sizes

48



The Chunk Database “

* Indexes each chunk by the first 64 bits of its SHA-
1 hash

« To avoid synchronization problems, LBFS always
recomputes the SHA-1 hash of any data chunk
before using it

« Simplifies crash recovery

 Recomputed SHA-1 values are also used to
detect hash collisions in the database

49



Conclusion “

 Under normal circumstances, LBFS consumes
90% less bandwidth than traditional file systems.

* Makes transparent remote file access a viable and
less frustrating alternative to running interactive
programs on remote machines.

50



