

Shepherding the Crowd:
An Approach to More Creative Crowd Work

Steven P Dow & Scott R Klemmer
Stanford HCI Group

[spdow, srk]@stanford.edu

ABSTRACT
Micro-task platforms provide a marketplace for hiring peo-
ple to do short-term work for small payments. Requesters
often struggle to obtain high-quality results, especially on
content-creation tasks, because work cannot be easily veri-
fied and workers can move to other tasks without conse-
quence. Such platforms provide little opportunity for work-
ers to reflect and improve their task performance. Timely
and task-specific feedback can help crowd workers learn,
persist, and produce better results. We analyze the design
space for crowd feedback and introduce Shepherd, a proto-
type system for visualizing crowd work, providing feed-
back, and promoting workers into shepherding roles. This
paper describes our current progress and our plans for sys-
tem development and evaluation.

Author Keywords
Innovation, creativity, feedback, critique, managing crowds

ACM Classification Keywords
H5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION
How can we educate and motivate online distributed work-
forces to accomplish more creative and complex projects?
To understand the mechanics of large-scale creative work,
our research examines how individual and small team de-
sign practices affect results. Our experiments empirically
demonstrate that simple process changes can help people
design better solutions. For example, creating and receiving
feedback on multiple design ideas in parallel, as opposed to
serially, leads people to produce more diverse, better solu-
tions [6]. Furthermore, parallel prototypers react more posi-
tively to critique and share more fluidly with group mem-
bers [5]. A key methodological insight in this research has
been challenging participants to do tasks where the solu-
tions are both creatively different and objectively measur-
able – like creating Web advertisements. For these experi-
ments, crowdsourcing has proven to be invaluable for ob-
taining judgments of design quality and divergence. As a
measure of design diversity, Mechanical Turk raters as-

sessed the pair-wise similarity of all combinations of par-
ticipant ads. Human judgments and Web analytics offer
powerful measures for examining the active ingredients
behind human creativity and teamwork.

Building on this theoretical understanding of the cognitive
and social mechanics of design practice, we are currently
exploring how to support more innovative work in distrib-
uted micro-task platforms. We propose two key features
will help modern micro-task platforms accomplish more
complex and creative work. First, formal feedback will help
workers learn tasks and keep them motivated. Second, real-
time visualizations of completed tasks will provide request-
ers a means to monitor and shepherd workers. For workers,
an holistic view of tasks may motivate workers to contrib-
ute in more ways to the project. We hypothesize that pro-
viding infrastructural support for formal critique and
worker interaction will lead to better educated, more moti-
vated workers, and better work results.

MOTIVATION AND BACKGROUND
On micro-task platforms such as Mechanical Turk
(www.mturk.com), requesters pay people to execute short
tasks for small amounts of money. Unlike peer-
production systems, requesters and workers remain
largely anonymous to each other, and little direct interac-
tion occurs between them. Workers can only communi-
cate with other workers through third-party forums
(http://turkopticon.differenceengines.com). From a labor
perspective, treating people as interchangeable replace-
ments for computational processes means that workers
often submit assignments with minimal effort [9], and
have little opportunity or motivation to improve their
understanding of a task domain.

For simple tasks such as data entry, requesters can vali-
date work quality by redundantly hiring workers for the
same job [8] or by inserting test problems that have
known solutions [9]. However, these strategies are less
effective for content-creation tasks — such as writing
product reviews, designing advertisements, or categoriz-
ing complex data — where requesters desire original and
diverse content.

One strategy for accomplishing more complex work is to
decompose tasks into iterative or parallel subtasks
[3,12]. Soylent introduced a find-fix-verify pattern for
word processing, where different workers each take on a
smaller piece of the larger task [3]. However, within
those smaller tasks, an underlying problem persists:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.
Copyright 2011 ACM 978-1-4503-0267-8/11/05....$10.00.

workers are not encouraged to learn or improve their
performance. How can crowdsourcing platforms moti-
vate and scaffold novice workers to improve over time,
especially on complex, large-scale, creative tasks? We
hypothesize that worker interaction with requesters and
with other workers is a key missing component.

In many communities of practice, senior members (often
implicitly) help novices learn and stay motivated [11].
Traditional work environments foster employee devel-
opment through formal performance reviews and feed-
back, and informally, through peripheral participation
[11]. Online communities often provide infrastructure for
moderators to review others’ content and to encourage
the growth of newer members [10]. Peer-production pro-
jects like Wikipedia and open-source software have de-
centralized rather than hierarchical management systems
[2]. Individuals choose where to devote resources, and
through transparency and reputation systems, the com-
munity defines standards and quality control mechanisms
[14].

In contrast with traditional firms or peer-production sys-
tems, micro-task platforms such as Amazon Mechanical
Turk typically offer few formal or informal methods for
worker-requester communication. Instructions provide
the primary point of contact. The products of crowd
workers are invisible to peers. As a result, novice work-
ers cannot observe expert behavior. From a learning per-
spective, social interaction provides an essential form of
feedback [1]. Peer interaction also has motivational
benefits [4,7]. LiveOps, a distributed online call center,
enabled chat interaction between at-home agents to rec-
reate a “water cooler” setting and to foster cohesion
among their workforce [13].

Interactive feedback complements other quality-
improvement efforts such as worker qualifications and
clearer instructions. We hypothesize that task-specific
feedback will help workers on micro-task markets im-
prove performance, much as it does in real-world set-
tings, and make workers cognizant that their work is un-
der review. Additionally, feedback may motivate work-
ers to persevere and accept additional tasks. We investi-
gate these hypotheses through a prototype system, Shep-
herd, that demonstrates how to make feedback an inte-
gral part of crowdsourced creative work.

OPPORTUNITIES FOR CROWD FEEDBACK
To effectively design feedback mechanisms that achieve the
goals of learning, engagement, and quality improvement,
we first analyze the important dimensions of the design
space for crowd feedback (Figure 1).

Timeliness: When should feedback be shown?
In micro-task work, workers stay with tasks for a short
while, then move on. This implies two timing options: syn-
chronously deliver feedback when workers are still engaged

in a set of tasks, or asynchronously deliver feedback after
workers have completed the tasks.

Synchronous feedback may have more impact on future
task performance since it arrives while workers are still
thinking about the task domain. It also increases the prob-
ability that workers will continue onto similar tasks. How-
ever, synchronous feedback places a burden on the feed-
back providers; they have little time to review work. This
implies a need for tools or scheduling algorithms that en-
able near real-time feedback. Asynchronous feedback gives
feedback providers more time to review and comment on
work. However, workers may have forgotten about the task
or feel unmotivated to review the feedback and to return to
the task.

Currently, platforms like Mechanical Turk only allow asyn-
chronous feedback with no enticement to return. Requesters
can provide feedback at payment time, but at that point
(typically days later), workers care more about getting paid
than improving submitted work. More importantly, unless
requesters have more jobs available, workers cannot act on
requesters’ advice.

Specificity: How detailed should feedback be?
Mechanical Turk currently allows requesters one bit of
feedback—accept or reject. While additional freeform
communication is possible, it is rarely used unless workers
file complaints. Workers may learn more if they receive
detailed and personalized feedback on each piece of work.
However, this added specificity comes at a price: feedback
providers must spend time authoring feedback. When feed-
back resources are limited, customizable templates can ac-
celerate feedback generation and enable requesters to cod-
ify domain knowledge into pre-authored statements. How-
ever, templates could be perceived as overly general or re-
petitive, reducing their desired impact. Workers may need
explicit incentive to read and reflect on feedback.

Source: Who should provide feedback?
Crowdsourcing requesters post tasks with specific quality
objectives in mind; they are a natural choice for assuming
the feedback role. However, experts often underestimate the

Figure 1: Current systems (in orange) focus on asynchronous,
single-bit feedback by requesters. Shepherd (in blue) investi-
gates richer, synchronous feedback by requesters and peers.

difficulty novices face in solving tasks [7] or use language
or concepts that are beyond the grasp of novices [6].
Moreover, as feedback becomes more specific, requesters
may find it more difficult to complete work assessments in
real-time.

Alternatively, workers can be paid to provide feedback to
other workers. Peer feedback increases scalability as more
crowd workers can be recruited to handle the volume of
feedback needs. Our preliminary trials indicate that workers
perform tasks simultaneously and overlap (see Figure 2). In
principle, this overlap opens up the possibility of peer feed-
back. For example, workers can be promoted into a feed-
back role after they successfully finish a series of tasks.
This introduces the challenge of identifying and promoting
knowledgeable and responsible workers.

SHEPHERD: SYSTEM DESIGN
We are developing Shepherd, an infrastructure for manag-
ing and providing feedback to crowd workers. Our vision is
to make targeted feedback a core component of future mi-
cro-task platforms. Requesters will need interfaces to simul-
taneously author the task and associated feedback form. To
administer feedback, requesters will need tools for visualiz-
ing work progress. The system will need to elegantly pre-
sent feedback to workers and confirm that they see and un-
derstand the feedback. Also, the system should help re-
questers decide which workers to promote into advanced
roles.

Current Progress
Our prototype recruits and pays workers through Amazon
Mechanical Turk; task hosting and data collection occurs on

our own Web server. Shepherd displays an overview of
workers and results in real-time. The timeline view (Figure
2) presents a Gantt chart showing when workers accept a
task, the length of time workers spend on each task, and
how many tasks a worker completes within a batch. In the
matrix view (Figure 3), columns show tasks and rows show
workers. Each box shows the current state of a task
(skipped, in progress, finished & needs feedback, or feed-
back applied).

Requesters can monitor incoming work and click on any
task to provide feedback using specially designed forms. To
streamline the process, the requester checks high-level
feedback categories and the worker receives corresponding
critique statements. By default, the system delivers feed-
back just before a worker begins a new task from the same
batch. The choice about timing and delivery method is an
empirical question, and depends on factors such as task type
and scale.

Future Development
Micro-task platforms typically provide task authoring tem-
plates. Shepherd will give requesters tools for specifying
feedback forms in tandem with task creation. Feedback
templates become especially important when workers re-
view others’ work. We will evaluate the overhead costs for
creating feedback templates in addition to the task.

A workforce administration interface will let requesters
promote/demote workers to shepherding roles, track worker
performance over time, and launch tasks for specific work-
ers under controlled criteria. An inference algorithm will
recommend promising workers based on prior task per-

Figure 2: Shepherd’s timeline view. Workers overlap in time, which shows potential for
peer feedback. This visualization shows work times for 100 product reviews. Rows rep-
resent individual workers. The X axis shows time. Each colored bar is one product re-
view. The red rectangle highlights a time segment with significant overlap: multiple

workers are active simultaneously.

Figure 3: Shepherd’s matrix view for a
batch of product review tasks. Each box

represents the current state of a task.
Tasks can be completed in parallel by

multiple workers (rows). Red boxes indi-
cate tasks are ready for review. Yellow

boxes are tasks in progress. Green boxes
indicate that work is finished and feed-
back provided. Grey boxes show tasks

that workers choose to skip.

formance and domain knowledge ascertained from short
interspersed test questions.

POTENTIAL FOR CREATIVE CROWD WORK
Does the added cost of assessing work outweigh simpler
mechanisms such as asking workers to assess their own
work? We are currently working on an experiment to com-
pare requester-provided and self-report assessments. Par-
ticipants will write customer reviews for products or serv-
ices. In this common crowdsourcing task, workers can po-
tentially benefit from expert feedback. We can measure
performance by hosting reviews on product sites and meas-
uring community feedback on their helpfulness. Our study
will also analyze overhead costs associated with providing
feedback; worker self-assessments may lead to cheaper
performance gains.

Longer term, we want to investigate the potential of recruit-
ing workers to provide feedback for other workers on a
large-scale content-creation project. We will study differ-
ences in how workers and requesters confer feedback and
examine the effects of the presentation, source, and tone of
feedback.

What’s the broader potential for crowd creativity? Online
crowds could help satisfy demand for personalized versions
of artifacts. Example tasks may include customizing a
greeting card for a particular demographic, generating
bumper sticker ideas for local events, creating a mobile
phone case design for Justin Bieber fans, etc. Crowds with
feedback could effectively handle a large quantity of small
personalization tasks. For more complex projects, workers
can contribute to multiple different tasks and transition to
roles with more responsibility. Further, a holistic visualiza-
tion of a project and its various subtasks may motivate
crowd workers. Workers would ideally be able to see how
they contributed to the whole; this visibility is one key to
success for projects like Wikipedia and The Johnny Cash
Project.

AUTHOR BIOS
Steven P Dow is a Postdoctoral Scholar in the HCI Group
at Stanford University where he researches human-
computer interaction, creative problem-solving, prototyping
practices, and crowdsourcing. Steven taught Stanford’s
first-ever research seminar on crowdsourcing. He is recipi-
ent of Stanford's Postdoctoral Research Award and co-
recipient of a Hasso Plattner Design Thinking Research
Grant. He received an MS and PhD in Human-Centered
Computing from the Georgia Institute of Technology, and a
BS in Industrial Engineering from University of Iowa.
http://www.stanford.edu/~spdow/

Scott R Klemmer is an Assistant Professor of Computer
Science at Stanford University, where he co-directs the
Human-Computer Interaction Group. Organizations around
the world use his lab's open-source design tools, and several
books and popular press articles have covered his research.
He is a co-recipient of a best paper award at both of the

premier human-computer interaction conferences (CHI and
UIST), Microsoft Research New Faculty Fellowship, Sloan
Fellowship, and NSF CAREER award. He received a dual
BA in Art-Semiotics and Computer Science from Brown
University, and an MS and PhD in Computer Science from
UC Berkeley. http://hci.stanford.edu/srk/

ACKNOWLEDGEMENTS
We want to thank our colleagues Björn Hartmann, Anand
Kulkari, Truc Nguyen, and Brie Bunge for their hard work
and contributions to this project.

REFERENCES
1. Annett, J. Feedback and human behaviour: the effects of

knowledge of results, incentives, and reinforcement on learn-
ing and performance. Penguin Books, 1969.

2. Benkler, Y. Coaseʼs Penguin, or, Linux and “The Nature of
the Firm.”The Yale Law Journal 112, 3 (2002), 369-446.

3. Bernstein, M.S., Little, G., Miller, R.C., et al. Soylent: a
word processor with a crowd inside. Proceedings of the 23nd
annual ACM symposium on User interface software and
technology, ACM (2010), 313–322.

4. Cheshire, C. and Antin, J. The Social Psychological Effects
of Feedback on the Production of Internet Information Pools.
Journal of Computer-Mediated Communication 13, 3 (2008),
705-727.

5. Dow, S.P., Fortuna, J., Schwartz, D., Altringer, B., Schwartz,
D.L., and Klemmer, S.R. Prototyping Dynamics: Sharing
Multiple Designs Improves Exploration, Group Rapport, and
Results. Conf on Human Factors in Computing Systems,
(2011).

6. Dow, S., Glassco, A., Kass, J., Schwarz, M., Schwartz, D.L.,
and Klemmer, S.R. Parallel Prototyping Leads to Better De-
sign Results, More Divergence, and Increased Self-Efficacy.
Transactions on Computer-Human Interaction 4, (2010).

7. Horton, J.J. Employer Expectations, Peer Effects and Pro-
ductivity: Evidence from a Series of Field Experiments.
SSRN eLibrary, (2010).

8. Ipeirotis, P.G., Provost, F., and Wang, J. Quality manage-
ment on Amazon Mechanical Turk. Proceedings of the ACM
SIGKDD Workshop on Human Computation, ACM (2010),
64–67.

9. Kittur, A., Chi, E.H., and Suh, B. Crowdsourcing user studies
with Mechanical Turk. Proceeding of the twenty-sixth annual
SIGCHI conference on Human factors in computing systems,
ACM (2008), 453-456.

10. Lampe, C. and Resnick, P. Slash(dot) and burn: distributed
moderation in a large online conversation space. Proceedings
of the SIGCHI conference on Human factors in computing
systems, ACM (2004), 543–550.

11. Lave, J. and Wenger, E. Situated Learning: Legitimate Pe-
ripheral Participation. Cambridge University Press, 1991.

12. Little, G., Chilton, L.B., Goldman, M., and Miller, R.C.
TurKit: tools for iterative tasks on mechanical Turk. Proceed-
ings of the ACM SIGKDD Workshop on Human Computa-
tion, ACM (2009), 29–30.

13. Musico, C. Thereʼs No Place Like Home. destina-
tionCRM.com, 2008.

14. Viégas, F., Wattenberg, M., and Mckeon, M. The Hidden
Order of Wikipedia. In Online Communities and Social
Computing. 2007, 445-454.

